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Abstract. Making use of a line integral defined without use of the partition of unity,
Green’s theorem is proved in the case of two-dimensional domains with a Lipschitz-
continuous boundary for functions belonging to the Sobolev spaces W 1,p(Ω) ≡ H1,p(Ω)
(1 � p <∞).
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Introduction

In [5] (and similarly in [4]) the surface and line integrals are defined with the use
of the partition of unity in a rather complicated and unnatural way. This approach

is then used with advantage in the proofs of the trace theorems and the Green’s
theorem. Using Green’s theorem proved in such a way for deriving the variational

formulation of the boundary value problem

−∆u = f in Ω, u
∣∣
Γ1
= 0,

∂u

∂n

∣∣
Γ2
= q,

where ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, we obtain the following problem: Find

u ∈ V :=
{
v ∈ H1(Ω): u

∣∣
Γ1
= 0
}

such that
∫∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dxdy =

∫∫

Ω
vf dxdy +

∫

Γ2

vq ds ∀v ∈ V.

1 The work was supported by the grant No. 201/97/0153 of the Grant Agency of the Czech
Republic.
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In this variational problem the line integral is defined with the use of the partition

of unity and thus it is not suitable for practical computations.
In this paper we define a line integral in a quite natural way (this means, without

use of partition of unity) and prove the Green’s theorem and necessary trace the-

orems. In [8] we will generalize the results of this paper to the three-dimensional
case.

1. Curves in a plane

1.1. Definition (of a simple curve). Let

(1.1) x = ϕ(t), y = ψ(t), t ∈
〈
a, b
〉

be two functions continuous on a segment
〈
a, b
〉
where a < b. For arbitrary two

different values t1, t2 ∈
〈
a, b
〉
let us have

(1.2) [ϕ(t1), ψ(t1)] �= [ϕ(t2), ψ(t2)].

Then the set Γ of all points [ϕ(t), ψ(t)], t ∈
〈
a, b
〉
, is called a simple curve.

1.2. Definition (orientation of a simple curve). a) A simple curve Γ
is oriented in agreement with the parametric expression (1.1), if for two arbitrary

points P1 = [ϕ(t1), ψ(t1)], P2 = [ϕ(t2), ψ(t2)] of the curve Γ we say that P1 precedes
P2 if t1 < t2.

b) A simple curve Γ is oriented not in agreement with the parametric expression
(1.1), if for two arbitrary points P1 = [ϕ(t1), ψ(t1)], P2 = [ϕ(t2), ψ(t2)] of the curve

Γ we say that P1 precedes P2 if t1 > t2.

1.3. Definition (of the first and last point). a) Let Γ be a simple curve
oriented in agreement with the parametric expression (1.1). Then the point A =

[ϕ(a), ψ(a)] is called the first point of the curve Γ and the point B = [ϕ(b), ψ(b)] the
last point of this curve. Both points are called the end points of the curve Γ.

b) If Γ is not oriented in agreement with parametric expression (1.1) then the
point A = [ϕ(a), ψ(a)] is called the last point and the point B = [ϕ(b), ψ(b)] the first

point of the curve Γ.

1.4. Definition (of a closed simple curve). Let functions (1.1) be continu-

ous on the segment
〈
a, b
〉
and let

[ϕ(a), ψ(a)] = [ϕ(b), ψ(b)].

Further, let an arbitrary pair of numbers t1, t2 ∈
〈
a, b
〉
(t1 �= t2) which is different

from the pair a, b (or b, a) satisfy (1.2). Then the set Γ of points [ϕ(t), ψ(t)],
t ∈
〈
a, b
〉
, is called a closed simple curve.

56



1.5. Definition (orientation of a closed simple curve). Let Γ be a closed

simple curve. Let us orientate it, i.e., let us choose the direction in which we go
around it. Let P1, P2, P3 be three arbitrary mutually different points of the curve
Γ, which are denoted in such a way that in going round the curve in the sense of its

orientation we go from P1 to P2, from P2 to P3 and from P3 to P1. Let t1, t2, t3 be
the parameters of the points P1, P2, P3.

a) We say that the closed simple curve Γ is oriented in agreement with the para-

metric expression (1.1) if either t1 < t2 < t3, or t3 < t1 < t2, or t2 < t3 < t1.

b) We say that the closed simple curve Γ is not oriented in agreement with the

parametric expression (1.1) if either t3 < t2 < t1, or t1 < t3 < t2, or t2 < t1 < t3.

1.6. Definition (of a simple smooth curve). Let Γ be a simple curve or

a closed simple curve. Let there exist such a parametric expression (1.1) of Γ that
functions ϕ(t), ψ(t) have besides the properties described in Definition 1.1 (or 1.4)

the following property: The derivatives ϕ̇(t), ψ̇(t) are continuous on the segment〈
a, b
〉
and

(1.3) [ϕ̇(t)]2 + [ψ̇(t)]2 �= 0 ∀t ∈
〈
a, b
〉

with a possible exception at the end points of the curve Γ. Let in the case of a simple
closed curve the following conditions be also satisfied:

ϕ̇(a) = ϕ̇(b), ψ̇(a) = ψ̇(b).

Then we say that Γ is a simple smooth curve (or a simple smooth closed curve).

1.7. Definition (of a piecewise smooth curve). Let Γ be a simple curve

(or a simple closed curve), which is a union of simple smooth curves Γi (i = 1, . . . , n).
Let an arbitrary point of Γ, which is not the end point of any curve Γi, belong to

only one of the curves Γ1, . . . ,Γn (i.e., the curves Γ1, . . . ,Γn have mutually disjoint
interiors). Then we say that Γ is a piecewise smooth curve; the curves Γi are called

its smooth parts.

1.8. ������. Curves in the plane are often defined by the equation

(1.4) y = f(x), x ∈
〈
a, b
〉
,

or

(1.5) x = g(y), y ∈
〈
c, d
〉
.
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Equations (1.4), (1.5) can be easily transformed to a parametric form:

x = t, y = f(t), t ∈
〈
a, b
〉
,(1.6)

x = g(t), y = t, t ∈
〈
c, d
〉
.(1.7)

1.9. ������. It should be noted that every curve can be expressed in a para-

metric form in infinitely many ways.

1.10. Definition. A given smooth curve is called an elementary arc (with

respect to a given Cartesian coordinate system) if it is a segment parallel with one
of the coordinate axes, or if every straight line parallel with the x-axis intersects

this curve at most at one point and, similarly, if every straight line parallel with the
y-axis intersects this curve at most at one point.

1.11. �����	�. The half-circle Ch = {[x, y] : x2 + y2 = 1, y � 0} is not an
elementary arc but the quarter of the circle Cq = {[x, y] : x2+ y2 = 1, x � 0, y � 0}
is an elementary arc.

1.12. Convention. We shall consider only curves which can be divided into a finite
number of elementary arcs.

1.13. ������. Convention 1.12 simplifies our considerations because it excludes

all exotic curves which complicate theories and do not appear in applications. We
mention some of them:

a) An infinite “saw” on the segment
〈
0, 1
〉
: Let f(0) = f(1) = 0 and

f((2k − 1)/2k) = 0 (k = 1, 2, . . .).

On the subsegment
〈
0, 12
〉
the function f(x) is such that its graph is formed by two

oblique sides of the equilateral triangle whose basic side is the segment
〈
0, 12
〉
. In

general for k � 2: On the subsegment
〈
(2k−1 − 1)/2k−1, (2k − 1)/2k

〉
(k � 2)

the function f(x) is such that its graph is formed by two oblique sides of the equi-
lateral triangle whose basic side is the segment

〈
(2k−1 − 1)/2k−1, (2k − 1)/2k

〉
.

b) The function

f(x) = x3 sin
1
x
, x ∈

〈
− 1, 0) ∪ (0, 1

〉
,

f(0) = 0, f ′(0) = 0

belongs to C1
〈
− 1, 1

〉
but has infinitely many relative extremes; hence, it cannot be

divided into a finite number of elementary arcs.
c) Infinite spirals; they cannot be divided into a finite number of elementary arcs.
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1.14. ������. The notion “an elementary arc” is not invariant with respect

to a transformation between two Cartesian coordinate systems; however, the notion
“a curve which can be divided into a finite number of elementary arcs” is invariant.
This fact is fundamental for our further considerations.

2. The notion of a line integral in the plane

2.1. Definition. Let Γ be a smooth plane curve with the parametric expression

(1.1). Let functions F (x, y), P (x, y), Q(x, y) be continuous in a domain O which
contains the curve Γ. Then we define:

a) A line integral of the first kind by the relation

(2.1)
∫

Γ
F (x, y) ds :=

∫ b

a

F (ϕ(t), ψ(t))
√
[ϕ̇(t)]2 + [ψ̇(t)]2 dt.

The expression
√
ϕ̇2 + ψ̇2 dt is called the differential of the curve and we denote it

by ds.

b) Line integrals of the second kind by the relations

(2.2)
∫

Γ
P (x, y) dx+Q(x, y) dy :=

∫

Γ
P (x, y) dx+

∫

Γ
Q(x, y) dy,

where

∫

Γ
P (x, y) dx := β

∫ b

a

P (ϕ(t), ψ(t))ϕ̇(t) dt,(2.3a)

∫

Γ
Q(x, y) dy := β

∫ b

a

Q(ϕ(t), ψ(t))ψ̇(t) dt,(2.3b)

where β = 1 (or β = −1) if the orientation of the curve Γ agrees (or disagrees) with
the given parametric expression (1.1).

2.2. ������. a) The line integral of the first kind does not depend on the
orientation of the curve Γ.

b) The assumption concerning the continuity of functions F (x, y), P (x, y), Q(x, y)

in a domain O containing the curve Γ can be satisfied in all situations occurring in
this paper. We introduce this assumption because of the proof of Theorem 2.6.
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2.3. ������. In the case when the curve Γ is given by (1.4), the expressions

(2.1) and (2.3) are reduced to the expressions

∫

Γ
F (x, y) ds =

∫ b

a

F (x, f(x))
√
1 + [f ′(x)]2 dx,(2.1*)

∫

Γ
P (x, y) dx = β

∫ b

a

P (x, f(x)) dx,(2.3a*)

∫

Γ
Q(x, y) dy = β

∫ b

a

Q(x, f(x))f ′(x) dx;(2.3b*)

in the case when the curve Γ is given by (1.5) the expressions (2.1) and (2.3) are

reduced to the expressions

∫

Γ
F (x, y) ds =

∫ b

a

F (g(y), y)
√
1 + [g′(y)]2 dy,(2.1**)

∫

Γ
P (x, y) dx = β

∫ b

a

P (g(y), y)g′(y) dy,(2.3a**)

∫

Γ
Q(x, y) dy = β

∫ b

a

Q(g(y), y) dy.(2.3b**)

2.4. Definition (of the line integral along a piecewise smooth curve).
If Γ is a piecewise smooth curve which consists of smooth curves Γ1, . . . ,Γn (see
Definition 1.7), then we define

∫

Γ
F (x, y) ds =

n∑

k=1

∫

Γk

F (x, y) ds,(2.4)

∫

Γ
P (x, y) dx+Q(x, y) dy =

n∑

k=1

∫

Γk

P (x, y) dx+Q(x, y) dy.(2.5)

2.5. ������. It can be easily proved that Definition 2.4 is not contradictory.

This means: If

Γ =
m⋃

j=1

Γj , Γ =
n⋃

k=1

Ck,

where Γ1, . . . ,Γm and C1, . . . , Cn are simple smooth curves satisfying

Γi ∩ Γj = ∅ (i �= j; i, j = 1, . . . ,m), Ci ∩ Cj = ∅ (i �= j; i, j = 1, . . . , n),

then
m∑

j=1

∫

Γj

F (x, y) ds =
n∑

k=1

∫

Ck

F (x, y) ds,
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m∑

j=1

∫

Γj

P (x, y) dx+Q(x, y) dy =
n∑

k=1

∫

Ck

P (x, y) dx+Q(x, y) dy.

2.6. Theorem. The line integral of the first or second kind along a smooth

curve does not depend on a parametric representation of the curve.

For the proof see, e.g., [6].

3. Green’s theorem in elementary domains

3.1. Definition (of a two-dimensional elementary domain). Let x, y be

a Cartesian coordinate system.

a) A two-dimensional bounded domain Ω is called elementary with respect to the

x-axis, if every straight line parallel to the y-axis intersects the boundary ∂Ω at two
different points or has with ∂Ω a common segment which can degenerate to a point.

b) A two-dimensional bounded domain Ω is called elementary with respect to the

y-axis, if every straight line parallel to the x-axis intersects the boundary ∂Ω at two
different points or has with ∂Ω a common segment which can degenerate to a point.

c) A two-dimensional bounded domain Ω is called elementary with respect to a

given Cartesian coordinate system if it is elementary with respect to each of the
coordinate axes.

3.2. ������
. a) Every bounded convex domain is elementary with respect to

every Cartesian coordinate system.

b) It follows from Definition 3.1 that every elementary domain is simply connected.

c) The notion of a domain which is elementary with respect to a given Cartesian

coordinate system has a disadvantage: this notion is not invariant to a change of
coordinates. For example, the domain which is bounded in the system x, y by two

segments A1A2, A2A3 and the curve σ, where A1 = [0, 1], A2 = [0, 0], A3 = [1, 0]
and σ is defined by the relations

x = 1+ cos t, y = 1 + sin t, t ∈
〈
�, 32�

〉
,

is not elementary with respect to other Cartesian coordinate systems, whose axes

are not parallel with x and y.

3.3. Definition (of the orientation of the boundary with respect to the
domain). a) Let a simply connected domain Ω be bounded by a simple closed

curve ∂Ω. We say that ∂Ω is oriented positively with respect to the domain Ω if Ω
is on our left-hand side when we move along ∂Ω in the direction of its orientation.
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b) Let Ω be a multiply connected bounded domain, i.e.,

∂Ω = Γ0 ∪ Γ1 ∪ . . . ∪ Γm (Γi ∩ Γj = ∅, i �= j),

where Γk (k = 0, . . . ,m) are closed simple curves such that Γ1, . . . ,Γm ⊂ Ω0, where
Ω0 is a simply connected domain with the boundary ∂Ω0 ≡ Γ0. We say that ∂Ω is
oriented positively with respect to the domain Ω if Γk are oriented so that Ω is on
our left-hand side when we move along Γk in the direction of its orientation.

The curve Γ0 is called the external curve; the curves Γ1, . . . ,Γm are called interior
curves. They are boundaries of the holes of Ω.

3.4. Definition (of a piecewise smooth boundary). Let a domain Ω
satisfy the conditions of Definition 3.3 with 0 � m < ∞. Then the (non-oriented)
boundary ∂Ω is called a piecewise smooth boundary of the domain Ω. (In other
words: If we say “Let the domain Ω have a piecewise smooth boundary ∂Ω” then we

assume that the assumptions of Definition 3.3 are satisfied with 0 � m <∞ (except
for the orientation of ∂Ω). Attention: Convention 1.12 is taken into account.)

3.5. Theorem (Green’s theorem for a domain consisting of elementary
domains). Let a bounded domain Ω satisfy the condition

(3.1) Ω =
n⋃

k=1

Ωk, Ωi ∩ Ωj = ∅ (i, j = 1, . . . , n),

where Ω1, . . . ,Ωn are elementary domains with respect to a given Cartesian coor-

dinate system x, y. Let functions P , Q and their derivatives ∂P/∂y, ∂Q/∂x be

continuous on Ω. Let the boundary ∂Ω of the domain Ω be piecewise smooth and
positively oriented with respect to the domain Ω. Then

(3.2)
∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

∂Ω
P dx+Q dy.

This theorem is proved in every basic course of mathematical analysis.

3.6. �����	� of a domain consisting of elementary domains. Let Ω be a closed

domain bounded by two circles with the same center at the origin and with radii
R1, R2 (0 < R1 < R2). The axes x, y divide the domain Ω into four closed domains

Ω1, . . . ,Ω4 with disjoint interiors Ω1, . . . ,Ω4: Ωi∩Ωj = ∅ (i �= j; i, j = 1, . . . , 4). The
domains Ω1, . . . ,Ω4 are elementary with respect to the Cartesian coordinate system

x, y and each two adjacent domains Ωi, Ωj have a common segment Ωi ∩ Ωj which
lies either on the x-axis, or on the y-axis.

62



Theorem 3.4 is not sufficiently general for applications. The verification of its

assumptions is in many simple cases quite impossible. To divide, for example, “a
slice of cheese with many bubbles”

Ω = K0 −
N⋃

j=1

Kj (Kj ⊂ K0, Ki ∩Kj = ∅, i, j = 1, . . . , N),

where K0,K1, . . . ,KN are circles, into a union of a finite number of elementary

domains with mutually disjoint interiors is a very difficult and often impossible task.

Thus our aim is to substitute in the Green’s theorem the assumption concerning

the elementary subdomains by assumptions concerning the properties of the bound-
ary ∂Ω of a domain Ω. We start in the next section with some auxiliary theorems.

4. Auxiliary theorems

4.1. Definition (of a polygon and a polyhedron). a) By a polygon we
understand every nonempty, bounded and closed domain in �2 the boundary of

which can be expressed as a union of a finite number of segments.

b) By a polyhedron we understand every nonempty, bounded and closed domain in

�
3 the boundary of which can be expressed as a union of a finite number of polygons
with mutually disjoint interiors.

4.2. Lemma (on a decomposition of a polygon and a polyhedron into
convex components). a) For every polygon Ω there exists a finite number of
convex polygons with mutually disjoint interiors the union of which is Ω.

b) For every polyhedron Ω there exists a finite number of convex polyhedrons with
mutually disjoint interiors the union of which is Ω.

����
. The proof is part of the proof of a more general theorem (see [3]).

However, because of the importance of the lemma we reproduce the corresponding
part of Křížek’s proof in a slight extended form.

The proof is presented in the three-dimensional case; this part of Lemma 4.2 will
play a fundamental role in the proof of the Gauss-Ostrogradskij theorem. In the

two-dimensional case the proof of Lemma 4.2 is analogous but simpler.

Let Ω be an arbitrary polyhedron and let π1, . . . , πm be polygons the union of

which is the boundary ∂Ω. Let �1, . . . , �m be such planes that πi ⊂ �i, i = 1, . . . ,m.
It may happen that some of these planes will coincide. Without loss of generality

let us assume that �1, . . . , �k (k � m) are mutually different planes and each �i

(k < i � m) belongs to the set {�1, . . . , �k}. Let Ω1, . . . ,Ωr ⊂ �
3 be all components
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of the set Ω−
k⋃

i=1
�i (i.e. the components which arise after “cutting up” the polyhedron

Ω by the planes �i). The number of these components is finite (at most 2k). We
assert that Ωj (j = 1, . . . , r) are the sought convex polyhedrons.

First we show that Ωj are open sets. As ∂Ω ⊂
k⋃

i=1
�i we have

Ω−
k⋃

i=1

�i = Ω−
k⋃

i=1

�i.

This set is open because Ω is an open set and
k⋃

i=1
�i is a closed set, and components

of an open set are open.

Further we prove the convexity of Ωj . Let j ∈ {1, . . . , r} be an arbitrary fixed
integer. Each plane �i (i = 1, . . . , k) divides the space �3 into two half-spaces. Let

us denote by Qi the closed half-space which is bounded by the plane �i and which

contains Ωj , and let us denote M :=
k⋂

i=1
Qi. Then we have Ωj ⊂ M . The opposite

inclusion will be proved by contradiction. Let us assume that there exists a point
P ∈M − Ωj . As Ωj is a closed set we have R = dist(P,Ωj) > 0; this means that

M − Ωj ⊃M ∩ SR(P ) �= ∅,

where SR(P ) is an open ball of a radius R and with the center at P , which lies in

the convex set M . Let X ∈M ∩ SR(P ) be such a point that does not belong to any
plane �1, . . . , �k and let Y be an arbitrary interior point of Ωj (such a point certainly

exists because Ωj is a domain). Then inside the segment XY there exists such a
point Z that Z ∈ ∂Ωj (because X /∈ Ωj). As Z is a boundary point of Ωj there

exists a plane �s (1 � s � k) such that Z ∈ �s and this plane separates the points
X a Y because X /∈ �s, Y /∈ �s. This implies that X /∈ Qs, which contradicts the

fact that X ∈M ⊂ Qs. Hence

Ωj =
k⋂

i=1

Qi

and this intersection is evidently bounded and has at least one interior point. In
other words, Ωj is a convex polyhedron.
Further, the definition of components Ωj (j = 1, . . . , r), i.e., the relation

Ω−
k⋃

i=1

�i =
r⋃

j=1

Ωj ,

immediately implies that Ω =
r⋃

j=1
Ωj . �
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4.3. Definition (of cusp-points (turning points)). a) Let Γ be a simple

piecewise smooth curve. A point B ∈ Γ is called a cusp-point if the curve Γ is not
smooth at this point, if B is the end point of two smooth parts of Γ (let us denote
them Γ1 and Γ2) and if Γ1 and Γ2 have at B a common nonoriented tangent.

b) A cusp-point is called one-sided if there exists a neighbourhood of this point
such that in it both smooth parts lie in the same half-plane which is determined by

the common tangent. In the opposite case a cusp-point is called two-sided.

4.4. Theorem (on extension of functions with keeping their class). Let
the boundary ∂Ω of a bounded domain Ω ⊂ �

2 be piecewise smooth and let it have no

cusp-points. Let a function f(x, y) and its derivatives ∂f/∂x, ∂f/∂y be continuous

on the closed domain Ω and let

max
Ω

|f(x, y)| � M, max
Ω

∣∣∣∣
∂f

∂x
(x, y)

∣∣∣∣ � M, max
Ω

∣∣∣∣
∂f

∂y
(x, y)

∣∣∣∣ � M.

Then there exist a circle KR ⊃ Ω (the magnitude of its radius R depends on the
function f(x, y)) and a function f̃(x, y) which is continuous and continuously differ-
entiable in the whole plane �2 , outside the circle KR is equal to zero and satisfies

f̃(x, y) = f(x, y) ∀[x, y] ∈ Ω,

max
KR

∣∣f̃(x, y)
∣∣ � C, max

KR

∣∣∣∂f̃
∂x
(x, y)

∣∣∣ � C, max
KR

∣∣∣∂f̃
∂y
(x, y)

∣∣∣ � C.

The proof of this theorem is given, for example, in [1, pp. 674–687] (see also

the German translation [2, pp. 550–562]). It is noted in [1], [2] that the origins
of the proof belong to H. Whitney and M.R. Hestenes. A generalization of these

considerations leads to Nikolskij-Babič extension theorem (see [5, pp. 75–77], or in a
more general form in [7, pp. 18–24]).

Domains whose boundaries satisfy the assumptions contained in Theorem 4.4 form

a subset of domains with Lipschitz-continuous boundaries. Therefore, we introduce

4.5. Definition. We say that a bounded domain Ω ⊂ �
2 has an S-Lipschitz

continuous boundary ∂Ω if ∂Ω is piecewise smooth and has no cusp-points.

Domains with S-Lipschitz continuous boundaries cover the set of domains with

Lipschitz continuous boundaries used in applications.
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5. Green’s theorem in domains with S-Lipschitz continuous boundaries

5.1. Theorem (Green). Let a (simply or multiply connected) domain Ω have
an S-Lipschitz continuous boundary. Let the boundary ∂Ω of the domain Ω be

oriented positively with respect to the domain Ω. Let finally P , Q ∈ C1(Ω). Then
relation (3.2) holds.

����
. We will present two different proofs of Theorem 5.1. The first will
be generalized in [8] in the proof of the Gauss-Ostrogradskij theorem, the second is

based on special properties of �2 .

1) Let us write the expression for the boundary ∂Ω of the domain Ω in the form

(5.1) ∂Ω =
m⋃

k=0

Γk,

where Γ1, . . . ,Γm are interior curves, which form also the boundaries of the “holes”,

and Γ0 is the external curve.

Let us choose ε > 0 and let us approximate the bounded closed domain Ω by a
convenient polygon Ωε such that

(5.2)
N(ε)∑

k=1

meas2∆k < ε,

where ∆1, . . . ,∆N(ε) are crescent-shaped domains created by segments which form

∂Ωε, and smooth parts of ∂Ω, which are approximated by these segments.

Theorem 3.5 and Lemma 4.2 imply

(5.3)
∫∫

Ωε

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy =

∫

∂Ωε

P̃ dx+ Q̃dy,

where P̃ and Q̃ are the extensions of functions P and Q, respectively, according to

Theorem 4.4. Relation (5.3) can be written in the form
(5.4)∫∫

Ω

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy +

∫∫

Ωε

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy −

∫∫

Ω

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy

=
∫

∂Ω
P̃ dx+ Q̃dy +

∫

∂Ωε

P̃ dx+ Q̃dy −
∫

∂Ω
P̃ dx+ Q̃dy.
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The assumptions of Theorem 5.1 and relation (5.2) give

∣∣∣∣∣

∫∫

Ωε

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy −

∫∫

Ω

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy

∣∣∣∣∣(5.5)

�
N(ε)∑

k=1

∣∣∣∣∣

∫∫

∆k

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy

∣∣∣∣∣ � K

N(ε)∑

k=1

meas2∆k � Kε.

As to the difference of the last two integrals on the right-hand side of (5.4) we
have (because ∂Ωε is oriented positively with respect to Ωε and ∂Ω positively with

respect to Ω)

∫

∂Ωε

P̃ dx+ Q̃dy −
∫

∂Ω
P̃ dx+ Q̃dy =

N(ε)∑

k=1

δk

∫

∂∆k

P̃ dx+ Q̃ dy,

where δk = 1 if the segment forming part of the boundary ∂∆k lies outside the
domain Ω, and δk = −1 if this segment lies in Ω. As each ∆k is a convex domain,

we further have
∣∣∣∣
∫

∂Ωε

P̃ dx+ Q̃ dy −
∫

∂Ω
P̃ dx+ Q̃ dy

∣∣∣∣(5.6)

�
N(ε)∑

k=1

∣∣∣∣
∫

∂∆k

P̃ dx+ Q̃ dy

∣∣∣∣ =
N(ε)∑

k=1

∣∣∣∣∣

∫∫

∆k

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy

∣∣∣∣∣ < Kε.

As ε > 0 is arbitrary, relations (5.4)–(5.6) imply the assertion of Theorem 5.1.

2) In the second proof let us approximate the domain Ω by a domain Ωh with a
polygonal boundary ∂Ωh the vertices of which lie on ∂Ω. This approximation need

not be close; however, it must have the property that the set bounded by the curves
∂Ω and ∂Ωh is a union of convex domains G1, . . . , Gn which have the crescent-shaped

form.
We have, according to Theorem 3.5 and Lemma 4.2,

(5.7)
∫∫

Ωh

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy =

∫

∂Ωh

P̃ dx+ Q̃ dy,

where P̃ and Q̃ are extensions of functions P and Q, respectively, according to
Theorem 4.4. Relation (5.7) can be written in the form

(5.8)∫∫

Ωh

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy =

∫

∂Ωh

P̃ dx+ Q̃dy−
∫

∂Ω
P̃ dx+ Q̃ dy+

∫

∂Ω
P̃ dx+ Q̃dy.
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The crescent-shaped domains lying outside Ωh will be denoted by G
+
ki
, the crescent-

shaped domains lying in the interior of Ωh will be denoted by G
−
kj
. We have

(5.9)∫

∂Ωh

P̃ dx+Q̃dy−
∫

∂Ω
P̃ dx+Q̃dy = −

∑

i

∫

∂G+ki

P̃ dx+Q̃dy+
∑

j

∫

∂G−kj

P̃ dx+Q̃dy;

the boundary of each crescent-shaped domain Gk is oriented positively, hence the

minus sign at the first sum on the right-hand side of (5.9) follows. Using Green’s
theorem for a convex domain we obtain

(5.10)
∫

∂Gk

P̃ dx+ Q̃dy =
∫∫

Gk

(
∂Q̃

∂x
− ∂P̃

∂y

)
dxdy.

The last relation which we need has the form

(5.11)
∫∫

Ωh

F̃ dxdy +
∑

i

∫∫

G+ki

F̃ dxdy −
∑

j

∫∫

G−kj

F̃ dxdy =
∫∫

Ω
F̃ dxdy,

where F̃ := ∂Q̃/∂x− ∂P̃ /∂y. Combining (5.8)–(5.11) we obtain (3.2).
The second proof surprises by the fact that we did not need to use the limit passage

from Ωh to Ω. This is only possible in the two-dimensional case. �

6. The divergence form of Green’s theorem

Every point [ϕ(t), ψ(t)] ∈ Γ at which relation (1.3) is satisfied, is called an ordinary
point of the curve Γ.

6.1. Lemma (on a tangent of a smooth curve). At every ordinary point of
a smooth curve Γ there exists a tangent, the direction cosines of which satisfy

(6.1) cosα = β
ϕ̇(t)√

[ϕ̇(t)]2 + [ψ̇(t)]2
, sinα = β

ψ̇(t)√
[ϕ̇(t)]2 + [ψ̇(t)]2

provided the orientation of the tangent is defined as a continuation of the orientation

of the curve Γ. The symbol β has the same meaning as in Definition 2.1b.

For the proof see [1] or [2]. The following lemma is an immediate consequence of
Definition 2.1 and Lemma 6.1.

6.2. Lemma. Let Γ be a smooth oriented curve and let the orientation of the
tangent to Γ be at every point of Γ a continuation of the orientation of Γ. Let α(x, y)
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be the angle between the oriented tangent at the point [x, y] ∈ Γ and the positive
direction of the x-axis. Then

(6.2)
∫

Γ
P (x, y) dx+Q(x, y) dy =

∫

Γ
[P (x, y) cosα(x, y) +Q(x, y) sinα(x, y)] ds.

6.3. Theorem (divergence form of Green’s theorem). Let a (simply or
multiply connected) domain Ω have an S-Lipschitz continuous boundary. Let the

boundary ∂Ω of the domain Ω be oriented positively with respect to the domain Ω.
Then for all functions P1, P2 ∈ C1(Ω) we have
(6.3)∫∫

Ω

(
∂P1
∂x
+
∂P2
∂y

)
dxdy =

∫

∂Ω
(P1 cosω + P2 sinω) ds ≡

∫

∂Ω
(P1n1 + P2n2) ds,

where ω is the angle between the unit vector (n1, n2) of the outer normal to the
boundary ∂Ω and the positive direction of the x-axis.

����
. Let us denote P = −P2, Q = P1. According to the assumptions of
Theorem 6.3, we can use Theorem 5.1 and write

(6.4)
∫∫

Ω

(
∂P1
∂x
+
∂P2
∂y

)
dxdy =

∫

∂Ω
(−P2 dx+ P1 dy).

According to Lemma 6.2 the right-hand side satisfies

(6.5)
∫

∂Ω
(−P2 dx+ P1 dy) =

∫

∂Ω
(−P2 cosα+ P1 sinα) ds.

As the boundary ∂Ω is oriented positively with respect to the domain Ω, the angles
α a ω satisfy the relation ω = α− �/2. Hence

(6.6) cosω = sinα, sinω = − cosα.

Substituting (6.6) into the right-hand side of (6.5) and using (6.4) we obtain (6.3).

�

6.4. ������. Let u, v ∈ C1(Ω). Setting Pi = uv, Pj ≡ 0 in (6.3) we obtain
another form of Green’s formula:

(6.7)
∫∫

Ω

∂u

∂xi
v dx1 dx2 =

∫

∂Ω
uvni ds−

∫∫

Ω
u
∂v

∂xi
dx1 dx2

where we set x1 := x, x2 := y.
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7. Green’s theorem in Sobolev spaces

7.1. Lemma (on the invariance of the line integral). Let (x, y) and (ξ, η)
be two Cartesian coordinate systems related by the transformation

(7.1) x = x0 + a1ξ + a2η, y = y0 + b1ξ + b2η,

where [x0, y0] is the origin of the system (ξ, η) in the system (x, y). Let the (nonori-

ented) smooth curve Γ be expressed in the system (x, y) by

(7.2) y = f(x), x ∈
〈
a, b
〉
, a < b,

where f ∈ C1
〈
a, b
〉
, and in the system (ξ, η) by

(7.3) η = ϕ(ξ), ξ ∈
〈
α, β

〉
, α < β,

where ϕ ∈ C1
〈
α, β

〉
. Let

(7.4) a = x0 + a1α+ a2ϕ(α), b = x0 + a1β + a2ϕ(β)

or

(7.4*) a = x0 + a1β + a2ϕ(β), b = x0 + a1α+ a2ϕ(α).

Let a1+a2ϕ′(ξ) not change its sign on
〈
α, β

〉
. If F : Γ→ �

1 is a continuous function

with values F (x, y) for [x, y] ∈ Γ then

(7.5)
∫ b

a

[F (x, f(x))]2
√
1 + [f ′(x)]2 dx =

∫ β

α

[Φ(ξ, ϕ(ξ))]2
√
1 + [ϕ′(ξ)]2 dξ,

where

(7.6) Φ(ξ, η) = F (x0 + a1ξ + a2η, y0 + b1ξ + b2η).

����
. Let P ∈ Γ be arbitrary but fixed. By (7.2) we can write P = [x, f(x)]
and by (7.3), P = [ξ, ϕ(ξ)]. According to (7.1), these coordinates satisfy the relations

x = x0 + a1ξ + a2ϕ(ξ),(7.7)

f(x) = y0 + b1ξ + b2ϕ(ξ).(7.8)
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Using (7.4), (7.6)–(7.8) and the theorem on transformation of an integral we obtain

∫ b

a

[F (x, f(x))]2
√
1 + [f ′(x)]2 dx(7.9)

= ±
∫ β

α

sign(a1 + a2ϕ′(ξ))[Φ(ξ, ϕ(ξ))]2

×
√
1 + [f ′x(x0 + a1ξ + a2ϕ(ξ))]2|a1 + a2ϕ′(ξ)| dξ

where the sign plus occurs in the case (7.4) and the sign minus in the case (7.4∗).

As the left-hand side of (7.9) is positive, we have

(7.10) ± sign(a1 + a2ϕ′(ξ)) = 1

with the possible exception of a finite number of points, because α < β and the
remaining terms on the right-hand side of (7.9) are nonnegative.

Using the theorem on differentiation of a composite function and relation (7.8) we
find

(7.11)
f ′x(x0 + a1ξ + a2ϕ(ξ))(a1 + a2ϕ

′(ξ)) = d
dξ [f(x)]

= d
dξ (y0 + b1ξ + b2ϕ(ξ)) = b1 + b2ϕ

′(ξ).

Relation (7.11) implies

(7.12)

√
1 + [f ′x(x0 + a1ξ + a2ϕ(ξ))]2|a1 + a2ϕ′(ξ)|
=
√
[a1 + a2ϕ′(ξ)]2 + [b1 + b2ϕ′(ξ)]2.

As the transformation between the coordinate systems (x, y) and (ξ, η) is orthogonal
the column vectors of the matrix

(
a1 a2

b1 b2

)

form a system of orthonormal vectors. Hence,

(7.13)
√
[a1 + a2ϕ′(ξ)]2 + [b1 + b2ϕ′(ξ)]2 =

√
1 + [ϕ′(ξ)]2.

Relations (7.9)–(7.13) imply (7.5). �

7.2. ������. In the same way we can prove the following assertions:
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A. Let (x, y) and (ξ, η) be two Cartesian coordinate systems related by transfor-
mation (7.1). Let a smooth curve Γ be expressed in the system (x, y) by (7.2) and
in the system (ξ, η) by

(7.14) ξ = ψ(η), η ∈
〈
α, β

〉
, α < β,

where ψ ∈ C1
〈
α, β

〉
and

(7.15) a = x0 + a1ψ(α) + a2α, b = x0 + a1ψ(β) + a2β

or

(7.15*) a = x0 + a1ψ(β) + a2β, b = x0 + a1ψ(α) + a2α.

Let a1ψ′(η)+a2 not change its sign on
〈
α, β

〉
. If F : Γ→ �

1 is a continuous function

with values F (x, y) for [x, y] ∈ Γ then

(7.16)
∫ b

a

[F (x, f(x))]2
√
1 + [f ′(x)]2 dx =

∫ β

α

[Φ(ψ(η), η)]2
√
1 + [ψ′(η)]2 dη,

where the function Φ(ξ, η) is given by (7.6).

B. Let (x, y) and (ξ, η) be two Cartesian coordinate systems related by transfor-
mation (7.1). Let a smooth curve Γ be expressed in the system (x, y) by

(7.17) x = g(y), y ∈
〈
a, b
〉
, a < b,

where g ∈ C1
〈
a, b
〉
, and in the system (ξ, η) by (7.14) where

(7.18) a = y0 + b1ψ(α) + b2α, b = y0 + b1ψ(β) + b2β

or

(7.18*) a = y0 + b1ψ(β) + b2β, b = y0 + b1ψ(α) + b2α.

Let b1ψ′(η)+b2 not change its sign on
〈
α, β

〉
. If F : Γ→ �

1 is a continuous function

with values F (x, y) for [x, y] ∈ Γ then

(7.19)
∫ b

a

[F (g(y), y)]2
√
1 + [g′(y)]2 dy =

∫ β

α

[Φ(ψ(η), η)]2
√
1 + [ψ′(η)]2 dη,

where the function Φ(ξ, η) is given by (7.6).
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C. Let (x, y) and (ξ, η) be two Cartesian coordinate systems related by transfor-
mation (7.1). Let a smooth curve Γ be expressed in the system (x, y) by (7.17) and
in the system (ξ, η) by (7.3) where

(7.20) a = y0 + b1α+ b2ϕ(α), b = y0 + b1β + b2ϕ(β)

or

(7.20*) a = y0 + b1α+ b2ϕ(α), b = y0 + b1β + b2ϕ(β).

Let a1ψ′(η)+a2 not change its sign on
〈
α, β

〉
. If F : Γ→ �

1 is a continuous function

with values F (x, y) for [x, y] ∈ Γ then

(7.21)
∫ b

a

[F (g(y), y)]2
√
1 + [g′(y)]2 dy =

∫ β

α

[Φ(ξ, ϕ(ξ))]2
√
1 + [ϕ′(ξ)]2 dξ,

where the function Φ(ξ, η) is given by (7.6).

7.3. �����	�. Let us consider a circle

x2 + y2 = R2 (R > 0)

in the Cartesian coordinate system (x, y). Let us denote

A1 = [−
√
2
2 R,−

√
2
2 R], A2 = [

√
2
2 R,−

√
2
2 R], A3 = [

√
2
2 R,

√
2
2 R], A4 = [−

√
2
2 R,

√
2
2 R],

B1 = [0,−R], B2 = [R, 0], B3 = [0, R], B4 = [−R, 0].

The curves A1A2 and A4A3 have the expressions

y = −
√
R2 − x2 and y =

√
R2 − x2, x ∈

〈
−

√
2
2 R,

√
2
2 R

〉

and the curves A2A3 and A1A4 have the expressions

x =
√
R2 − y2 and x = −

√
R2 − y2, y ∈

〈
−

√
2
2 R,

√
2
2 R

〉
.

Let (ξ, η) be the Cartesian coordinate system which is connected with the system

(x, y) by the transformation

x =
√
2
2 ξ −

√
2
2 η, y =

√
2
2 ξ +

√
2
2 η.

The curves B1B2 and B4B3 have the expressions

η = −
√
R2 − ξ2 and η =

√
R2 − ξ2, ξ ∈

〈
−

√
2
2 R,

√
2
2 R

〉

and the curves B2B3 and B1B4 have the expressions

ξ =
√
R2 − η2 and ξ = −

√
R2 − η2, η ∈

〈
−

√
2
2 R,

√
2
2 R

〉
.

Thus each of the eight curves AiBj satisfies either Lemma 7.1 or one of the asser-
tions A, B, C from Remark 7.2.
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Remark 2.5, Theorem 2.6, Lemma 7.1 and Remark 7.2 imply

7.4. Theorem. Let (x, y) and (ξ, η) be two Cartesian coordinate systems which
are connected by transformation (7.1). Let u(x, y) ∈ L2(∂Ω) where ∂Ω is an S-

Lipschitz continuous boundary of a domain Ω. Then the function

U(ξ, η) = u(x0 + a1ξ + a2η, y0 + b1ξ + b2η)

belongs to L2(∂Ω) and we have

∫

∂Ω
[u(x, y)]2 ds =

∫

∂Ω
[U(ξ, η)]2 ds,

where the line integrals are defined without use of the partition of unity.

7.5. Lemma (trace theorem). Let Ω be a domain with an S-Lipschitz con-
tinuous boundary. Then there exists a unique bounded linear mapping γ : H1(Ω) ≡
W 1
2 (Ω) → L2(∂Ω) such that we have (γv)(x, y) = v(x, y) for all v ∈ C∞(Ω) and
[x, y] ∈ ∂Ω. The boundedness of the mapping is expressed by the inequality

(7.22) ‖v‖20,∂Ω ≡
∫

∂Ω
[v(x, y)]2 ds � C‖v‖2H1(Ω) ∀v ∈ H1(Ω),

where the line integral is defined without use of the partition of unity.

For the proof see [5, pp. 15–16].

7.6. Lemma (density theorem). Let Ω be a domain with an S-Lipschitz

continuous boundary. Then C∞(Ω) is dense in H1(Ω).

For the proof see [4, pp. 271–272].

7.7. Theorem (Green’s formula). Let a domain Ω have an S-Lipschitz
continuous boundary. Then for all functions u, v ∈ H1(Ω) we have

(7.23)
∫∫

Ω

∂u

∂xi
v dx1 dx2 =

∫

∂Ω
uvni ds−

∫∫

Ω
u
∂v

∂xi
dx1 dx2

where (n1, n2) is the outer unit normal vector and where we write simply u, v instead
of γu, γv.

����
. Let {uk} ⊂ C∞(Ω), {vk} ⊂ C∞(Ω) be such sequences that

(7.24) uk → u, vk → v in H1(Ω).
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Then, according to Remark 6.4,

(7.25)
∫∫

Ω

∂uk

∂xi
vk dx1 dx2 =

∫

∂Ω
ukvkni ds−

∫∫

Ω
uk
∂vk

∂xi
dx1 dx2.

We have

(7.26)

∫

∂Ω
ukvkni ds =

∫

∂Ω
(uk − u+ u)(vk − v + v)ni ds

=
∫

∂Ω
(uk − u)(vk − v)ni ds+

∫

∂Ω
u(vk − v)ni ds

+
∫

∂Ω
(uk − u)vni ds+

∫

∂Ω
uvni ds.

As
‖uk − u‖L2(∂Ω) � C‖uk − u‖H1(Ω) → 0,
‖vk − v‖L2(∂Ω) � C‖vk − v‖H1(Ω) → 0,

the first three terms on the right-hand side of (7.26) tend to zero with k →∞. Hence

(7.27)
∫

∂Ω
ukvkni ds→

∫

∂Ω
uvni ds for k →∞.

Similarly we find
∫∫

Ω

∂uk

∂xi
vk dx1 dx2 →

∫∫

Ω

∂u

∂xi
v dx1 dx2,(7.28)

∫∫

Ω
uk
∂vk

∂xi
dx1 dx2 →

∫∫

Ω
u
∂v

∂xi
dx1 dx2.(7.29)

Passing to the limit in (7.25) with k → ∞ we obtain, according to (7.27)–(7.29),

relation (7.23). �

7.8. Theorem (divergence form of Green’s theorem). Let a domain Ω
have an S-Lipschitz continuous boundary. Then for all functions P1, P2 ∈ H1(Ω) we
have

∫∫

Ω

(
∂P1
∂x
+
∂P2
∂y

)
dxdy =

∫

∂Ω
(P1 cosω + P2 sinω) ds(7.30)

≡
∫

∂Ω
(P1n1 + P2n2) ds,

where ω is the angle between the unit vector (n1, n2) of the outer normal to the
boundary ∂Ω and the positive direction of the x-axis.

����
. Let us set u := Pi, v ≡ 1 in (7.23). Summing up the result from i = 1
to i = 2 we obtain relation (7.30). �
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Our next aim is to generalize Theorem 7.7 to the case when u ∈ W 1,p(Ω) and

v ∈ W 1,q(Ω).

7.9. Lemma (density theorem). Let Ω be a domain with an S-Lipschitz
continuous boundary. Then C∞(Ω) is dense in W 1,p(Ω) with p � 1.

For the proof see [4, pp. 271–272].

7.10. Lemma (trace theorem). Let a domain Ω ⊂ �
2 have an S-Lipschitz

continuous boundary. Let 1 � p < 2, q = p/(2 − p). Then there exists a uniquely
determined continuous linear mapping γ : W 1,p(Ω) → Lq(∂Ω) such that γu = u

∣∣
∂Ω

for all u ∈ C∞(Ω).
����
. Let u ∈ C∞(Ω). Let the norm ‖ · ‖Lq(∂Ω) be defined by the line integral

without use of partition of unity. (Using an analogue of Theorem 7.4 we see that
this norm is well defined.) The proof of [4, Th. 6.4.1] must be modified. Combining

it with the approach of [5, pp. 15–16] we find
∫

∂Ω
|γu(x, y)|q ds � c‖u‖q

W 1,p(Ω) +
∫∫

Ω
|u(x, y)|q dxdy ∀u ∈ C∞(Ω),

where q = 2/(2− p). Hence

(7.31) ‖γu‖Lq(∂Ω) � C1‖u‖W 1,p(Ω) + C2‖u‖Lq(Ω) ∀u ∈ C∞(Ω).

Using [4, Th. 5.7.7(i)] with N = 2, k = 1, we obtain

(7.32) W 1,p(Ω) ⊂ Lq(Ω) algebraically and topologically.

Combining (7.31), (7.32) and using Lemma 7.9 we find that

(7.33) ‖γu‖Lq(∂Ω) � C‖u‖W 1,p(Ω) ∀u ∈W 1,p(Ω),

which proves the theorem. �

7.11. Theorem (trace theorem). Let a domain Ω have an S-Lipschitz con-
tinuous boundary. Let p � 2. Then for any q � 1 there exists a unique continuous
linear mapping γ : W 1,p(Ω)→ Lq(∂Ω) such that γu = u

∣∣
∂Ω
for all u ∈ C∞(Ω).

����
. Because of its shortness we reproduce the proof of [4, Th. 6.4.2] and

correct simultaneously a misprint appearing in this proof.
Let q � 1 be an arbitrary fixed number. Since the function ν(t) = t/(2 − t)

increases from 1 to ∞ on the interval
〈
1, 2), there exists a p ∈

〈
1, 2) such that

q = ν(p). According to Lemma 7.10 we have a uniquely defined linear mapping

M : W 1,p(Ω)→ Lq(∂Ω),Mu = u
∣∣
∂Ω
if u ∈ C∞(Ω). Composing it with the identity

mapping I from W 1,p(Ω) into W 1,p(Ω), we can see that γ =M◦ I. �
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7.12. Theorem (Green’s formula). Let a domain Ω have an S-Lipschitz

continuous boundary. Let u ∈ W 1,p(Ω), v ∈ W 1,q(Ω) with 1p +
1
q � 3

2 if 1 � p < 2,
1 � q < 2, or with q > 1 if p � 2, or with p > 1 if q � 2. Then

(7.34)
∫∫

Ω

∂u

∂xi
v dx1 dx2 =

∫

∂Ω
uvni ds−

∫∫

Ω
u
∂v

∂xi
dx1 dx2,

where (n1, n2) is the unit outer normal vector and the line integral is defined without
use of the partition of unity.

����
. According to Remark 6.4 we can write

(7.35)
∫∫

Ω

∂u

∂xi
v dx1 dx2 =

∫

∂Ω
uvni ds−

∫∫

Ω
u
∂v

∂xi
dx1 dx2 ∀u, v ∈ C∞(Ω).

Using Lemmas 7.9, 7.10, Theorem 7.11 and imbedding theorems [4, Thms. 5.7.7 and
5.7.8], we can proceed similarly as in the proof of Theorem 7.7; for more details see

the part of the proof of [5, Th. 3.1.1] which follows relation (1.9) on page 122, or the
proof of [8, Th. 14.3] where the considerations are presented in a broader way. �

7.13. Theorem (divergence form of Green’s theorem). Let a domain Ω
have an S-Lipschitz continuous boundary. Then for all functions P1, P2 ∈ W 1,p(Ω)
(p � 1) we have

∫∫

Ω

(
∂P1
∂x
+
∂P2
∂y

)
dxdy =

∫

∂Ω
(P1 cosω + P2 sinω) ds(7.36)

≡
∫

∂Ω
(P1n1 + P2n2) ds,

where ω is the angle between the unit vector (n1, n2) of the outer normal to the

boundary ∂Ω and the positive direction of the x-axis.

����
. Let us set u := Pi, v ≡ 1 in (7.34). Summing up the result from i = 1

to i = 2, we obtain relation (7.36). �
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8. The case of domains with cusp-points

In this case we restrict ourselves to the Riemann integral because the assumption
of trace theorems concerning the boundary is not satisfied. Also the Extension

Theorem 4.4 does not hold; thus we must assume the functions P , Q to be defined in a
domain Ω̃ ⊃ Ω. However, such situations are met in some real-life physical problems;
for example, a two-dimensional body with non-Lipschitz continuous boundary (but
with a piecewise smooth boundary) immersed into a two-dimensional physical field.

It should be noted that some domains with cusp-points are in certain coordinate
systems elementary domains (as, for example, the domain from Remark 3.2c).

Let us note that every domain with an S-Lipschitz continuous boundary is a
domain with a piecewise smooth boundary; however, a domain with piecewise smooth
boundary can have cusp-points.

8.1. ������. Besides one-sided and two-sided cusp points we shall also dis-

tinguish internal and external cusp points. We explain these two notions by an
example. Besides the curve σ (with end-points A1, A3) from Remark 3.2c let us
consider the curve � defined by the relations

x = −1 + cos t, y = 1 + sin t,
〈
3
2�, 2�

〉
.

Let A4 = [−1, 0], B1 = [1,−1], B2 = [−1,−1], B3 = [1, 2], B4 = [−1, 2] and let ω1 be
the bounded domain whose boundary consists of the curves �, σ and segments A4B2,
B2B1, B1A3. Further, let ω2 be the bounded domain whose boundary consists of

the curves �, σ and segments A3B3, B3B4, B4A4. Then in the case of the domain
ω1 the point A1 is an external cusp point and in the case of the domain ω2 the same

point is an internal cusp point.

The most general theorem which can be proved in this case reads as follows:

8.2. Theorem (Green). Let a domain Ω be bounded and let it have a piecewise
smooth boundary. Let functions P (x, y), Q(x, y) be continuous and bounded together

with their derivatives ∂P/∂y, ∂Q/∂x in a simply connected domain Ω̃ ⊃ Ω. Let the
boundary ∂Ω of the domain Ω be oriented positively with respect to the domain Ω.

Then relation (3.2) holds.

����
. A) First we consider the case of a simply connected domain Ω. For

greater simplicity, let us consider a bounded domain Ω with one cusp point only. (A
generalization to the case of a domain with more cusp points is straightforward.) If

this point is an internal cusp point then we can use Theorem 3.5 (and do not need
the functions P , Q to be defined outside Ω).
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In the case of an external two-sided cusp point we can proceed in the same way

as in the first proof of Theorem 5.1. If the external cusp point is one-sided it suffices
to cut off (in thought) the “beak” and to complete it into a convex domain. The
beak-shaped domain separated in thoughts should have a sufficiently small measure;

only in this case the corresponding crescent-shaped domain has small measure.
B) Let now Ω be a bounded multiply connected domain. This means that

(8.1) Ω = Ω0 −
n⋃

k=1

Ωk (Ωk ⊂ Ω0; Ωi ∩ Ωj = ∅, i, j, k = 1, . . . , n).

We have by (8.1)
∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫∫

Ω0

(
∂Q

∂x
− ∂P

∂y

)
dxdy(8.2)

−
n∑

k=1

∫∫

Ωk

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

We have proved in part A that

(8.3)
∫∫

Ωi

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

∂Ωi

P dx+Q dy (i = 0, 1, . . . , n).

Inserting (8.3) into the right-hand side of (8.2) we obtain (3.2). �

We close this section with an exceptional case.

8.3. Theorem (Green). Let a domain Ω be bounded and let it have a piece-
wise smooth boundary ∂Ω, which has only two-sided interior cusp points. Let the

boundary ∂Ω be oriented positively with respect to the domain Ω. Let P,Q ∈ C1(Ω).
Then relation (3.2) holds.

����
. Let us approximate the domain Ω by a domain Ωh with a polygonal
boundary ∂Ωh the vertices of which lie on ∂Ω. Let this approximation have the

property that the set bounded by the curves ∂Ω and ∂Ωh is a union of convex
domains G1, . . . , Gn which have the crescent-shaped form.
Let B be a cusp point. Then there exists a neighbourhood U(ε,B) of B such that

we have

(8.4) Gi ⊂ U(ε,B) ⇒ Gi ⊂ Ω.

This means that we need not extend the functions P , Q in the neighbourhoods of
the cusp points. As Theorem 4.4 can be generalized in such a way that it allows us

to extend the functions P , Q locally (see [1] or [2]), the rest of the proof follows the
same lines as the second proof of Theorem 5.1. �
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8.4. ������. a) Another proof of Theorem 8.3 follows from the fact that the

domain Ω can be divided into a finite number of closed domains with S-Lipschitz
continuous boundaries and mutually non-overlapping interiors.
b) In neighbourhoods of the cusp points the condition of Theorem 2.6 mentioned

in Remark 2.2b is violated. However, for the proof of Theorem 2.6 property (8.4) is
sufficient.

c) The results of Section 7 can be generalized to the case of domains Ω from
Theorem 8.3.

Acknowledgement. The author is indebted to the referee for his comments
which helped him to elaborate the final form of the paper.
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