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Abstract. We consider a reaction-diffusion system of the activator-inhibitor type with
unilateral boundary conditions leading to a quasivariational inequality. We show that there
exists a positive eigenvalue of the problem and we obtain an instability of the trivial solution
also in some area of parameters where the trivial solution of the same system with Dirichlet
and Neumann boundary conditions is stable. Theorems are proved using the method of a
jump in the Leray-Schauder degree.
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1. Introduction

Many interesting natural phenomena can be described mathematically by the sys-
tem of reaction-diffusion equations

(RD) ut = d1∆u+ f(u, v),

vt = d2∆v + g(u, v) on [0,∞)× Ω

where f and g are some suitable functions such that f(u, v) = g(u, v) = 0. In

chemical or biological models u and v usually describe some positive concentrations
(see for example [1]), [u, v] is a trivial steady state. Without loss of generality we

will suppose u = v = 0 because of the shift of coordinates.

*This research was supported by the grant No. 201/95/0630 of the Grant Agency of the
Czech Republic.
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We shall investigate the linearized reaction-diffusion system

(RDL) ut = d1∆u+ b11u+ b12v,

vt = d2∆v + b21u+ b22v on [0,∞)× Ω

where Ω is a bounded domain in �m with a Lipschitzian boundary Γ. Furthermore,

d = [d1, d2] ∈ �
2
+ is a couple of positive numbers which will play the role of a

parameter. Let us suppose that constants b11, b12, b21 and b22 satisfy the conditions

b11 > 0, b12 < 0, b21 > 0, b22 < 0,(SIGN)

b11 + b22 < 0, b11b22 − b12b21 > 0.

These signs mean that we have the system of prey-predator (or activator-inhibitor)

type.

Let ΓD, ΓN and ΓU be disjoint open subsets in Γ such that

meas(Γ�(ΓD ∪ ΓN ∪ ΓU )) = 0

and let Φ be a nonnegative function on the set Γ×Γ which will be specified later. We
will prove that the trivial solution for the system (RDL) with the unilateral boundary
conditions

(UC) i) u = 0, v = 0 on (0,∞)× ΓD,

ii)
∂u

∂n
=
∂v

∂n
= 0 on (0,∞)× ΓN ,

iii)
∂u

∂n
= 0,

∂v

∂n
� 0 on (0,∞)× ΓU ,

iv) v(x) � −
∫

Γ

Φ(x, y)
∂v(y)
∂n

dΓ(y) and

v)

(
v(x) +

∫

Γ

Φ(x, y)
∂v(y)
∂n

dΓ(y)

)
∂v(x)
∂n

= 0 for x ∈ ΓU and t > 0

is unstable (the definition will be specified later) even for some set of parameters

d = [d1, d2] where the trivial solution for the problem (RDL) with the classical
boundary conditions

(CC) u = 0, v = 0 on (0,∞)× ΓD,

∂u

∂n
=
∂v

∂n
= 0 on (0,∞)× (ΓN ∪ ΓU )
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is stable. In fact, we will find a positive eigenvalue of the stationary eigenvalue

problem

d1∆u+ b11u+ b12v = λu,(EPC)

d2∆v + b21u+ b22v = λv

with boundary conditions (UC) also in some area of parameters d where all eigen-

values of the problem ((EPC), (CC)) have negative real parts.
In our interpretation, boundary conditions (UC) simulate some kind of regulation

by a semipermeable membrane where the flow-rate through the membrane depends
on the pumping from the reservoir surrounding the domain Ω.
Unfortunately, the results presented here apply to the “linear” system (RDL) only.

The approach to (RD) remains open because stability of the trivial solution for the
problem ((RD), (UC)) can occur even in the case of instability for its “linearization”

((RDL), (UC)) (see [2]).
The destabilizing effect of unilateral conditions given by inequalities for systems

of reaction-diffusion type was first proved in papers of P. Drábek and M. Kučera
(see [3]). They considered a more special type of boundary conditions than we do—

the ones which we would obtain if we took Φ ≡ 0 in our considerations. This kind
of problem leads to variational inequalities and the method of the proof in [3] uses a

penalty technique, the main result is also the existence of a positive eigenvalue.
Related results for the inequalities were also proved—the existence of a bifurcation

point on any curve going from the domain of instability to the domain of stability
of the classical problem even in this area of stability. The destabilizing effect was

shown also on simple examples in [4].
The method of the Leray-Schauder degree used here was first introduced to the

area of eigenvalues and bifurcation problems for variational inequalities in paper [5]
by P. Quittner with the same results. This method was also used in [6] for the

destabilization for quasivariational inequalities of the same type as here but in the
sense of bifurcation. The present paper combines results and considerations of [5]

and [6].
On the other hand, in the case of unilateral conditions given for the activator

(component u in our system) instead of for the inhibitor v, some kind of the stabilizing
effect in the sense of bifurcations was proved. Most recently it can be seen in [7]

for boundary conditions leading to a system of differential inclusions but the proof
uses a completely different method. The destabilization for inclusions has been also

already proved (see [8], [9]).
You can recently find also more details about the progress on the field in [10].
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2. Notation, definitions and main results

Let us assume

(Γ) meas(ΓD) > 0, meas(ΓU ) > 0.

Let � = {ϕ ∈ H1(Ω); ϕ = 0 on ΓD in the sense of traces} be the Hilbert space
with the scalar product 〈ϕ, ψ〉 =

∫
Ω
∇ϕ∇ψ dx and its corresponding norm ‖ . ‖. Con-

dition (Γ) ensures that ‖ . ‖ is a norm equivalent to the usual one on the space �.
Let H1L(Ω) =

{
ϕ ∈ H1(Ω); ∆ϕ ∈ L2(Ω)

}
and � = H1L(Ω) ∩ � be the Hilbert

spaces with the scalar product (ϕ, ψ) =
∫
Ω
(∇ϕ∇ψ + ∆ϕ∆ψ) dx (see [11]) and with

its corresponding norm | . | or the corresponding norm on � × � .

Let H
1
2 (Γ) be the space of traces of all functions from the Sobolev space H1(Ω)

and let H−
1
2 (Γ) be its dual (see for example [11]). For any fixed v ∈ � we also

denote

Kv =

{
ϕ ∈ � ; ϕ(x) � −

∫

Γ

Φ(x, y)
∂v(y)
∂n

dΓ(y) on ΓU in the sense of traces

}

where ∂v
∂n ∈ H−

1
2 (Γ) (see [11]) and

∫
Γ
ϕ(z)ψ(z) dΓ(z) is understood for ϕ ∈ H

1
2 (Γ)

and ψ ∈ H− 12 (Γ) in the sense of duality between H 1
2 (Γ) and H−

1
2 (Γ).

Under this notation, by the solution of the problem ((RDL), (UC)) we can under-

stand a pair [u, v] such that for all T > 0 we have

[u, v] ∈ L2((0, T ), � ) × L2
(
(0, T

)
, � ), [ut, vt] ∈ L2((0, T ),��)× L2((0, T ),��)

(see [12]) and for almost all t > 0

i) v(t, . ) ∈ Kv(t,.),

ii)
∫

Ω

[ut(t, x)ϕ(x) + d1∇xu(t, x)∇ϕ(x)

−
(
b11u(t, x) + b12v(t, x)

)
ϕ(x)] dx = 0 ∀ϕ ∈ �,

iii)
∫

Ω

[
vt(t, x)

(
ψ(x)− v(t, x)

)
+ d2∇xv(t, x)∇x

(
ψ(x) − v(t, x)

)

−
(
b21u(t, x) + b22v(t, x)

)(
ψ(x) − v(t, x)

)]
dx � 0 ∀ψ ∈ Kv

hold.
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By stability of a stationary solution U of the problem ((RDL), (UC)) with initial

conditions with respect to the norm ‖. ‖ we mean the following property: For any
ε > 0 there is δ > 0 such that any solution U = [u, v] (solution in the sense of the
previous definition) satisfying ‖U(t0)−U‖ < δ for some t0 is defined on the interval

[t0,∞) and ‖U(t)− U‖ < ε holds for all t ∈ [t0,∞).
U is unstable if it is not stable. At this point we have to say that only instability is

investigated in the article. In fact, the solution of the evolution problem will appear

only once (see Corollary 1) and it will be very smooth and unstable with respect
to any reasonable norm. The generality of the definition of a weak solution of the

evolution problem is not a crucial point in the paper.

Moreover, a weak solution of the problem ((EPC), (UC)) is a pair [u, v] ∈ � × �

satisfying the quasivariational inequality (see [6])

(Iλ) i) v ∈ Kv,

ii)
∫

Ω

[d1∇u∇ϕ− (b11u+ b12v − λu)ϕ] dx = 0 ∀ϕ ∈ �,

iii)
∫

Ω

[d2∇v∇(ψ − v)− (b21u+ b22v − λv)(ψ − v)] dx � 0 ∀ψ ∈ Kv.

Let us introduce an operator A : � → � by 〈Au,ϕ〉 =
∫
Ω
uϕdx ∀u, ϕ ∈ �, the

projection Pv : � → Kv on the convex closed set Kv defined for any fixed v ∈ � by

∀z ∈ � Pvz ∈ Kv, ‖Pvz − z‖ = min
y∈Kv

‖y − z‖

(see [13] for more details) and an operator T : �2+ × � × � × �
2 → � × � defined

for all d = [d1, d2] ∈ �
2
+ , λ ∈ �, f ∈ � and U = [u, v] ∈ � × � by

T (d, λ, f, U) =

[
u− d−11 (b11Au+ b12Av − λAu − f

)

v − Pv

(
d−12 (b21Au+ b22Av − λAv)

)
]
.

Then the inequality (Iλ) can be rewritten (see also [6]) as

(EPW) d1u− b11Au − b12Av + λAu = 0,

d2v − Pd2v

(
b21Au+ b22Av − λAv

)
= 0

or simply

T (d, λ, 0, U) = 0.
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Simultaneously, the weak formulation for the stationary version of the problem

((RDL), (CC)) is

(CPW) d1u− b11Au− b12Av = 0,

d2v − b21Au− b22Av = 0.

Moreover, we denote by EId
(λ) = {U = [u, v] ∈ � × � ; T (d, λ, 0, U) = 0} the

set of all eigenvectors of the problem (EPW). Let σId
be the set of all λ ∈ � such

that there is a nontrivial solution of (EPW), i.e. EId
(λ) �= {[0, 0]}. It means that σId

is the set of all real eigenvalues of the problem (EPW). The set of all solutions of

(CPW) belonging to � × � will be denoted by Ed where d = [d1, d2]. Finally, the
set of all eigenvalues of the problem ((EPC), (CC)) will be denoted by σd. Let us

note that the eigenvalues of this problem are the same as for its weak formulation
because the corresponding eigenvectors are sufficiently smooth (see [3]).

d1

d2
Cj C3 C2 C1

C

DU

DS�
Figure 1. The domain of stability DS , the domain of instability DU and the envelope of

hyperbolas C for the system (CPW).

For the system (CPW) under the assumption (SIGN) the following result is known:

Theorem 0 (see [3], for the one-dimensional case and the Neumann boundary
conditions it was done earlier in [14], [15]). Let {ej}j=1,..., be an orthonormal system

of eigenvectors of the problem −∆u = λu with the boundary conditions (CC) in �
corresponding to the eigenvalues κj . Let Cj , j = 1, 2, . . ., be the hyperbolas

d2 = −
b12b21/κj

b11 − κjd1
+
b22
κj
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and C their envelope (see Fig. 1). Then Ed �= {[0, 0]} if and only if there is some j
such that d ∈ Cj . Let k be the multiplicity of the eigenvalue κj . Furthermore, if

d ∈ Cj ∩ C, d /∈ Cj−1, d /∈ Cj+k then Ed = Lin
{
[ei, αj(d)ei], i = j, . . . , j + k − 1

}

where αj(d) �= 0 is a continuous function on �
2
+ . If d ∈ C ∩ Cj ∩ Cj+k, d /∈

Cj−1 and m is the multiplicity of the eigenvalue κj+k then Ed = Lin
{
[ei, αj(d)ei],

i = j, . . . , j + k − 1, [ei, αj+k(d)ei], i = j + k, . . . , j + k + m − 1
}
. Moreover, if

d is to the right (or to the left) from the hyperbola Cj then the eigenvalue of the

problem ((EPC), (CC)) corresponding to the eigenvector of the type [ej , αj(d)ej ]

is negative (or positive, respectively). If d ∈ DS = {d ∈ �
2
+ ; d is to the right

from C} (domain of stability) then all eigenvalues λ ∈ σd have negative real parts.

If d ∈ DU = {d ∈ �
2
+ ; d is to the left from C} (domain of instability) then there is

at least one positive eigenvalue λ ∈ σd. The problem ((EPC), (CC)) has also some

complex eigenvalues but their real parts are always negative for all d ∈ �2+ .
For technical reasons, let us assume that Φ ∈ C2(Ω × Ω) is a given function with

the following property:

(Φ) For every x ∈ ΓU : Φ(x, y) = 0 ∀y ∈ ΓD and Φ(x, y) � 0 ∀y ∈ ΓU ,

for every x ∈ ΓD : Φ(x, y) = 0 ∀y ∈ Γ.
Furthermore, for any d0 in �2+ we formulate the following essential assumption:

(v) ∃[u0, v0] ∈ Ed0 and ∃ε > 0 such that v0 � ε on ΓU .

Theorem 1. Let d0 ∈ C and let conditions (Γ), (Φ), (SIGN), (v) hold. Then
there is a neighbourhood W(d0) of d0 such that for all d ∈ W(d0) ∩ DS there is a

positive eigenvalue λ ∈ σId
.

Corollary 1. Let d0 ∈ C and let conditions (Γ), (Φ), (SIGN), (v) hold again.

Then there is a neighbourhood W(d0) of d0 such that for all d ∈ W(d0) ∩ DS the

trivial solution of ((RDL), (UC)) is unstable. In fact, if [u0, v0] is a nontrivial solution

of the problem (EPW) for some λ > 0 then U(t) = [eλtτu0, e
λtτv0] is a solution of

the evolution problem ((RDL), (UC)) for any τ > 0.

Corollary 2. Let d : (−∞,∞)→ �
2
+ be a continuous curve such that d(0) ∈ C,

EId(s)(0) = {[0, 0]} for any s ∈ (0, 1) and EId(1)(0) �= {[0, 0]}. Let all conditions of
Theorem 1 be fulfilled (set d0 = d(0)). Then also for all s ∈ (0, 1) there is a positive
eigenvalue λ ∈ σId(s) and the trivial solution of the problem ((RDL), (UC)) for the

parameter d(s) is unstable.

������� There is also a bifurcation point in DS on such a curve even in the

case of a nonlinear system ((RD), (UC)) under some additional conditions on the
nonlinearity (see [6]).
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3. Proof of the main result

Lemma 1. The operator A : � → � and the operator from �+×�×� ×� to �
defined by [d2, λ, u, v] �→ Pv

(
d−12 (b21Au+ b22Av − λAv)

)
are completely continuous.

����	 (similar to the proof of Lemma 2.1 in [6]). Let u, v ∈ � , d = [d1, d2] ∈
�
2
+ , w = Pv

(
d−12 (b21Au+ b22Av − λAv)

)
. Obviously w ∈ Kv and also

〈
w − d−12 (b21Au+ b22Av − λAv), ψ − w

〉
� 0 ∀ψ ∈ Kv.

Choosing ψ = w ± ϕ for any ϕ ∈ D(Ω) (ψ ∈ Kv again) we obtain

∫

Ω

[
∇w∇ϕ − d−12 (b21u+ b22v − λv)ϕ

]
dx = 0 ∀ϕ ∈ D(Ω).

Thus ∆w = −d−12 (b21u + b22v − λv) in the sense of distributions and consequently
w ∈ � . Now let un ⇀ u, vn ⇀ v in � , dn → d2 > 0, λn → λ,

wn = Pvn

(
d−1n (b21Aun + b22Avn − λnAvn)

)
, zn = d−1n (b21Aun + b22Avn − λnAvn)

and z = d−12 (b21Au+ b22Av−λAv). Since A is completely continuous in � and since
� is continuously embedded in � we obtain zn → z in �.

Now let us define

fn(x) =
∫

Ω

(
Φ(x, y)∆vn(y) +∇yΦ(x, y)∇vn(y)

)
dy,

f(x) =
∫

Ω

(
Φ(x, y)∆v(y) +∇yΦ(x, y)∇v(y)

)
dy.

According to the Green formula we obtain in the sense of traces also

fn(x) =
∫

Γ

Φ(x, y)
∂vn(y)
∂n

dΓ(y), f(x) =
∫

Γ

Φ(x, y)
∂v(y)
∂n

dΓ(y).

Moreover, denote by x = [x1, x2, . . . , xm] the coordinates in �m . Computing deriva-
tives with respect to the parameter we obtain

∂2fn

∂xi∂xj
(x) =

∫

Ω

(
∂2Φ(x, y)
∂xi∂xj

∆vn(y) +∇y
∂2Φ(x, y)
∂xi∂xj

∇vn(y)

)
dy.

The function Φ and its partial derivatives are continuous on the compact Ω so they
are bounded. Since the sequences ∆vn and ∇vn weakly converge in L2 there are
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also constants k0, k1, k2 such that | ∂2fn

∂xi∂xj
(x)| � k2 independently of x and n for any

i, j = 1, 2, . . . ,m and similarly |∂fn

∂xi
(x)| � k1 and |fn(x)| � k0. So the sequence {fn}

is bounded in H2(Ω) and we can take a subsequence such that

(1) fn → f in H1(Ω).

Now let ψ ∈ Kv be fixed. According to (1) there is a sequence ψn ∈ Kvn such that

ψn → ψ in � (take ψn = ψ − fn + f). Since Pvn is a projection we obtain

‖zn − wn‖ = ‖zn − Pvnzn‖ � ‖zn − ψn‖

and consequently wn = (wn − zn) + zn are bounded in �. After a restriction to a

subsequence we can assume wn ⇀ y ∈ � and analogously as above we obtain for any
ψ ∈ Kv

(2) ‖z − y‖ � lim inf
n→∞

‖zn − wn‖ � lim sup
n→∞

‖zn − wn‖ � ‖z − ψ‖.

In addition, wn = Pvnzn ∈ Kvn and using (1) we have y ∈ Kv. Now y = Pvz = w

and we put ψ = y (= w) into (2). So the terms are equal, lim
n→∞

‖zn − wn‖ =
‖z − w‖ and we have proved wn → w in �. Analogously as above wn ∈ � , ∆wn =
−d−1n (b21un + b22vn − λnvn) and also ∆wn → ∆w in L2(Ω). Thus wn → w in �

and the complete continuity is proved. The proof of the property for the operator
A : � → � proceeds in the same way (see also [6]). �

������. In fact, in the proof of Lemma 1 we have proved that for any com-
pletely continuous operator A:

If vn ⇀ v, zn ⇀ z in � , then PvnAzn → PvAz in � .

Lemma 2 (see [6], Lemma 2.2). Let d0 ∈ C be such that the condition (v) is
fulfilled. Then EId0

(0) ⊂ Ed0 .

Lemma 3. Let d = [d1, d2] ∈ �2+ . Then there is k ∈ � such that

deg
(
T (d, λ, 0, . ), B1(0), 0

)
= 1 for every λ � k.

����	 (based on ideas from [5]). For every t ∈ [0, 1], U = [u, v] ∈ � × � and
λ � k with k large enough let us define homotopies H1, H2 by

H1(t, λ, U) =

[
u− t

d1
(b11Au+ b12Av) + λ

d1
Au

v − tPv

(
(d2)−1(b21Au+ b22Av − λAv)

)
]
,

H2(t, λ, U) =

[
u+ tλ

d1
Au

v

]
.

169



Obviously

H1(1, λ, U) = T (d, λ, 0, U), H1(0, λ, U) = H2(1, λ, U) and H2(0, λ, U) = U.

Therefore, by virtue of the homotopy invariance of the Leray-Schauder degree it is

sufficient to prove that for k large enough

Hi(t, λ, U) �= 0 ∀t ∈ [0, 1], ∀U ∈ � × � , |U | �= 0, ∀λ � k, i = 1, 2.

First let us assume that it does not hold for i = 2. Then obviously v = 0 and

there are also tn → t, λn →∞ and un ⇀ u with ‖un‖ = 1 such that

(3) un +
tnλn

d1
Aun = 0.

Multiplying (3) by un we obtain 〈un, un〉 + tn

d1
〈Aun, un〉λn = 0 and if un �= 0 then

both terms on the left-hand side are strictly positive and we have a contradiction.
The situation for i = 1 is more complicated, again by contradiction: Let

Un = [un, vn] ∈ � × � , tn ∈ [0, 1] and λn → ∞ be such that |Un| = 1, un ⇀ u,
vn ⇀ v, tn → t ∈ [0, 1] and H1(tn, λn, Un) = 0 again. This means that

λnAun = tn(b11Aun + b12Avn)− d1un,(4)

vn = tn(d2)−1Pd2vn(b21Aun + b22Avn − λnAvn).(5)

Since the right-hand side in (4) is bounded we have necessarily Aun → 0. Multiply-
ing (5) by vn we obtain

〈vn, vn〉 = tn
〈
Pvn

(
(d2)−1(b21Aun + (b22 − λn)Avn)

)
, vn

〉
(6)

� tn(d2)−1
(
b21 〈Aun, vn〉+ (b22 − λn) 〈Avn, vn〉

)

using 0 ∈ Kvn in the well-known property of the projection Pvn

〈Pvnzn − zn, y − Pvnzn〉 � 0 ∀y ∈ Kvn ∀zn ∈ �

where we take zn = (d2)−1
(
b21Aun + (b22 − λn)Avn

)
and vn = tnPvnzn from (5).

From the inequality (6) it is easy to show that

〈vn, vn〉+ tn(d2)−1(λn − b22) 〈Avn, vn〉 � tn(d2)−1b21 〈Aun, vn〉 → 0

because Aun → 0. Therefore vn → v = 0. Now multiplying (4) by un we obtain

d1 〈un, un〉+ λn 〈Aun, un〉 = tn
(
b11 〈Aun, un〉+ b12 〈Avn, un〉

)
→ 0

and therefore un → 0. Hence Un → 0 and a contradiction again follows. �

170



Lemma 4. Let d0 = [d01, d
0
2] ∈ C and let the condition (v) be satisfied. Then

there are ε > 0 and a neighbourhood U(d0) of d0 such that EId
(λ) = {[0, 0]} (then

also λ /∈ σId
) for any d ∈ U(d0) ∩DS and λ ∈ [0, ε).

����	 (we follow the ideas employed in [6] in a more general way). Let dn =
[dn
1 , d

n
2 ] ∈ DS , Un = [un, vn] ∈ � × � and λn � 0 be such that dn → d0, |Un| = 1,

un ⇀ u, vn ⇀ v in � , λn → 0 and

dn
1un − b11Aun − b12Avn + λnAun = 0,(7)

dn
2vn − Pdn

2 vn(b21Aun + b22Avn − λnAvn) = 0.(8)

According to Lemma 1 we have un → u, vn → v in � and U = [u, v] ∈ EId0
(0). By

Lemma 2 then U ∈ Ed0 and therefore

d01u− b11Au− b12Av = 0,(9)

d02v − b21Au− b22Av = 0.(10)

First, let d0 be not a point of intersection of two different hyperbolas: d0 ∈ Cj ,

d0 /∈ Cj−1, d0 /∈ Cj+k where k is the multiplicity of the eigenvalue κj (see Theorem 0).
According to Theorem 0 there are also dn, Un such that

(11) dn = [dn
1 , d

n
2 ] ∈ Cj , Un = [un, v] ∈ Edn , dn

1 < dn
1 , d

n → d0, Un → U in �

(see Fig. 1). Indeed, u =
j+k−1∑

i=j

ciei, v =
j+k−1∑

i=j

ciαi(d0)ei (see Theorem 0). The

general solution U = [u, v] ∈ Ed is for any d ∈ Cj also in the form u =
j+k−1∑

i=j

c̄iei, v =

j+k−1∑
i=j

c̄iαi(d)ei with some constants c̄i and we can choose c̄i so that c̄iαi(d) = ciαi(d0)

and thus v = v. Let us note that this fact also implies that if the condition (v)
is satisfied for some d ∈ Cj which is not a point of intersection of two different

hyperbolas then it holds on the whole Cj .
Since Un = [un, v] ∈ Edn then

dn
1un − b11Aun − b12Av = 0,(12)

dn
2v − b21Aun − b22Av = 0.(13)

Multiplying (7) and (12) by un and un simultaneously we obtain after subtracting
the resulting equations and taking into account the symmetry of the operator A the

equation

(14) (dn
1 − dn

1 ) 〈un, un〉 = λn 〈Aun, un〉 − b12
(
〈Avn, un〉 − 〈Av, un〉

)
.
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Multiplying (8) and (13) by v and vn we similarly obtain using formula (14) that

〈
Pdn

2 vn(b21Aun + b22Avn − λnAvn)− (b21Aun + b22Avn − λnAvn), v
〉

(15)

−b21
b12
(dn
1 − dn

1 ) 〈un, un〉 − λn

(b21
b12

〈Aun, un〉+ 〈Avn, v〉
)
= 0.

We can write v = (v + dn
2 vn)− dn

2 vn and we have also v + dn
2vn ∈ Kdn

2 vn . Using (8)
and the basic facts about projections we conclude that the first term on the left-hand

side of (15) is not negative. But the second term is even positive for n sufficiently
large according to (SIGN) because |U | = 1 and 〈un, un〉 → ‖u‖2 > 0. It remains to
prove that the limit of the third term is not negative, either (see also in [5]).
It is sufficient to show that b21

b12
〈Au, u〉+ 〈Av, v〉 is negative: For [u, v] ∈ Ed0 the

equations (9) and (10) hold. Multiplying (9) by u and (10) by v and using the
symmetry of A we obtain

b12 〈Au, v〉 = d01‖u‖2 − b11 〈Au, u〉 ,(16)

b21 〈Au, v〉 = d02‖v‖2 − b22 〈Av, v〉 .(17)

Since the condition (SIGN) holds the equation (17) gives

(18) b21 〈Au, v〉 > 0.

Multiplying (10) by b12u and putting it into (16) we obtain

d02b12 〈u, v〉 = b12b21 〈Au, u〉+ b12b22 〈Au, v〉 = d01b22‖u‖2 − (b11b22 − b12b21) 〈Au, u〉 .

From the assumption (SIGN) for Det
(
{bij} 2

i,j=1

)
and for b22 we obviously have

b12 〈u, v〉 < 0 and hence

(19) b21 〈u, v〉 > 0.

Finally, multiplying (9) and (10) by v
b12
and u

b12
respectively and summing the re-

sulting equations we know according to (18), (19) and (SIGN) that

b21
b12

〈Au, u〉 + 〈Av, v〉 = (b12)−1
(
(d01 + d

0
2) 〈u, v〉 − (b11 + b22) 〈Au, v〉

)

= (b12b21)−1
(
(d01 + d

0
2)b21 〈u, v〉 − (b11 + b22)b21 〈Au, v〉

)
< 0.

Summing up, we have proved that the left-hand side in the equation (15) is positive

for n large enough and this is a contradiction with zero on the right-hand side and
the proof is complete in the case of d0 being not a point of intersection.
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It remains to study the case d0 ∈ Cj ∩Cj+k, d0 /∈ Cj−1. According to Theorem 0

we have U = U + Ũ , U = [u, v], Ũ = [ũ, ṽ], u =
j+k−1∑

i=j

c̄iei, v =
j+k−1∑

i=j

c̄iαi(d0)ei,

ũ =
j+k+m−1∑

i=j+k

c̃iei, ṽ =
j+k+m−1∑

i=j+k

c̃iαi(d0)ei and there are d̃n, Ũn and dn, Un such that

(20) dn = [dn
1 , d

n
2 ] ∈ Cj , d̃n = [d̃n

1 , d
n
2 ] ∈ Cj+k,

dn
1 < dn

1 , d̃n
1 < dn

1 , dn → d0, d̃n → d0,

Un = [un, v] ∈ Edn , Ũn = [ũn, ṽ] ∈ Ed̃n , Un + Ũn → U in �

again (we also can fix the component v on each hyperbola as above so that v+ ṽ = v).
Since A is a linear operator, Un = [un, v] ∈ Edn and Ũn = [ũn, ṽ] ∈ Ed̃n we obtain

dn
1un + d̃

n
1 ũn − b11A(un + ũn)− b12Av = 0,(21)

dn
2v − b21A(un + ũn)− b22Av = 0.(22)

Analogously as above, only replacing equations (12) and (13) by (21) and (22), we
obtain

〈
Pdn

2 vn(b21Aun + b22Avn − λnAvn)− (b21Aun + b22Avn − λnAvn), v
〉

(23)

−b21
b12
(dn
1 − dn

1 ) 〈un, un〉 −
b21
b12
(dn
1 − d̃n

1 ) 〈un, ũn〉

−λn

(b21
b12

〈Aun, un + ũn〉+ 〈Avn, v〉
)
= 0.

The first term is the same as in (15) so it is not negative. Neither is the fourth term

negative because the limit is the same as the limit of the corresponding term in (15).
Since (SIGN) is assumed it remains to prove that 〈un, un〉 > 0 and 〈un, ũn〉 > 0 for
n large enough. Theorem 0 and (20) imply similarly as in [3] that 〈un, un〉 → 〈u, u〉
and 〈un, ũn〉 → 〈u, ũ〉 where

u =
j+k−1∑

i=j

c̄iei, ũ =
j+k+m−1∑

i=j+k

c̃iei and u =
j+k−1∑

i=j

c̄iei +
j+k+m−1∑

i=j+k

c̃iei.

From the orthonormality of {ej}j=1,... we easily obtain

〈u, u〉 =
j+k−1∑

i=j

c̄2i 〈ei, ei〉 =
j+k−1∑

i=j

c̄2i > 0

and

〈u, ũ〉 =
j+k+m−1∑

i=j+k

c̃2i 〈ei, ei〉 =
j+k+m−1∑

i=j+k

c̃2i > 0.
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In conclusion, the left-hand side of (23) is positive again and the contradiction

follows also in the second case. �

Lemma 5 (see [6], Lemma 2.4, for related results also [16]). Let d0 = [d01, d
0
2] ∈ C

be such that the condition (v) is satisfied. Then there is a neighbourhood W(d0) of
d0 such that deg

(
T (d, 0, 0, . ), B1(0), 0

)
= 0 for any d ∈ W(d0) ∩DS .

Lemma 6. Let d0 = [d01, d
0
2] ∈ C and let the condition (v) be satisfied. Then

there is ε > 0 such that

deg
(
T (d, λ, 0, . ), B1(0), 0

)
= 0 ∀d ∈ W(d0) ∩DS ∀λ ∈ [0, ε)

where W(d0) is the neighbourhood from Lemma 5.
����	. The assertion follows immediately from Lemma 5 by the homotopy

invariance of the Leray-Schauder degree with the homotopy

H(t, U) =

[
u− (d1)−1(b11Au+ b12Av − tλAu)

v − Pv

(
(d2)−1(b21Au+ b22Av − tλAv)

)
]
.

We can take ε from Lemma 4. For any d ∈ W(d0), λ ∈ [0, ε), r > 0 and t ∈ [0, 1] we
know that there is no U ∈ ∂B1(0) such that H(t, U) = 0 because of EId

(λ) = {[0, 0]}
(see Lemma 4 again). �

����	 of Theorem 1. LetW(d0) be from Lemma 5, d ∈ W(d0)∩DS, λ1 ∈ (0, ε),
λ2 � k. Let there be no solution U of the problem (EPW) such that U �= [0, 0] and
‖U‖ = 1 for any λ ∈ [λ1, λ2]. Then due to the homotopy invariance of the Leray-
Schauder degree, Lemma 3 and Lemma 6 we have

0 = deg
(
T (d, λ1, 0, . ), B1(0), 0

)
= deg

(
T (d, λ2, 0, . ), B1(0), 0

)
= 1

because we can take the homotopy

H(t, U) =

[
u− (d1)−1

(
b11Au+ b12Av − (tλ1 + (1− t)λ2)Au

)

v − Pv

(
(d2)−1(b21Au + b22Av − (tλ1 + (1− t)λ2)Av)

)
]

arriving at a contradiction. In conclusion, for any d ∈ W(d0)∩DS there is λ ∈ [λ1, λ2]
such that the problem (EPW) has a nontrivial solution. It means that λ ∈ σId

is a
positive eigenvalue. �

����	 of Corollary 1. Let [u0, v0] be a nontrivial solution of the problem
(EPW) for some λ > 0 (see Theorem 1). Then U(t) = [eλtτu0, e

λtτv0] is a solution

of the evolution problem ((RDL), (UC)) for any τ > 0. Now, for any δ > 0 there is
τ > 0 sufficiently small such that for t0 = 0 we have ‖U(0)‖ < δ and simultaneously
lim

t→∞
‖U(t)‖ = +∞. Hence, by the standard definition (cf., e.g., [3]) the solution

U = [0, 0] is unstable. �
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����	 of Corollary 2. Let ω > 0 be fixed small enough. It is clear that there

is  > 0 small enough such that EId(s)(λ) = {[0, 0]} also holds for all λ ∈ [0, ) and
s ∈ [0, 1−ω]. The reason is that in the opposite case we find λn → 0, sn ∈ [0, 1−ω]
and Un = [un, vn] ∈ � × � such that ‖Un‖ = 1 and Un ∈ EId(sn)

(λn). We extract a

convergent subsequence sn → s ∈ [0, 1− ω] and obtain by the limit procedure based
on Lemma 1 (as in the proof of Lemma 4) also Un → U , ‖U‖ = 1 and U ∈ EId(s)(0).

So, we have a contradiction with the assumption.
Now, by the standard homotopy argument as in the proof of Lemma 6 we obtain

deg
(
T (d(s), λ, 0, . ), B1(0), 0

)
= 0 ∀s ∈ [0, 1− ω] ∀λ ∈ [0, ).

Finally, for fixed s ∈ [0, 1), if there is no positive eigenvalue λ ∈ σId(s) then as in

the proof of Theorem 1 according to Lemma 3 by the homotopy argument again we
obtain

0 = deg
(
T (d(s), λ1, 0, . ), B1(0), 0

)
= deg

(
T (d(s), λ2, 0, . ), B1(0), 0

)
= 1

for some λ1 ∈ (0, ) and λ2 � k, which yields a contradiction. Thus, there is
λ ∈ [λ1, λ2] a positive eigenvalue of the problem ((RDL), (UC)) with the parameter
d(s). �
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