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Abstract. We consider a reaction-diffusion system of the activator-inhibitor type with
unilateral boundary conditions leading to a quasivariational inequality. We show that there
exists a positive eigenvalue of the problem and we obtain an instability of the trivial solution
also in some area of parameters where the trivial solution of the same system with Dirichlet
and Neumann boundary conditions is stable. Theorems are proved using the method of a
jump in the Leray-Schauder degree.
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1. INTRODUCTION

Many interesting natural phenomena can be described mathematically by the sys-
tem of reaction-diffusion equations

(RD) ur = diAu + f(u,v),
vy = doAv + g(u,v) on [0,00) X Q

where f and g are some suitable functions such that f(@,o) = g(a,5) = 0. In
chemical or biological models u and v usually describe some positive concentrations
(see for example [1]), [@, D] is a trivial steady state. Without loss of generality we
will suppose @ = @ = 0 because of the shift of coordinates.

* This research was supported by the grant No. 201/95/0630 of the Grant Agency of the
Czech Republic.
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We shall investigate the linearized reaction-diffusion system

(RDL) up = di1Au + b1yu + biow,
= doAv + baju+ bagv on  [0,00) X

where () is a bounded domain in R™ with a Lipschitzian boundary I'. Furthermore,
d = [di,ds] € [Ri is a couple of positive numbers which will play the role of a
parameter. Let us suppose that constants by1, b1z, bo1 and bag satisfy the conditions

(SIGN) b11 > 0, b12 < 0, b21 > 0, b22 < 0,
bi1 4+ b22 <0, b11ba2 — bigbar > 0.

These signs mean that we have the system of prey-predator (or activator-inhibitor)
type.
Let I'p, 'y and I'y be disjoint open subsets in ' such that

meas(IVI'p Uy UT'y)) =0

and let ® be a nonnegative function on the set I' x I' which will be specified later. We
will prove that the trivial solution for the system (RDy,) with the unilateral boundary

conditions
(UC) i) u=0, v=0 on (0,00)xIp,
.y Ou Ov
ii) o 0 on (0,00)xTy,
iii) gz 9v >0 on (0, o0) x Iy,
iv) / (y) and
r
( —|—/<I> (;,))ag—(:)zo for €Ty andt>0
r

is unstable (the definition will be specified later) even for some set of parameters
d = [di1,dz2] where the trivial solution for the problem (RDy,) with the classical
boundary conditions

(CC) u=0, v=0 on (0,00) xI'p,
ou Ov

%:%:0 on (0,00) x ([xy UTy)
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is stable. In fact, we will find a positive eigenvalue of the stationary eigenvalue
problem

(EPc) di1Au + biiu + biov = Au,
daAv + boru + bosv = Av

with boundary conditions (UC) also in some area of parameters d where all eigen-
values of the problem ((EP¢), (CC)) have negative real parts.

In our interpretation, boundary conditions (UC) simulate some kind of regulation
by a semipermeable membrane where the flow-rate through the membrane depends
on the pumping from the reservoir surrounding the domain 2.

Unfortunately, the results presented here apply to the “linear” system (RDy,) only.
The approach to (RD) remains open because stability of the trivial solution for the
problem ((RD), (UC)) can occur even in the case of instability for its “linearization”
(RDL), (UC)) (see [2]).

The destabilizing effect of unilateral conditions given by inequalities for systems
of reaction-diffusion type was first proved in papers of P. Drabek and M. Kucera
(see [3]). They considered a more special type of boundary conditions than we do—
the ones which we would obtain if we took ® = 0 in our considerations. This kind
of problem leads to variational inequalities and the method of the proof in [3] uses a
penalty technique, the main result is also the existence of a positive eigenvalue.

Related results for the inequalities were also proved—the existence of a bifurcation
point on any curve going from the domain of instability to the domain of stability
of the classical problem even in this area of stability. The destabilizing effect was
shown also on simple examples in [4].

The method of the Leray-Schauder degree used here was first introduced to the
area of eigenvalues and bifurcation problems for variational inequalities in paper [5]
by P. Quittner with the same results. This method was also used in [6] for the
destabilization for quasivariational inequalities of the same type as here but in the
sense of bifurcation. The present paper combines results and considerations of [5]
and [6].

On the other hand, in the case of unilateral conditions given for the activator
(component u in our system) instead of for the inhibitor v, some kind of the stabilizing
effect in the sense of bifurcations was proved. Most recently it can be seen in [7]
for boundary conditions leading to a system of differential inclusions but the proof
uses a completely different method. The destabilization for inclusions has been also
already proved (see [8], [9]).

You can recently find also more details about the progress on the field in [10].
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2. NOTATION, DEFINITIONS AND MAIN RESULTS
Let us assume
) meas(I'p) > 0, meas(I'y) > 0.

Let V= {p € H'(Q); ¢ = 0 on I'p in the sense of traces} be the Hilbert space
with the scalar product (¢,v) = [ VeV dz and its corresponding norm || . ||. Con-
Q

dition (T") ensures that || .|| is a norm equivalent to the usual one on the space V.
Let Hi () = {¢ € H'(Q); Ap € L?(Q)} and H = HL(Q) NV be the Hilbert
spaces with the scalar product (p,v) = [(VpVe + ApArp)dx (see [11]) and with
Q

its corresponding norm | .| or the corresponding norm on H x H.

Let Hz(T') be the space of traces of all functions from the Sobolev space H'(£2)
and let H~2(T) be its dual (see for example [11]). For any fixed v € H we also
denote

K, = {gp eV; o(x) > f/@)(x,y) (’92(3;) dI'(y) on I'y in the sense of traces}
n
r

where g—z € H =(I) (see [11]) and 1[cp(z)w(z) dl'(z) is understood for ¢ € Hz (T)

and ¢ € H2(I') in the sense of duality between H2 (T') and H~z (T').
Under this notation, by the solution of the problem ((RDy,), (UC)) we can under-
stand a pair [u,v] such that for all T > 0 we have

[u,v] € L*((0,T),H) x L*>((0,T), 1), [us,ve] € L*((0,T),V*) x L*((0,T),V*)
(see [12]) and for almost all £ > 0

i ”U(t, ) € Kv(t BE

ii) [ut(t, x)p(z) + d1 Vzu(t, 2)Ve(z)

D\

— (bnu(t, 2) + buo(t,2)) pla)] dz =0 Vg €V,

[ve(t, 2) (v(z) — v(t, x)) + doVav(t, 2)V, (Y(z) — v(t, z))

iii)

O

— (baru(t, z) + bagv(t, z)) (Y(z) —v(t,z))] dz >0 VY € K,
hold.
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By stability of a stationary solution U of the problem ((RDy,), (UC)) with initial
conditions with respect to the norm ||. | we mean the following property: For any
€ > 0 there is 6 > 0 such that any solution U = [u,v] (solution in the sense of the
previous definition) satisfying |U (o) — U|| < 6 for some t; is defined on the interval
[to,00) and ||U(t) — U| < € holds for all ¢ € [tg, 00).

U is unstable if it is not stable. At this point we have to say that only instability is
investigated in the article. In fact, the solution of the evolution problem will appear
only once (see Corollary 1) and it will be very smooth and unstable with respect
to any reasonable norm. The generality of the definition of a weak solution of the
evolution problem is not a crucial point in the paper.

Moreover, a weak solution of the problem ((EP¢), (UC)) is a pair [u,v] € H x H
satisfying the quasivariational inequality (see [6])

(In) i) ve K,

ii) /[d1Vqu0 — (b11u + b12v — Au)pldz =0 Ve eV,

Q
i) / (o VoV (1 — ) — (bortt + bagv — o) (v — v)]da > 0 Vb € K.
Q

Let us introduce an operator A: V — V by (Au,¢) = [updz Vu, ¢ € V, the
Q
projection P,: V — K, on the convex closed set K, defined for any fixed v € H by

VzeV PyzeK,, |Pyz—z|= min|y—z|
yeK,

(see [13] for more details) and an operator 7: R2 x R x H x H? — H x H defined
foralld =[dy,do] € R2, A€ R, feHand U = [u,v] € H x H by

U — d;l(bnAu + bigAv — NAu — f)

T\ f,U) =
( ) af’ ) ,U_Pv(dgl(b21Au+b22A’U—)\A'U))

Then the inequality (I)) can be rewritten (see also [6]) as

(EPV\/) diu — by Au — big Av + NAu = 0,
dav — szv (b21Au + bag Av — /\A’U) =0

or simply

T(d,\,0,U) =
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Simultaneously, the weak formulation for the stationary version of the problem

((RDw), (CC)) is

(CPV\/‘) dlu — bnAu — b12AU = 07
dg”U — bglAu - bggA”U = 0.

Moreover, we denote by Er,(A\) = {U = [u,v] € H x H; T(d,,0,U) = 0} the
set of all eigenvectors of the problem (EPyw). Let o, be the set of all A € R such
that there is a nontrivial solution of (EPw), i.e. Er,(\) # {[0,0]}. It means that oy,
is the set of all real eigenvalues of the problem (EPyw). The set of all solutions of
(CPw) belonging to H x H will be denoted by E; where d = [d1,ds]. Finally, the
set of all eigenvalues of the problem ((EP¢), (CC)) will be denoted by 4. Let us
note that the eigenvalues of this problem are the same as for its weak formulation
because the corresponding eigenvectors are sufficiently smooth (see [3]).

d
ol ool C

Dy

di
Figure 1. The domain of stability Dg, the domain of instability Dy and the envelope of
hyperbolas C' for the system (CPy).

For the system (CPw) under the assumption (SIGN) the following result is known:

Theorem 0 (see [3], for the one-dimensional case and the Neumann boundary
conditions it was done earlier in [14], [15]). Let{e;};=1,..., be an orthonormal system
of eigenvectors of the problem —Au = Au with the boundary conditions (CC) in V
corresponding to the eigenvalues ;. Let C;, j = 1,2, ..., be the hyperbolas

b12b21/fij + bﬁ

dy = —
2 bll — del Kj
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and C their envelope (see Fig. 1). Then E4 # {[0,0]} if and only if there is some j
such that d € C;. Let k be the multiplicity of the eigenvalue ;. Furthermore, if
de C;NC,d¢ Cj_1,d¢ Cipy then Eg = Lin{[e;, aj(d)ei], i = j,...,5 +k—1}
where aj(d) # 0 is a continuous function on R%. Ifd € CNC; N Cjpp, d ¢
Cj—1 and m is the multiplicity of the eigenvalue x;1) then Eq = Ein{[ei, aj(d)e;],
i=Jj,...,0+k—1, [e;,54k(d)e], i = j+Fk,...,j+k+m—1}. Moreover, if
d is to the right (or to the left) from the hyperbola C; then the eigenvalue of the
problem ((EPc¢), (CC)) corresponding to the eigenvector of the type le;, oj(d)e;]
is negative (or positive, respectively). If d € Dg = {d € R%; d is to the right
from C} (domain of stability) then all eigenvalues \ € o4 have negative real parts.
Ifd € Dy = {d € R% ; d is to the left from C'} (domain of instability) then there is
at least one positive eigenvalue A € 4. The problem ((EP¢), (CC)) has also some
complex eigenvalues but their real parts are always negative for all d € Ri.

For technical reasons, let us assume that ® € C2(Q2 x Q) is a given function with
the following property:

(@) For every x € T'y: ®(x,y) =0Vy € I'p and ®(x,y) >0 Vy € T'y,
for every x € I'p: ®(z,y) =0Vy €T

Furthermore, for any d° in Ri we formulate the following essential assumption:

(v) J[uo, vo] € Ego and Je > 0 such that vg > € on I'y.

Theorem 1. Let d° € C and let conditions ('), (®), (SIGN), (v) hold. Then
there is a neighbourhood W(d°) of d° such that for all d € W(d°) N Dg there is a
positive eigenvalue A € oy,.

Corollary 1. Let d° € C and let conditions (T), (®), (SIGN), (v) hold again.
Then there is a neighbourhood W(d°) of d° such that for all d € W(d°) N Dg the
trivial solution of ((RDy,), (UC)) is unstable. In fact, if [ug, vo) is a nontrivial solution
of the problem (EPw) for some A > 0 then U(t) = [e*Tug, eMTvy] is a solution of
the evolution problem ((RDy,), (UC)) for any T > 0.

Corollary 2. Let d: (—o00,00) — R% be a continuous curve such that d(0) € C,
Er,.,(0) = {[0,0]} for any s € (0,1) and E,,,(0) # {[0,0]}. Let all conditions of
Theorem 1 be fulfilled (set d° = d(0)). Then also for all s € (0,1) there is a positive
eigenvalue \ € oy, ,, and the trivial solution of the problem ((RDy,), (UC)) for the
parameter d(s) is unstable.

Remark. There is also a bifurcation point in Dg on such a curve even in the
case of a nonlinear system ((RD), (UC)) under some additional conditions on the
nonlinearity (see [6]).
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3. PROOF OF THE MAIN RESULT

Lemma 1. The operator A: H — H and the operator from Ry x Rx Hx H to H
defined by [dg, A\, u,v] — P, (d;l(bglAu + byg Av — )\Av)) are completely continuous.

Proof (similar to the proof of Lemma 2.1 in [6]). Let u, v € H, d = [d1,d2] €
Ri, w= P, (d;l(bglAu + bog Av — )\Av)). Obviously w € K, and also

(w—dy " (ba1 Au + bao Av — NAV), Y —w) >0 Vi € K,

Choosing 1) = w £ ¢ for any ¢ € D(Q) (¢ € K, again) we obtain

/ [VwVe — dy ' (baru + basv — Mv)p] dz =0 Ve € D().
Q

Thus Aw = —d; 1(bglu + baav — A\v) in the sense of distributions and consequently
w € H. Now let u,, = u, v, = vin H, d,, — ds > 0, A, — A,

Wy, = Ly, (d;l(bmAun + bog Av,, — /\nA’Un)), Zn = d;l(bglAun + bog Av,, — )\nAUn)

and z = dgl(bglAu + bao Av — AAv). Since A is completely continuous in V and since
H is continuously embedded in V we obtain z, — z in V.
Now let us define

fulz) = /(fb(w y)Avp (y) + Vyé(x,y)an(y)) dy,
Q
/ (z,y)Av(y) + qu)(x,y)Vv(y)) dy.

According to the Green formula we obtain in the sense of traces also

A (y) du(y)
@) = [ 2?2 arg), 1@ = [ e arw)
r r
Moreover, denote by © = [x1, X2, ..., Z,,] the coordinates in R". Computing deriva-

tives with respect to the parameter we obtain

0 fr B P*®(z,y) P*®(z,y)
i, (x) = / (78332'833]' Av,(y) + Vyiaxiaxj an(y)) dy.

The function ® and its partial derivatives are continuous on the compact Q so they
are bounded. Since the sequences Av, and Vv, weakly converge in L? there are
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also constants ko, k1, ko such that | aa;g’; -(2)| < ko independently of  and n for any
10T

i,j=1,2,...,m and similarly |%g%(x)| < k1 and |fn(z)] < ko. So the sequence { f,,}
is bounded in H?(f2) and we can take a subsequence such that

(1) fo = fin HY(Q).
Now let ¢ € K, be fixed. According to (1) there is a sequence v, € K, such that
by, — ¢ in V (take ¢, = ¢ — f, + f). Since P, is a projection we obtain

[2n — wnll = ll2n = Po,zall < ll2n — ¥nll

and consequently w,, = (w, — z,) + 2z, are bounded in V. After a restriction to a
subsequence we can assume w, — y € V and analogously as above we obtain for any
Ve K,

(2) [z = yl| < liminf ||z, — wy|| < limsup ||z, — wa|| < [z = ¢].
n—oo n—oo

In addition, w, = P, z, € K,, and using (1) we have y € K,. Now y = P,z = w
and we put ¢ = y (= w) into (2). So the terms are equal, lim |z — wy| =
||z — w| and we have proved w,, — w in V. Analogously as abolee 122 e H, Aw, =
—d; 1 (barun + baavy, — Apvy) and also Aw,, — Aw in L?(Q). Thus w, — w in H
and the complete continuity is proved. The proof of the property for the operator
A: H — H proceeds in the same way (see also [6]). O

Remark. In fact, in the proof of Lemma 1 we have proved that for any com-
pletely continuous operator A:

If v,—v, 2z ~2inH, then P, Az, — P,Azin H.

Lemma 2 (see [6], Lemma 2.2). Let d° € C be such that the condition (v) is
fulfilled. Then Ey,(0) C Egpo.

Lemma 3. Let d = [dy,ds] € R%. Then there is k € R such that

deg(T'(d, A, 0,.),B1(0),0) =1 for every A > k.

Proof (based on ideas from [5]). For every t € [0,1], U = [u,v] € H x H and
A > k with k large enough let us define homotopies Hy, Hs by

u — i(bllAu + blZAU) + AAU’
Hi(t,\,U) = @ -
1(t, A, U) Lth((dg)l(bzlAu+522AU)‘A”)) ’
1
HQ(ta)‘aU): l:u+gl u:|
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Obviously
Hi(1L,\U)=T(d,\,0,U), H(0,\,U) = H2(1,\,U) and H2(0,\,U) =U.

Therefore, by virtue of the homotopy invariance of the Leray-Schauder degree it is
sufficient to prove that for k large enough

Hi(t, \U)#0 Vte[0,1], VU HxH, U #0, VA>k, i=1,2.

First let us assume that it does not hold for ¢ = 2. Then obviously v = 0 and

there are also t,, — t, A, — 0o and u,, — u with ||u,|| = 1 such that
tn)\’n
(3) Un + Auy, = 0.
di

Multiplying (3) by w,, we obtain {(u,,u,) + ZL; (Atp,un) A = 0 and if u, # 0 then
both terms on the left-hand side are strictly positive and we have a contradiction.

The situation for ¢ = 1 is more complicated, again by contradiction: Let
U, = [un,vy,] € H x H, ¢, € [0,1] and A, — oo be such that |U,| = 1, u, — wu,
Up — 0, t, — t € [0,1] and Hy (tn, An, Upn) = 0 again. This means that

(4) )\nAun = tn(bnAun —+ blgAUn) — dlun,
(5) VUp = tn(d2)71Pd2U" (bglAun + bog Av,, — )\nAUn)

Since the right-hand side in (4) is bounded we have necessarily Au,, — 0. Multiply-
ing (5) by v, we obtain

(6) <Un7 ’Un> = tn<Pvn ((dg)_l(bmAun + (b22 — )\n)A’Un)) R ’Un>
< tn(d2) 7 (b1 (Atn, vi) + (b2 — An) (Avn, vn))

using 0 € K, in the well-known property of the projection P,,
(Py,2n — 2n, Yy — Py, 2n) 20 Yye K, Vz, €V

where we take z, = (dg)’l(bglAun + (bo2 — )\n)Avn) and v, = t,P,, 2z, from (5).
From the inequality (6) it is easy to show that

(U, n) + tn(d2) " H(An — ba2) (Avp, vy) <ty (d2) " o1 (A, vy) — 0
because Au, — 0. Therefore v,, — v = 0. Now multiplying (4) by u, we obtain

dy (Un,Upn) + An (Aty, up) = tn(bn (Aup, un) + bio <Avn,un>) —0
and therefore u,, — 0. Hence U,, — 0 and a contradiction again follows. O
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Lemma 4. Let d° = [d},d3] € C and let the condition (v) be satisfied. Then
there are ¢ > 0 and a neighbourhood U(d®) of d° such that E;,(\) = {[0,0]} (then
also A ¢ o1,) for any d € U(d°) N Dg and X € [0,¢).

Proof (we follow the ideas employed in [6] in a more general way). Let d" =
[d},d3] € Dg, Uy = [un,v,] € H x H and A, > 0 be such that d® — d°, |U,| = 1,
Up — U, Vy — v in H, A\, — 0 and

(7) dYupn, — b11 Auy — b12Av, + A\ Au, =0,
(8) dg’l)n — Pd;”vn (b21Aun + bog Av,, — /\nAUn) =0.
According to Lemma 1 we have u,, — u, v, — v in H and U = [u,v] € Ef,,(0). By
Lemma 2 then U € Ej and therefore
(9) d(l)u — b11Au — blgA’U = 0,
(10) dgv - bglAu - bggAU = 0.
First, let d° be not a point of intersection of two different hyperbolas: d° € Cj,

d® ¢ C;_1,d° ¢ Cjr where k is the multiplicity of the eigenvalue r; (see Theorem 0).
According to Theorem 0 there are also d”, U,, such that

(11) d"=[d},d3) € Cj, Uy, = [tn,v] € Egn, df < d}, d" —d°, U, — U in H

j+k—1 jhk—1
(see Fig. 1). Indeed, u = Y. cie;, v= Y. cia;(d°)e; (see Theorem 0). The
= =

_ jHk—1
general solution U = [4, 7] € Eqis for any d € C; alsoin the form &t = > ¢&e;, 0 =
=,

k-1
> &a;(d)e; with some constants ¢; and we can choose &; so that ¢;a;(d) = c;a;(d°)
=

and thus & = v. Let us note that this fact also implies that if the condition (v)
is satisfied for some d € C; which is not a point of intersection of two different
hyperbolas then it holds on the whole Cj.

Since U,, = [@n,v] € Ej. then
(12) a?ﬂn — b11Att,, — b1 Av =0,
(13) dgv — by Atl,, — bag Av = 0.

Multiplying (7) and (12) by @, and u, simultaneously we obtain after subtracting
the resulting equations and taking into account the symmetry of the operator A the

equation
(14) (d} — d}) (U, Tn) = Ay (A, Tp) — blg( (Avp, Ty) — (Av,uy) )
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Multiplying (8) and (13) by v and v, we similarly obtain using formula (14) that

(15) <Pd;"v” (bglAun + bggAUn — )\nA”Un) — (bglAun —+ bggA”Un — )\nAUn), 1)>

b ] b
~ (A = ) (1, ) = A (72 (A, Tn) + (Avy, ) ) = 0.
b12 b12

We can write v = (v + djv,) — djv, and we have also v 4 dyv, € Kgp,. Using (8)
and the basic facts about projections we conclude that the first term on the left-hand
side of (15) is not negative. But the second term is even positive for n sufficiently
large according to (SIGN) because |U| = 1 and (up, @,) — ||ul|? > 0. It remains to
prove that the limit of the third term is not negative, either (see also in [5]).

It is sufficient to show that % (Au,u) + (Av,v) is negative: For [u,v] € Ego the
equations (9) and (10) hold. Multiplying (9) by u and (10) by v and using the
symmetry of A we obtain

(16) bia (Au,v) = d%|u|* — b1y (Au,u),
(17) bo1 (Au, v) = dJ||v||? — baa (Av,v) .

Since the condition (SIGN) holds the equation (17) gives

(18) bo1 (Au,v) > 0.

Multiplying (10) by bizu and putting it into (16) we obtain

dSb1o (u,v) = byabay (Au, u) + biabas (Au,v) = d(l)bggHuHQ — (b11bag — b12ba1) (Au, u) .

From the assumption (SIGN) for Det ({b;;}, ;2,) and for by, we obviously have
b12 (u,v) < 0 and hence

(19) ba1 {u,v) > 0.

Finally, multiplying (9) and (10) by ;% and 3 respectively and summing the re-
sulting equations we know according to (18), (19) and (SIGN) that
b
i (Au,u) + (Av,v) = (612)71((d(1] + d9) (u,v) — (b11 + baa) (Au,v))
= (b12521)_1((d(1] + d9)b21 (u,v) — (b11 + baz)b2 <AU>U>> <0.

Summing up, we have proved that the left-hand side in the equation (15) is positive
for n large enough and this is a contradiction with zero on the right-hand side and
the proof is complete in the case of d° being not a point of intersection.
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It remains to study the case d® € C; N Cjix, d° ¢ Cj_1. According to Theorem 0

L . jk—1 k-1
we have U = U + U, U = [u,9), U = [4,0], & = Y. Gei, 0= Y, coi(d)e;,
i=j i=j
j+k+m—1 j+k+m—1 ~ - [
= Y Ge,v= Y  &a;i(d°)e; and there are d", U, and d", U,, such that
i=jt+k i=jt+k
(20) d" =[d7,dy] € Cj, d" = [d},d3] € Cjpx,

n<dy, dy<dy, dv—d° dv—d°,
U, = lin, ) € Ezn, Up = [iin, 9] € Efu, Un+U, —UinH

again (we also can fix the component v on each hyperbola as above so that 5+0 = v).
Since A is a linear operator, U,, = [iin, 8] € Ez, and U, = [ii,, 9] € Ej, we obtain

(21) AV, + dY iy, — b1y A(Ty, + Ty) — bigAv = 0,
(22) dgv — bglA(ﬂn + ﬂn) — bag Av = 0.

Analogously as above, only replacing equations (12) and (13) by (21) and (22), we
obtain
(23) <Pd;"vn (bglAun + bog Av,, — )\nAUn) — (b21Aun + bog Av,, — /\nAvn), ’U>
621 n In — 621 m mn ~
——(df — dY) (un, Un) — 7= (dY — df') (tn, Un)
bi2 b1z
ba1

_n_Ana_n Un, Ana = V.
/\(612< Uy Up, + U ) + (Av v)) 0

The first term is the same as in (15) so it is not negative. Neither is the fourth term
negative because the limit is the same as the limit of the corresponding term in (15).
Since (SIGN) is assumed it remains to prove that (u,,4,) > 0 and (u,, @,) > 0 for
n large enough. Theorem 0 and (20) imply similarly as in [3] that (u,,@,) — (u, @)
and (U, @y,) — (u, @) where

k-1 tktm—1 k-1 Jktm—1
U = E cie;, U= E Ci€; and U = E c;ie; + E Ci€;.
i=j i=j+k i=j i=j+k
From the orthonormality of {e;};—1, .. we easily obtain
jHk—1 JHk—1
_ 2 2
(u,m) = E c; (ei,e;) = g c; >0
=7 =7
and
j+k4+m—1 j+k+m—1
~ -2 2
(u, @) = g ¢ (e, e) = E ¢ >0
i=j+k i=j+k
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In conclusion, the left-hand side of (23) is positive again and the contradiction
follows also in the second case. O

Lemma 5 (see [6], Lemma 2.4, for related results also [16]). Let d® = [d9,d3] € C
be such that the condition (v) is satisfied. Then there is a neighbourhood W(d°) of
d° such that deg(T'(d,0,0,.), B1(0),0) = 0 for any d € W(d°) N Ds.

Lemma 6. Let d° = [d},d3] € C and let the condition (v) be satisfied. Then
there is € > 0 such that

deg(T(d, A, 0,.),B1(0),0) =0 Vd e W(d°)NDg VA€ |0,¢)
where W (d°) is the neighbourhood from Lemma 5.

Proof. The assertion follows immediately from Lemma 5 by the homotopy
invariance of the Leray-Schauder degree with the homotopy

w— (dy) " (b11 Au + big Av — tAAu)

H(t, U) - v — PU ((dg)_l(bmAu + bQQAU — t/\A’U)> ’

We can take ¢ from Lemma 4. For any d € W(d°), A € [0,), 7 > 0 and ¢ € [0,1] we
know that there is no U € 9B1(0) such that H(t,U) = 0 because of Ey,(A) = {[0,0]}
(see Lemma 4 again). O

Proof of Theorem 1. Let W(d°) be from Lemma 5, d € W(d°)NDg, A1 € (0,¢),
A2 = k. Let there be no solution U of the problem (EPw) such that U # [0,0] and
|U|| =1 for any A € [\, A2]. Then due to the homotopy invariance of the Leray-
Schauder degree, Lemma 3 and Lemma 6 we have

0 = deg(T'(d, A1,0,.), B1(0),0) = deg(T'(d, A2,0,.), B1(0),0) =1

because we can take the homotopy

U — (dl)_l(bnAu + b Av — (t)\l + (1 — t)/\2)A’U,)

H(t,U) = v — Py ((d2) " (ba1Au + bag Av — (tA1 + (1 — £)A2) Av))

arriving at a contradiction. In conclusion, for any d € W(d®)NDg thereis A € [A1, A2]
such that the problem (EPvw) has a nontrivial solution. It means that A € oz, is a
positive eigenvalue. O

Proof of Corollary 1. Let [ug,vo] be a nontrivial solution of the problem
(EPyy) for some A > 0 (see Theorem 1). Then U(t) = [e*Tug, eMTvp] is a solution
of the evolution problem ((RDy,), (UC)) for any 7 > 0. Now, for any § > 0 there is
7 > 0 sufficiently small such that for ¢ = 0 we have ||U(0)|| < ¢ and simultaneously
tli>r£1<> lU(t)]] = 4+o00. Hence, by the standard definition (cf., e.g., [3]) the solution

U = [0,0] is unstable. O
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Proof of Corollary 2. Let w > 0 be fixed small enough. It is clear that there
is 0 > 0 small enough such that Ey, (A) = {[0,0]} also holds for all A € [0, 0) and
s € [0,1 —w]. The reason is that in the opposite case we find A\, — 0, s,, € [0,1 — W]
and U, = [un,v,] € H x H such that ||Uy,| =1 and U, € Ey,, ,(An). We extract a
convergent subsequence s, — s € [0,1 — w] and obtain by the limit procedure based
on Lemma 1 (as in the proof of Lemma 4) also U,, — U, |[U|| =1 and U € Ey,, (0).
So, we have a contradiction with the assumption.

Now, by the standard homotopy argument as in the proof of Lemma 6 we obtain

deg(T'(d(s), A,0,.),B1(0),0) =0 Vse€[0,1—-w] VA€]0,p).

Finally, for fixed s € [0,1), if there is no positive eigenvalue A € oy 4+ then as in
the proof of Theorem 1 according to Lemma 3 by the homotopy argument again we
obtain

0= deg(T(d(S)a A1,0,. )a Bl(o)a 0) - deg(T(d(S)a A2,0,. )a Bl(o)a 0) =1

for some Ay € (0,0) and Ay > k, which yields a contradiction. Thus, there is
A € [A1, A2] a positive eigenvalue of the problem ((RDy,), (UC)) with the parameter
d(s). O
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