Applications of Mathematics

Vítězslav Babický
Destabilization for quasivariational inequalities of reaction-diffusion type

Applications of Mathematics, Vol. 45 (2000), No. 3, 161-176
Persistent URL: http://dml.cz/dmlcz/134434

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DESTABILIZATION FOR QUASIVARIATIONAL INEQUALITIES OF REACTION-DIFFUSION TYPE*

VítĚzslav Babický, Praha

(Received May 12, 1998)

Abstract. We consider a reaction-diffusion system of the activator-inhibitor type with unilateral boundary conditions leading to a quasivariational inequality. We show that there exists a positive eigenvalue of the problem and we obtain an instability of the trivial solution also in some area of parameters where the trivial solution of the same system with Dirichlet and Neumann boundary conditions is stable. Theorems are proved using the method of a jump in the Leray-Schauder degree.

Keywords: reaction-diffusion system, unilateral conditions, quasivariational inequality, Leray-Schauder degree, eigenvalue, stability

MSC 2000: 35B35, 35K57, 35J85

1. Introduction

Many interesting natural phenomena can be described mathematically by the system of reaction-diffusion equations

$$
\begin{align*}
& u_{t}=d_{1} \Delta u+f(u, v), \tag{RD}\\
& v_{t}=d_{2} \Delta v+g(u, v) \quad \text { on } \quad[0, \infty) \times \Omega
\end{align*}
$$

where f and g are some suitable functions such that $f(\bar{u}, \bar{v})=g(\bar{u}, \bar{v})=0$. In chemical or biological models u and v usually describe some positive concentrations (see for example $[1]$), $[\bar{u}, \bar{v}]$ is a trivial steady state. Without loss of generality we will suppose $\bar{u}=\bar{v}=0$ because of the shift of coordinates.

[^0]We shall investigate the linearized reaction-diffusion system

$$
\begin{align*}
u_{t} & =d_{1} \Delta u+b_{11} u+b_{12} v, \tag{L}\\
v_{t} & =d_{2} \Delta v+b_{21} u+b_{22} v \quad \text { on } \quad[0, \infty) \times \Omega
\end{align*}
$$

where Ω is a bounded domain in \mathbb{R}^{m} with a Lipschitzian boundary Γ. Furthermore, $d=\left[d_{1}, d_{2}\right] \in \mathbb{R}_{+}^{2}$ is a couple of positive numbers which will play the role of a parameter. Let us suppose that constants b_{11}, b_{12}, b_{21} and b_{22} satisfy the conditions

$$
\begin{gather*}
b_{11}>0, \quad b_{12}<0, \quad b_{21}>0, \quad b_{22}<0, \tag{SIGN}\\
b_{11}+b_{22}<0, \quad b_{11} b_{22}-b_{12} b_{21}>0
\end{gather*}
$$

These signs mean that we have the system of prey-predator (or activator-inhibitor) type.

Let Γ_{D}, Γ_{N} and Γ_{U} be disjoint open subsets in Γ such that

$$
\operatorname{meas}\left(\Gamma \backslash\left(\Gamma_{D} \cup \Gamma_{N} \cup \Gamma_{U}\right)\right)=0
$$

and let Φ be a nonnegative function on the set $\Gamma \times \Gamma$ which will be specified later. We will prove that the trivial solution for the system $\left(\mathrm{RD}_{\mathrm{L}}\right)$ with the unilateral boundary conditions
i) $\quad u=0, \quad v=0 \quad$ on $\quad(0, \infty) \times \Gamma_{D}$,
ii) $\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 \quad$ on $\quad(0, \infty) \times \Gamma_{N}$,
iii) $\frac{\partial u}{\partial n}=0, \quad \frac{\partial v}{\partial n} \geqslant 0 \quad$ on $\quad(0, \infty) \times \Gamma_{U}$,
iv) $v(x) \geqslant-\int_{\Gamma} \Phi(x, y) \frac{\partial v(y)}{\partial n} \mathrm{~d} \Gamma(y)$ and
v) $\quad\left(v(x)+\int_{\Gamma} \Phi(x, y) \frac{\partial v(y)}{\partial n} \mathrm{~d} \Gamma(y)\right) \frac{\partial v(x)}{\partial n}=0 \quad$ for $\quad x \in \Gamma_{U}$ and $t>0$
is unstable (the definition will be specified later) even for some set of parameters $d=\left[d_{1}, d_{2}\right]$ where the trivial solution for the problem $\left(\mathrm{RD}_{\mathrm{L}}\right)$ with the classical boundary conditions

$$
\begin{gather*}
u=0, \quad v=0 \quad \text { on }(0, \infty) \times \Gamma_{D} \tag{CC}\\
\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 \quad \text { on }(0, \infty) \times\left(\Gamma_{N} \cup \Gamma_{U}\right)
\end{gather*}
$$

is stable. In fact, we will find a positive eigenvalue of the stationary eigenvalue problem

$$
\begin{aligned}
\left(\mathrm{EP}_{\mathrm{C}}\right) & d_{1} \Delta u+b_{11} u+b_{12} v=\lambda u \\
d_{2} \Delta v+b_{21} u+b_{22} v & =\lambda v
\end{aligned}
$$

with boundary conditions (UC) also in some area of parameters d where all eigenvalues of the problem $\left(\left(\mathrm{EP}_{\mathrm{C}}\right),(\mathrm{CC})\right)$ have negative real parts.

In our interpretation, boundary conditions (UC) simulate some kind of regulation by a semipermeable membrane where the flow-rate through the membrane depends on the pumping from the reservoir surrounding the domain Ω.

Unfortunately, the results presented here apply to the "linear" system (RD_{L}) only. The approach to (RD) remains open because stability of the trivial solution for the problem ((RD), (UC)) can occur even in the case of instability for its "linearization" $\left(\left(\mathrm{RD}_{\mathrm{L}}\right),(\mathrm{UC})\right)$ (see [2]).

The destabilizing effect of unilateral conditions given by inequalities for systems of reaction-diffusion type was first proved in papers of P. Drábek and M. Kučera (see [3]). They considered a more special type of boundary conditions than we dothe ones which we would obtain if we took $\Phi \equiv 0$ in our considerations. This kind of problem leads to variational inequalities and the method of the proof in [3] uses a penalty technique, the main result is also the existence of a positive eigenvalue.

Related results for the inequalities were also proved-the existence of a bifurcation point on any curve going from the domain of instability to the domain of stability of the classical problem even in this area of stability. The destabilizing effect was shown also on simple examples in [4].

The method of the Leray-Schauder degree used here was first introduced to the area of eigenvalues and bifurcation problems for variational inequalities in paper [5] by P. Quittner with the same results. This method was also used in [6] for the destabilization for quasivariational inequalities of the same type as here but in the sense of bifurcation. The present paper combines results and considerations of [5] and [6].

On the other hand, in the case of unilateral conditions given for the activator (component u in our system) instead of for the inhibitor v, some kind of the stabilizing effect in the sense of bifurcations was proved. Most recently it can be seen in [7] for boundary conditions leading to a system of differential inclusions but the proof uses a completely different method. The destabilization for inclusions has been also already proved (see [8], [9]).

You can recently find also more details about the progress on the field in [10].

2. Notation, definitions and main Results

Let us assume

$$
\operatorname{meas}\left(\Gamma_{D}\right)>0, \quad \operatorname{meas}\left(\Gamma_{U}\right)>0
$$

Let $\mathbb{V}=\left\{\varphi \in H^{1}(\Omega) ; \varphi=0\right.$ on Γ_{D} in the sense of traces $\}$ be the Hilbert space with the scalar product $\langle\varphi, \psi\rangle=\int_{\Omega} \nabla \varphi \nabla \psi \mathrm{d} x$ and its corresponding norm $\|\cdot\|$. Condition (Γ) ensures that $\|\cdot\|$ is a norm equivalent to the usual one on the space \mathbb{V}.

Let $H_{L}^{1}(\Omega)=\left\{\varphi \in H^{1}(\Omega) ; \Delta \varphi \in L^{2}(\Omega)\right\}$ and $\mathbb{H}=H_{L}^{1}(\Omega) \cap \mathbb{V}$ be the Hilbert spaces with the scalar product $(\varphi, \psi)=\int_{\Omega}(\nabla \varphi \nabla \psi+\Delta \varphi \Delta \psi) \mathrm{d} x$ (see [11]) and with its corresponding norm $|$.$| or the corresponding norm on \mathbb{H} \times \mathbb{H}$.

Let $H^{\frac{1}{2}}(\Gamma)$ be the space of traces of all functions from the Sobolev space $H^{1}(\Omega)$ and let $H^{-\frac{1}{2}}(\Gamma)$ be its dual (see for example [11]). For any fixed $v \in \mathbb{H}$ we also denote

$$
K_{v}=\left\{\varphi \in \mathbb{V} ; \varphi(x) \geqslant-\int_{\Gamma} \Phi(x, y) \frac{\partial v(y)}{\partial n} \mathrm{~d} \Gamma(y) \text { on } \Gamma_{U} \text { in the sense of traces }\right\}
$$

where $\frac{\partial v}{\partial n} \in H^{-\frac{1}{2}}(\Gamma)$ (see [11]) and $\int_{\Gamma} \varphi(z) \psi(z) \mathrm{d} \Gamma(z)$ is understood for $\varphi \in H^{\frac{1}{2}}(\Gamma)$ and $\psi \in H^{-\frac{1}{2}}(\Gamma)$ in the sense of duality between $H^{\frac{1}{2}}(\Gamma)$ and $H^{-\frac{1}{2}}(\Gamma)$.

Under this notation, by the solution of the problem (($\left.\mathrm{RD}_{\mathrm{L}}\right)$, (UC)) we can understand a pair $[u, v]$ such that for all $T>0$ we have

$$
[u, v] \in L^{2}((0, T), \mathbb{H}) \times L^{2}((0, T), \mathbb{H}), \quad\left[u_{t}, v_{t}\right] \in L^{2}\left((0, T), \mathbb{V}^{\star}\right) \times L^{2}\left((0, T), \mathbb{V}^{\star}\right)
$$

(see [12]) and for almost all $t>0$
i) $\quad v(t,.) \in K_{v(t, .)}$,
ii) $\int_{\Omega}\left[u_{t}(t, x) \varphi(x)+d_{1} \nabla_{x} u(t, x) \nabla \varphi(x)\right.$

$$
\left.-\left(b_{11} u(t, x)+b_{12} v(t, x)\right) \varphi(x)\right] \mathrm{d} x=0 \quad \forall \varphi \in \mathbb{V}
$$

iii) $\int_{\Omega}\left[v_{t}(t, x)(\psi(x)-v(t, x))+d_{2} \nabla_{x} v(t, x) \nabla_{x}(\psi(x)-v(t, x))\right.$

$$
\left.-\left(b_{21} u(t, x)+b_{22} v(t, x)\right)(\psi(x)-v(t, x))\right] \mathrm{d} x \geqslant 0 \quad \forall \psi \in K_{v}
$$

hold.

By stability of a stationary solution \bar{U} of the problem $\left(\left(\mathrm{RD}_{\mathrm{L}}\right),(\mathrm{UC})\right)$ with initial conditions with respect to the norm $\|$.$\| we mean the following property: For any$ $\varepsilon>0$ there is $\delta>0$ such that any solution $U=[u, v]$ (solution in the sense of the previous definition) satisfying $\left\|U\left(t_{0}\right)-\bar{U}\right\|<\delta$ for some t_{0} is defined on the interval $\left[t_{0}, \infty\right)$ and $\|U(t)-\bar{U}\|<\varepsilon$ holds for all $t \in\left[t_{0}, \infty\right)$.
\bar{U} is unstable if it is not stable. At this point we have to say that only instability is investigated in the article. In fact, the solution of the evolution problem will appear only once (see Corollary 1) and it will be very smooth and unstable with respect to any reasonable norm. The generality of the definition of a weak solution of the evolution problem is not a crucial point in the paper.

Moreover, a weak solution of the problem $\left(\left(\mathrm{EP}_{\mathrm{C}}\right),(\mathrm{UC})\right)$ is a pair $[u, v] \in \mathbb{H} \times \mathbb{H}$ satisfying the quasivariational inequality (see [6])
i) $v \in K_{v}$,
ii) $\int_{\Omega}\left[d_{1} \nabla u \nabla \varphi-\left(b_{11} u+b_{12} v-\lambda u\right) \varphi\right] \mathrm{d} x=0 \quad \forall \varphi \in \mathbb{V}$,
iii) $\int_{\Omega}\left[d_{2} \nabla v \nabla(\psi-v)-\left(b_{21} u+b_{22} v-\lambda v\right)(\psi-v)\right] \mathrm{d} x \geqslant 0 \quad \forall \psi \in K_{v}$.

Let us introduce an operator $A: \mathbb{V} \rightarrow \mathbb{V}$ by $\langle A u, \varphi\rangle=\int_{\Omega} u \varphi \mathrm{~d} x \forall u, \varphi \in \mathbb{V}$, the projection $P_{v}: \mathbb{V} \rightarrow K_{v}$ on the convex closed set K_{v} defined for any fixed $v \in \mathbb{H}$ by

$$
\forall z \in \mathbb{V} \quad P_{v} z \in K_{v}, \quad\left\|P_{v} z-z\right\|=\min _{y \in K_{v}}\|y-z\|
$$

(see [13] for more details) and an operator $T: \mathbb{R}_{+}^{2} \times \mathbb{R} \times \mathbb{H} \times \mathbb{H}^{2} \rightarrow \mathbb{H} \times \mathbb{H}$ defined for all $d=\left[d_{1}, d_{2}\right] \in \mathbb{R}_{+}^{2}, \lambda \in \mathbb{R}, f \in \mathbb{H}$ and $U=[u, v] \in \mathbb{H} \times \mathbb{H}$ by

$$
T(d, \lambda, f, U)=\left[\begin{array}{l}
u-d_{1}^{-1}\left(b_{11} A u+b_{12} A v-\lambda A u-f\right) \\
v-P_{v}\left(d_{2}^{-1}\left(b_{21} A u+b_{22} A v-\lambda A v\right)\right)
\end{array}\right]
$$

Then the inequality $\left(\mathrm{I}_{\lambda}\right)$ can be rewritten (see also [6]) as

$$
\begin{align*}
d_{1} u-b_{11} A u-b_{12} A v+\lambda A u & =0 \tag{W}\\
d_{2} v-P_{d_{2} v}\left(b_{21} A u+b_{22} A v-\lambda A v\right) & =0
\end{align*}
$$

or simply

$$
T(d, \lambda, 0, U)=0
$$

Simultaneously, the weak formulation for the stationary version of the problem $\left(\left(\mathrm{RD}_{\mathrm{L}}\right),(\mathrm{CC})\right)$ is

$$
\left(\begin{array}{r}
d_{1} u-b_{11} A u-b_{12} A v=0 \\
d_{2} v-b_{21} A u-b_{22} A v=0
\end{array}\right.
$$

Moreover, we denote by $E_{I_{d}}(\lambda)=\{U=[u, v] \in \mathbb{H} \times \mathbb{H} ; T(d, \lambda, 0, U)=0\}$ the set of all eigenvectors of the problem $\left(\mathrm{EP}_{\mathrm{W}}\right)$. Let $\sigma_{I_{d}}$ be the set of all $\lambda \in \mathbb{R}$ such that there is a nontrivial solution of $\left(\mathrm{EP}_{\mathrm{W}}\right)$, i.e. $E_{I_{d}}(\lambda) \neq\{[0,0]\}$. It means that $\sigma_{I_{d}}$ is the set of all real eigenvalues of the problem $\left(\mathrm{EP}_{\mathrm{W}}\right)$. The set of all solutions of $\left(\mathrm{CP}_{\mathrm{W}}\right)$ belonging to $\mathbb{H} \times \mathbb{H}$ will be denoted by E_{d} where $d=\left[d_{1}, d_{2}\right]$. Finally, the set of all eigenvalues of the problem $\left(\left(\mathrm{EP}_{\mathrm{C}}\right),(\mathrm{CC})\right)$ will be denoted by σ_{d}. Let us note that the eigenvalues of this problem are the same as for its weak formulation because the corresponding eigenvectors are sufficiently smooth (see [3]).

Figure 1. The domain of stability D_{S}, the domain of instability D_{U} and the envelope of hyperbolas C for the system $\left(\mathrm{CP}_{\mathrm{W}}\right)$.

For the system $\left(\mathrm{CP}_{\mathrm{W}}\right)$ under the assumption (SIGN) the following result is known:

Theorem 0 (see [3], for the one-dimensional case and the Neumann boundary conditions it was done earlier in [14], [15]). Let $\left\{e_{j}\right\}_{j=1, \ldots,}$, be an orthonormal system of eigenvectors of the problem $-\Delta u=\lambda u$ with the boundary conditions (CC) in \mathbb{V} corresponding to the eigenvalues κ_{j}. Let $C_{j}, j=1,2, \ldots$, be the hyperbolas

$$
d_{2}=-\frac{b_{12} b_{21} / \kappa_{j}}{b_{11}-\kappa_{j} d_{1}}+\frac{b_{22}}{\kappa_{j}}
$$

and C their envelope (see Fig. 1). Then $E_{d} \neq\{[0,0]\}$ if and only if there is some j such that $d \in C_{j}$. Let k be the multiplicity of the eigenvalue κ_{j}. Furthermore, if $d \in C_{j} \cap C, d \notin C_{j-1}, d \notin C_{j+k}$ then $E_{d}=\mathcal{L i n}\left\{\left[e_{i}, \alpha_{j}(d) e_{i}\right], i=j, \ldots, j+k-1\right\}$ where $\alpha_{j}(d) \neq 0$ is a continuous function on \mathbb{R}_{+}^{2}. If $d \in C \cap C_{j} \cap C_{j+k}, d \notin$ C_{j-1} and m is the multiplicity of the eigenvalue κ_{j+k} then $E_{d}=\mathcal{L} i n\left\{\left[e_{i}, \alpha_{j}(d) e_{i}\right]\right.$, $\left.i=j, \ldots, j+k-1,\left[e_{i}, \alpha_{j+k}(d) e_{i}\right], i=j+k, \ldots, j+k+m-1\right\}$. Moreover, if d is to the right (or to the left) from the hyperbola C_{j} then the eigenvalue of the problem $\left(\left(\mathrm{EP}_{\mathrm{C}}\right),(\mathrm{CC})\right)$ corresponding to the eigenvector of the type $\left[e_{j}, \alpha_{j}(d) e_{j}\right]$ is negative (or positive, respectively). If $d \in D_{S}=\left\{d \in \mathbb{R}_{+}^{2} ; d\right.$ is to the right from $C\}$ (domain of stability) then all eigenvalues $\lambda \in \sigma_{d}$ have negative real parts. If $d \in D_{U}=\left\{d \in \mathbb{R}_{+}^{2} ; d\right.$ is to the left from $\left.C\right\}$ (domain of instability) then there is at least one positive eigenvalue $\lambda \in \sigma_{d}$. The problem $\left(\left(\mathrm{EP}_{\mathrm{C}}\right),(\mathrm{CC})\right)$ has also some complex eigenvalues but their real parts are always negative for all $d \in \mathbb{R}_{+}^{2}$.

For technical reasons, let us assume that $\Phi \in \mathcal{C}^{2}(\bar{\Omega} \times \bar{\Omega})$ is a given function with the following property:
$(\Phi) \quad$ For every $x \in \Gamma_{U}: \Phi(x, y)=0 \forall y \in \Gamma_{D}$ and $\Phi(x, y) \geqslant 0 \forall y \in \Gamma_{U}$, for every $x \in \Gamma_{D}: \Phi(x, y)=0 \forall y \in \Gamma$.

Furthermore, for any d^{0} in \mathbb{R}_{+}^{2} we formulate the following essential assumption:

$$
\begin{equation*}
\exists\left[u_{0}, v_{0}\right] \in E_{d^{0}} \text { and } \exists \varepsilon>0 \text { such that } v_{0} \geqslant \varepsilon \text { on } \Gamma_{U} . \tag{v}
\end{equation*}
$$

Theorem 1. Let $d^{0} \in C$ and let conditions $(\Gamma),(\Phi)$, (SIGN), (v) hold. Then there is a neighbourhood $\mathcal{W}\left(d^{0}\right)$ of d^{0} such that for all $d \in \mathcal{W}\left(d^{0}\right) \cap D_{S}$ there is a positive eigenvalue $\lambda \in \sigma_{I_{d}}$.

Corollary 1. Let $d^{0} \in C$ and let conditions $(\Gamma),(\Phi)$, (SIGN), (v) hold again. Then there is a neighbourhood $\mathcal{W}\left(d^{0}\right)$ of d^{0} such that for all $d \in \mathcal{W}\left(d^{0}\right) \cap D_{S}$ the trivial solution of $\left(\left(\mathrm{RD}_{\mathrm{L}}\right),(\mathrm{UC})\right)$ is unstable. In fact, if $\left[u_{0}, v_{0}\right]$ is a nontrivial solution of the problem $\left(\mathrm{EP}_{\mathrm{W}}\right)$ for some $\lambda>0$ then $U(t)=\left[e^{\lambda t} \tau u_{0}, e^{\lambda t} \tau v_{0}\right]$ is a solution of the evolution problem $\left(\left(\mathrm{RD}_{\mathrm{L}}\right),(\mathrm{UC})\right)$ for any $\tau>0$.

Corollary 2. Let $d:(-\infty, \infty) \rightarrow \mathbb{R}_{+}^{2}$ be a continuous curve such that $d(0) \in C$, $E_{I_{d(s)}}(0)=\{[0,0]\}$ for any $s \in(0,1)$ and $E_{I_{d(1)}}(0) \neq\{[0,0]\}$. Let all conditions of Theorem 1 be fulfilled (set $\left.d^{0}=d(0)\right)$. Then also for all $s \in(0,1)$ there is a positive eigenvalue $\lambda \in \sigma_{I_{d(s)}}$ and the trivial solution of the problem $\left(\left(\mathrm{RD}_{\mathrm{L}}\right)\right.$, (UC)) for the parameter $d(s)$ is unstable.

Remark. There is also a bifurcation point in D_{S} on such a curve even in the case of a nonlinear system ((RD), (UC)) under some additional conditions on the nonlinearity (see [6]).

3. Proof of the main result

Lemma 1. The operator $A: \mathbb{H} \rightarrow \mathbb{H}$ and the operator from $\mathbb{R}_{+} \times \mathbb{R} \times \mathbb{H} \times \mathbb{H}$ to \mathbb{H} defined by $\left[d_{2}, \lambda, u, v\right] \mapsto P_{v}\left(d_{2}^{-1}\left(b_{21} A u+b_{22} A v-\lambda A v\right)\right)$ are completely continuous.

Proof (similar to the proof of Lemma 2.1 in [6]). Let $u, v \in \mathbb{H}, d=\left[d_{1}, d_{2}\right] \in$ $\mathbb{R}_{+}^{2}, w=P_{v}\left(d_{2}^{-1}\left(b_{21} A u+b_{22} A v-\lambda A v\right)\right)$. Obviously $w \in K_{v}$ and also

$$
\left\langle w-d_{2}^{-1}\left(b_{21} A u+b_{22} A v-\lambda A v\right), \psi-w\right\rangle \geqslant 0 \quad \forall \psi \in K_{v} .
$$

Choosing $\psi=w \pm \varphi$ for any $\varphi \in \mathcal{D}(\Omega)\left(\psi \in K_{v}\right.$ again $)$ we obtain

$$
\int_{\Omega}\left[\nabla w \nabla \varphi-d_{2}^{-1}\left(b_{21} u+b_{22} v-\lambda v\right) \varphi\right] \mathrm{d} x=0 \quad \forall \varphi \in \mathcal{D}(\Omega)
$$

Thus $\Delta w=-d_{2}^{-1}\left(b_{21} u+b_{22} v-\lambda v\right)$ in the sense of distributions and consequently $w \in \mathbb{H}$. Now let $u_{n} \rightharpoonup u, v_{n} \rightharpoonup v$ in $\mathbb{H}, d_{n} \rightarrow d_{2}>0, \lambda_{n} \rightarrow \lambda$,

$$
w_{n}=P_{v_{n}}\left(d_{n}^{-1}\left(b_{21} A u_{n}+b_{22} A v_{n}-\lambda_{n} A v_{n}\right)\right), z_{n}=d_{n}^{-1}\left(b_{21} A u_{n}+b_{22} A v_{n}-\lambda_{n} A v_{n}\right)
$$

and $z=d_{2}^{-1}\left(b_{21} A u+b_{22} A v-\lambda A v\right)$. Since A is completely continuous in \mathbb{V} and since \mathbb{H} is continuously embedded in \mathbb{V} we obtain $z_{n} \rightarrow z$ in \mathbb{V}.

Now let us define

$$
\begin{aligned}
f_{n}(x) & =\int_{\Omega}\left(\Phi(x, y) \Delta v_{n}(y)+\nabla_{y} \Phi(x, y) \nabla v_{n}(y)\right) \mathrm{d} y \\
f(x) & =\int_{\Omega}\left(\Phi(x, y) \Delta v(y)+\nabla_{y} \Phi(x, y) \nabla v(y)\right) \mathrm{d} y .
\end{aligned}
$$

According to the Green formula we obtain in the sense of traces also

$$
f_{n}(x)=\int_{\Gamma} \Phi(x, y) \frac{\partial v_{n}(y)}{\partial n} \mathrm{~d} \Gamma(y), \quad f(x)=\int_{\Gamma} \Phi(x, y) \frac{\partial v(y)}{\partial n} \mathrm{~d} \Gamma(y)
$$

Moreover, denote by $x=\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ the coordinates in \mathbb{R}^{m}. Computing derivatives with respect to the parameter we obtain

$$
\frac{\partial^{2} f_{n}}{\partial x_{i} \partial x_{j}}(x)=\int_{\Omega}\left(\frac{\partial^{2} \Phi(x, y)}{\partial x_{i} \partial x_{j}} \Delta v_{n}(y)+\nabla_{y} \frac{\partial^{2} \Phi(x, y)}{\partial x_{i} \partial x_{j}} \nabla v_{n}(y)\right) \mathrm{d} y .
$$

The function Φ and its partial derivatives are continuous on the compact $\bar{\Omega}$ so they are bounded. Since the sequences Δv_{n} and ∇v_{n} weakly converge in L^{2} there are
also constants k_{0}, k_{1}, k_{2} such that $\left|\frac{\partial^{2} f_{n}}{\partial x_{i} \partial x_{j}}(x)\right| \leqslant k_{2}$ independently of x and n for any $i, j=1,2, \ldots, m$ and similarly $\left|\frac{\partial f_{n}}{\partial x_{i}}(x)\right| \leqslant k_{1}$ and $\left|f_{n}(x)\right| \leqslant k_{0}$. So the sequence $\left\{f_{n}\right\}$ is bounded in $H^{2}(\Omega)$ and we can take a subsequence such that

$$
\begin{equation*}
f_{n} \rightarrow f \text { in } H^{1}(\Omega) \tag{1}
\end{equation*}
$$

Now let $\psi \in K_{v}$ be fixed. According to (1) there is a sequence $\psi_{n} \in K_{v_{n}}$ such that $\psi_{n} \rightarrow \psi$ in $\mathbb{V}\left(\right.$ take $\left.\psi_{n}=\psi-f_{n}+f\right)$. Since $P_{v_{n}}$ is a projection we obtain

$$
\left\|z_{n}-w_{n}\right\|=\left\|z_{n}-P_{v_{n}} z_{n}\right\| \leqslant\left\|z_{n}-\psi_{n}\right\|
$$

and consequently $w_{n}=\left(w_{n}-z_{n}\right)+z_{n}$ are bounded in \mathbb{V}. After a restriction to a subsequence we can assume $w_{n} \rightharpoonup y \in \mathbb{V}$ and analogously as above we obtain for any $\psi \in K_{v}$

$$
\begin{equation*}
\|z-y\| \leqslant \liminf _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\| \leqslant \limsup _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\| \leqslant\|z-\psi\| \tag{2}
\end{equation*}
$$

In addition, $w_{n}=P_{v_{n}} z_{n} \in K_{v_{n}}$ and using (1) we have $y \in K_{v}$. Now $y=P_{v} z=w$ and we put $\psi=y(=w)$ into (2). So the terms are equal, $\lim _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\|=$ $\|z-w\|$ and we have proved $w_{n} \rightarrow w$ in \mathbb{V}. Analogously as above $w_{n} \in \mathbb{H}, \Delta w_{n}=$ $-d_{n}^{-1}\left(b_{21} u_{n}+b_{22} v_{n}-\lambda_{n} v_{n}\right)$ and also $\Delta w_{n} \rightarrow \Delta w$ in $L^{2}(\Omega)$. Thus $w_{n} \rightarrow w$ in \mathbb{H} and the complete continuity is proved. The proof of the property for the operator $A: \mathbb{H} \rightarrow \mathbb{H}$ proceeds in the same way (see also [6]).

Remark. In fact, in the proof of Lemma 1 we have proved that for any completely continuous operator A :

$$
\text { If } \quad v_{n} \rightharpoonup v, z_{n} \rightharpoonup z \text { in } \mathbb{H}, \quad \text { then } \quad P_{v_{n}} A z_{n} \rightarrow P_{v} A z \text { in } \mathbb{H} .
$$

Lemma 2 (see [6], Lemma 2.2). Let $d^{0} \in C$ be such that the condition (v) is fulfilled. Then $E_{I_{d} 0}(0) \subset E_{d^{0}}$.

Lemma 3. Let $d=\left[d_{1}, d_{2}\right] \in \mathbb{R}_{+}^{2}$. Then there is $k \in \mathbb{R}$ such that

$$
\operatorname{deg}\left(T(d, \lambda, 0, .), B_{1}(0), 0\right)=1 \quad \text { for every } \lambda \geqslant k
$$

Proof (based on ideas from [5]). For every $t \in[0,1], U=[u, v] \in \mathbb{H} \times \mathbb{H}$ and $\lambda \geqslant k$ with k large enough let us define homotopies H_{1}, H_{2} by

$$
\begin{aligned}
& H_{1}(t, \lambda, U)=\left[\begin{array}{c}
u-\frac{t}{d_{1}}\left(b_{11} A u+b_{12} A v\right)+\frac{\lambda}{d_{1}} A u \\
v-t P_{v}\left(\left(d_{2}\right)^{-1}\left(b_{21} A u+b_{22} A v-\lambda A v\right)\right)
\end{array}\right], \\
& H_{2}(t, \lambda, U)=\left[\begin{array}{c}
u+\frac{\lambda \lambda}{d_{1}} A u \\
v
\end{array}\right] .
\end{aligned}
$$

Obviously

$$
H_{1}(1, \lambda, U)=T(d, \lambda, 0, U), H_{1}(0, \lambda, U)=H_{2}(1, \lambda, U) \text { and } H_{2}(0, \lambda, U)=U
$$

Therefore, by virtue of the homotopy invariance of the Leray-Schauder degree it is sufficient to prove that for k large enough

$$
H_{i}(t, \lambda, U) \neq 0 \quad \forall t \in[0,1], \forall U \in \mathbb{H} \times \mathbb{H},|U| \neq 0, \forall \lambda \geqslant k, i=1,2
$$

First let us assume that it does not hold for $i=2$. Then obviously $v=0$ and there are also $t_{n} \rightarrow t, \lambda_{n} \rightarrow \infty$ and $u_{n} \rightharpoonup u$ with $\left\|u_{n}\right\|=1$ such that

$$
\begin{equation*}
u_{n}+\frac{t_{n} \lambda_{n}}{d_{1}} A u_{n}=0 \tag{3}
\end{equation*}
$$

Multiplying (3) by u_{n} we obtain $\left\langle u_{n}, u_{n}\right\rangle+\frac{t_{n}}{d_{1}}\left\langle A u_{n}, u_{n}\right\rangle \lambda_{n}=0$ and if $u_{n} \neq 0$ then both terms on the left-hand side are strictly positive and we have a contradiction.

The situation for $i=1$ is more complicated, again by contradiction: Let $U_{n}=\left[u_{n}, v_{n}\right] \in \mathbb{H} \times \mathbb{H}, t_{n} \in[0,1]$ and $\lambda_{n} \rightarrow \infty$ be such that $\left|U_{n}\right|=1, u_{n} \rightharpoonup u$, $v_{n} \rightharpoonup v, t_{n} \rightarrow t \in[0,1]$ and $H_{1}\left(t_{n}, \lambda_{n}, U_{n}\right)=0$ again. This means that

$$
\begin{align*}
\lambda_{n} A u_{n} & =t_{n}\left(b_{11} A u_{n}+b_{12} A v_{n}\right)-d_{1} u_{n} \tag{4}\\
v_{n} & =t_{n}\left(d_{2}\right)^{-1} P_{d_{2} v_{n}}\left(b_{21} A u_{n}+b_{22} A v_{n}-\lambda_{n} A v_{n}\right) . \tag{5}
\end{align*}
$$

Since the right-hand side in (4) is bounded we have necessarily $A u_{n} \rightarrow 0$. Multiplying (5) by v_{n} we obtain

$$
\begin{align*}
\left\langle v_{n}, v_{n}\right\rangle & =t_{n}\left\langle P_{v_{n}}\left(\left(d_{2}\right)^{-1}\left(b_{21} A u_{n}+\left(b_{22}-\lambda_{n}\right) A v_{n}\right)\right), v_{n}\right\rangle \tag{6}\\
& \leqslant t_{n}\left(d_{2}\right)^{-1}\left(b_{21}\left\langle A u_{n}, v_{n}\right\rangle+\left(b_{22}-\lambda_{n}\right)\left\langle A v_{n}, v_{n}\right\rangle\right)
\end{align*}
$$

using $0 \in K_{v_{n}}$ in the well-known property of the projection $P_{v_{n}}$

$$
\left\langle P_{v_{n}} z_{n}-z_{n}, y-P_{v_{n}} z_{n}\right\rangle \geqslant 0 \quad \forall y \in K_{v_{n}} \forall z_{n} \in \mathbb{V}
$$

where we take $z_{n}=\left(d_{2}\right)^{-1}\left(b_{21} A u_{n}+\left(b_{22}-\lambda_{n}\right) A v_{n}\right)$ and $v_{n}=t_{n} P_{v_{n}} z_{n}$ from (5). From the inequality (6) it is easy to show that

$$
\left\langle v_{n}, v_{n}\right\rangle+t_{n}\left(d_{2}\right)^{-1}\left(\lambda_{n}-b_{22}\right)\left\langle A v_{n}, v_{n}\right\rangle \leqslant t_{n}\left(d_{2}\right)^{-1} b_{21}\left\langle A u_{n}, v_{n}\right\rangle \rightarrow 0
$$

because $A u_{n} \rightarrow 0$. Therefore $v_{n} \rightarrow v=0$. Now multiplying (4) by u_{n} we obtain

$$
d_{1}\left\langle u_{n}, u_{n}\right\rangle+\lambda_{n}\left\langle A u_{n}, u_{n}\right\rangle=t_{n}\left(b_{11}\left\langle A u_{n}, u_{n}\right\rangle+b_{12}\left\langle A v_{n}, u_{n}\right\rangle\right) \rightarrow 0
$$

and therefore $u_{n} \rightarrow 0$. Hence $U_{n} \rightarrow 0$ and a contradiction again follows.

Lemma 4. Let $d^{0}=\left[d_{1}^{0}, d_{2}^{0}\right] \in C$ and let the condition (v) be satisfied. Then there are $\varepsilon>0$ and a neighbourhood $\mathcal{U}\left(d^{0}\right)$ of d^{0} such that $E_{I_{d}}(\lambda)=\{[0,0]\}$ (then also $\lambda \notin \sigma_{I_{d}}$) for any $d \in \mathcal{U}\left(d^{0}\right) \cap D_{S}$ and $\lambda \in[0, \varepsilon)$.

Proof (we follow the ideas employed in [6] in a more general way). Let $d^{n}=$ $\left[d_{1}^{n}, d_{2}^{n}\right] \in D_{S}, U_{n}=\left[u_{n}, v_{n}\right] \in \mathbb{H} \times \mathbb{H}$ and $\lambda_{n} \geqslant 0$ be such that $d^{n} \rightarrow d^{0},\left|U_{n}\right|=1$, $u_{n} \rightharpoonup u, v_{n} \rightharpoonup v$ in $\mathbb{H}, \lambda_{n} \rightarrow 0$ and

$$
\begin{align*}
d_{1}^{n} u_{n}-b_{11} A u_{n}-b_{12} A v_{n}+\lambda_{n} A u_{n} & =0 \tag{7}\\
d_{2}^{n} v_{n}-P_{d_{2}^{n} v_{n}}\left(b_{21} A u_{n}+b_{22} A v_{n}-\lambda_{n} A v_{n}\right) & =0 \tag{8}
\end{align*}
$$

According to Lemma 1 we have $u_{n} \rightarrow u, v_{n} \rightarrow v$ in \mathbb{H} and $U=[u, v] \in E_{I_{d^{0}}}(0)$. By Lemma 2 then $U \in E_{d^{0}}$ and therefore

$$
\begin{align*}
& d_{1}^{0} u-b_{11} A u-b_{12} A v=0 \tag{9}\\
& d_{2}^{0} v-b_{21} A u-b_{22} A v=0 \tag{10}
\end{align*}
$$

First, let d^{0} be not a point of intersection of two different hyperbolas: $d^{0} \in C_{j}$, $d^{0} \notin C_{j-1}, d^{0} \notin C_{j+k}$ where k is the multiplicity of the eigenvalue κ_{j} (see Theorem 0). According to Theorem 0 there are also \bar{d}^{n}, \bar{U}_{n} such that

$$
\begin{equation*}
\bar{d}^{n}=\left[\bar{d}_{1}^{n}, d_{2}^{n}\right] \in C_{j}, \bar{U}_{n}=\left[\bar{u}_{n}, v\right] \in E_{\bar{d}^{n}}, \bar{d}_{1}^{n}<d_{1}^{n}, \bar{d}^{n} \rightarrow d^{0}, \bar{U}_{n} \rightarrow U \text { in } \mathbb{H} \tag{11}
\end{equation*}
$$

(see Fig. 1). Indeed, $u=\sum_{i=j}^{j+k-1} c_{i} e_{i}, \quad v=\sum_{i=j}^{j+k-1} c_{i} \alpha_{i}\left(d^{0}\right) e_{i}$ (see Theorem 0). The general solution $\bar{U}=[\bar{u}, \bar{v}] \in E_{d}$ is for any $d \in C_{j}$ also in the form $\bar{u}=\sum_{i=j}^{j+k-1} \bar{c}_{i} e_{i}, \bar{v}=$ $\sum_{i=j}^{j+k-1} \bar{c}_{i} \alpha_{i}(d) e_{i}$ with some constants \bar{c}_{i} and we can choose \bar{c}_{i} so that $\bar{c}_{i} \alpha_{i}(d)=c_{i} \alpha_{i}\left(d^{0}\right)$ and thus $\bar{v}=v$. Let us note that this fact also implies that if the condition (v) is satisfied for some $d \in C_{j}$ which is not a point of intersection of two different hyperbolas then it holds on the whole C_{j}.

Since $\bar{U}_{n}=\left[\bar{u}_{n}, v\right] \in E_{\bar{d}^{n}}$ then

$$
\begin{align*}
\bar{d}_{1}^{n} \bar{u}_{n}-b_{11} A \bar{u}_{n}-b_{12} A v & =0 \tag{12}\\
d_{2}^{n} v-b_{21} A \bar{u}_{n}-b_{22} A v & =0 \tag{13}
\end{align*}
$$

Multiplying (7) and (12) by \bar{u}_{n} and u_{n} simultaneously we obtain after subtracting the resulting equations and taking into account the symmetry of the operator A the equation

$$
\begin{equation*}
\left(\bar{d}_{1}^{n}-d_{1}^{n}\right)\left\langle u_{n}, \bar{u}_{n}\right\rangle=\lambda_{n}\left\langle A u_{n}, \bar{u}_{n}\right\rangle-b_{12}\left(\left\langle A v_{n}, \bar{u}_{n}\right\rangle-\left\langle A v, u_{n}\right\rangle\right) . \tag{14}
\end{equation*}
$$

Multiplying (8) and (13) by v and v_{n} we similarly obtain using formula (14) that

$$
\begin{gather*}
\left\langle P_{d_{2}^{n} v_{n}}\left(b_{21} A u_{n}+b_{22} A v_{n}-\lambda_{n} A v_{n}\right)-\left(b_{21} A u_{n}+b_{22} A v_{n}-\lambda_{n} A v_{n}\right), v\right\rangle \tag{15}\\
\quad-\frac{b_{21}}{b_{12}}\left(d_{1}^{n}-\bar{d}_{1}^{n}\right)\left\langle u_{n}, \bar{u}_{n}\right\rangle-\lambda_{n}\left(\frac{b_{21}}{b_{12}}\left\langle A u_{n}, \bar{u}_{n}\right\rangle+\left\langle A v_{n}, v\right\rangle\right)=0 .
\end{gather*}
$$

We can write $v=\left(v+d_{2}^{n} v_{n}\right)-d_{2}^{n} v_{n}$ and we have also $v+d_{2}^{n} v_{n} \in K_{d_{2}^{n} v_{n}}$. Using (8) and the basic facts about projections we conclude that the first term on the left-hand side of (15) is not negative. But the second term is even positive for n sufficiently large according to (SIGN) because $|U|=1$ and $\left\langle u_{n}, \bar{u}_{n}\right\rangle \rightarrow\|u\|^{2}>0$. It remains to prove that the limit of the third term is not negative, either (see also in [5]).

It is sufficient to show that $\frac{b_{21}}{b_{12}}\langle A u, u\rangle+\langle A v, v\rangle$ is negative: For $[u, v] \in E_{d^{0}}$ the equations (9) and (10) hold. Multiplying (9) by u and (10) by v and using the symmetry of A we obtain

$$
\begin{align*}
& b_{12}\langle A u, v\rangle=d_{1}^{0}\|u\|^{2}-b_{11}\langle A u, u\rangle, \tag{16}\\
& b_{21}\langle A u, v\rangle=d_{2}^{0}\|v\|^{2}-b_{22}\langle A v, v\rangle . \tag{17}
\end{align*}
$$

Since the condition (SIGN) holds the equation (17) gives

$$
\begin{equation*}
b_{21}\langle A u, v\rangle>0 . \tag{18}
\end{equation*}
$$

Multiplying (10) by $b_{12} u$ and putting it into (16) we obtain

$$
d_{2}^{0} b_{12}\langle u, v\rangle=b_{12} b_{21}\langle A u, u\rangle+b_{12} b_{22}\langle A u, v\rangle=d_{1}^{0} b_{22}\|u\|^{2}-\left(b_{11} b_{22}-b_{12} b_{21}\right)\langle A u, u\rangle .
$$

From the assumption (SIGN) for $\operatorname{Det}\left(\left\{b_{i j}\right\}_{i, j=1}^{2}\right)$ and for b_{22} we obviously have $b_{12}\langle u, v\rangle<0$ and hence

$$
\begin{equation*}
b_{21}\langle u, v\rangle>0 . \tag{19}
\end{equation*}
$$

Finally, multiplying (9) and (10) by $\frac{v}{b_{12}}$ and $\frac{u}{b_{12}}$ respectively and summing the resulting equations we know according to (18), (19) and (SIGN) that

$$
\begin{array}{r}
\frac{b_{21}}{b_{12}}\langle A u, u\rangle+\langle A v, v\rangle=\left(b_{12}\right)^{-1}\left(\left(d_{1}^{0}+d_{2}^{0}\right)\langle u, v\rangle-\left(b_{11}+b_{22}\right)\langle A u, v\rangle\right) \\
=\left(b_{12} b_{21}\right)^{-1}\left(\left(d_{1}^{0}+d_{2}^{0}\right) b_{21}\langle u, v\rangle-\left(b_{11}+b_{22}\right) b_{21}\langle A u, v\rangle\right)<0
\end{array}
$$

Summing up, we have proved that the left-hand side in the equation (15) is positive for n large enough and this is a contradiction with zero on the right-hand side and the proof is complete in the case of d^{0} being not a point of intersection.

It remains to study the case $d^{0} \in C_{j} \cap C_{j+k}, d^{0} \notin C_{j-1}$. According to Theorem 0 we have $U=\bar{U}+\tilde{U}, \bar{U}=[\bar{u}, \bar{v}], \tilde{U}=[\tilde{u}, \tilde{v}], \bar{u}=\sum_{i=j}^{j+k-1} \bar{c}_{i} e_{i}, \bar{v}=\sum_{i=j}^{j+k-1} \bar{c}_{i} \alpha_{i}\left(d^{0}\right) e_{i}$, $\tilde{u}=\sum_{i=j+k}^{j+k+m-1} \tilde{c}_{i} e_{i}, \tilde{v}=\sum_{i=j+k}^{j+k+m-1} \tilde{c}_{i} \alpha_{i}\left(d^{0}\right) e_{i}$ and there are $\tilde{d}^{n}, \tilde{U}_{n}$ and \bar{d}^{n}, \bar{U}_{n} such that

$$
\begin{align*}
& \bar{d}^{n}=\left[\bar{d}_{1}^{n}, d_{2}^{n}\right] \in C_{j}, \quad \tilde{d}^{n}=\left[\tilde{d}_{1}^{n}, d_{2}^{n}\right] \in C_{j+k}, \tag{20}\\
& \bar{d}_{1}^{n}<d_{1}^{n}, \quad \tilde{d}_{1}^{n}<d_{1}^{n}, \quad \bar{d}^{n} \rightarrow d^{0}, \quad \tilde{d}^{n} \rightarrow d^{0}, \\
& \bar{U}_{n}=\left[\bar{u}_{n}, \bar{v}\right] \in E_{\bar{d}^{n}}, \quad \tilde{U}_{n}=\left[\tilde{u}_{n}, \tilde{v}\right] \in E_{\tilde{d}^{n}}, \quad \bar{U}_{n}+\tilde{U}_{n} \rightarrow U \text { in } \mathbb{H}
\end{align*}
$$

again (we also can fix the component v on each hyperbola as above so that $\bar{v}+\tilde{v}=v$). Since A is a linear operator, $\bar{U}_{n}=\left[\bar{u}_{n}, \bar{v}\right] \in E_{\bar{d}^{n}}$ and $\tilde{U}_{n}=\left[\tilde{u}_{n}, \tilde{v}\right] \in E_{\tilde{d}^{n}}$ we obtain

$$
\begin{align*}
\bar{d}_{1}^{n} \bar{u}_{n}+\tilde{d}_{1}^{n} \tilde{u}_{n}-b_{11} A\left(\bar{u}_{n}+\tilde{u}_{n}\right)-b_{12} A v & =0, \tag{21}\\
d_{2}^{n} v-b_{21} A\left(\bar{u}_{n}+\tilde{u}_{n}\right)-b_{22} A v & =0 . \tag{22}
\end{align*}
$$

Analogously as above, only replacing equations (12) and (13) by (21) and (22), we obtain

$$
\begin{gather*}
\left\langle P_{d_{2}^{n} v_{n}}\left(b_{21} A u_{n}+b_{22} A v_{n}-\lambda_{n} A v_{n}\right)-\left(b_{21} A u_{n}+b_{22} A v_{n}-\lambda_{n} A v_{n}\right), v\right\rangle \tag{23}\\
-\frac{b_{21}}{b_{12}}\left(d_{1}^{n}-\bar{d}_{1}^{n}\right)\left\langle u_{n}, \bar{u}_{n}\right\rangle-\frac{b_{21}}{b_{12}}\left(d_{1}^{n}-\tilde{d}_{1}^{n}\right)\left\langle u_{n}, \tilde{u}_{n}\right\rangle \\
\quad-\lambda_{n}\left(\frac{b_{21}}{b_{12}}\left\langle A u_{n}, \bar{u}_{n}+\tilde{u}_{n}\right\rangle+\left\langle A v_{n}, v\right\rangle\right)=0 .
\end{gather*}
$$

The first term is the same as in (15) so it is not negative. Neither is the fourth term negative because the limit is the same as the limit of the corresponding term in (15). Since (SIGN) is assumed it remains to prove that $\left\langle u_{n}, \bar{u}_{n}\right\rangle>0$ and $\left\langle u_{n}, \tilde{u}_{n}\right\rangle>0$ for n large enough. Theorem 0 and (20) imply similarly as in [3] that $\left\langle u_{n}, \bar{u}_{n}\right\rangle \rightarrow\langle u, \bar{u}\rangle$ and $\left\langle u_{n}, \tilde{u}_{n}\right\rangle \rightarrow\langle u, \tilde{u}\rangle$ where

$$
\bar{u}=\sum_{i=j}^{j+k-1} \bar{c}_{i} e_{i}, \quad \tilde{u}=\sum_{i=j+k}^{j+k+m-1} \tilde{c}_{i} e_{i} \quad \text { and } \quad u=\sum_{i=j}^{j+k-1} \bar{c}_{i} e_{i}+\sum_{i=j+k}^{j+k+m-1} \tilde{c}_{i} e_{i} .
$$

From the orthonormality of $\left\{e_{j}\right\}_{j=1, \ldots}$ we easily obtain

$$
\langle u, \bar{u}\rangle=\sum_{i=j}^{j+k-1} \bar{c}_{i}^{2}\left\langle e_{i}, e_{i}\right\rangle=\sum_{i=j}^{j+k-1} \bar{c}_{i}^{2}>0
$$

and

$$
\langle u, \tilde{u}\rangle=\sum_{i=j+k}^{j+k+m-1} \tilde{c}_{i}^{2}\left\langle e_{i}, e_{i}\right\rangle=\sum_{i=j+k}^{j+k+m-1} \tilde{c}_{i}^{2}>0 .
$$

In conclusion, the left-hand side of (23) is positive again and the contradiction follows also in the second case.

Lemma 5 (see [6], Lemma 2.4, for related results also [16]). Let $d^{0}=\left[d_{1}^{0}, d_{2}^{0}\right] \in C$ be such that the condition (v) is satisfied. Then there is a neighbourhood $\mathcal{W}\left(d^{0}\right)$ of d^{0} such that $\operatorname{deg}\left(T(d, 0,0,),. B_{1}(0), 0\right)=0$ for any $d \in \mathcal{W}\left(d^{0}\right) \cap D_{S}$.

Lemma 6. Let $d^{0}=\left[d_{1}^{0}, d_{2}^{0}\right] \in C$ and let the condition (v) be satisfied. Then there is $\varepsilon>0$ such that

$$
\operatorname{deg}\left(T(d, \lambda, 0, .), B_{1}(0), 0\right)=0 \quad \forall d \in \mathcal{W}\left(d^{0}\right) \cap D_{S} \quad \forall \lambda \in[0, \varepsilon)
$$

where $\mathcal{W}\left(d^{0}\right)$ is the neighbourhood from Lemma 5.
Proof. The assertion follows immediately from Lemma 5 by the homotopy invariance of the Leray-Schauder degree with the homotopy

$$
H(t, U)=\left[\begin{array}{c}
u-\left(d_{1}\right)^{-1}\left(b_{11} A u+b_{12} A v-t \lambda A u\right) \\
v-P_{v}\left(\left(d_{2}\right)^{-1}\left(b_{21} A u+b_{22} A v-t \lambda A v\right)\right)
\end{array}\right] .
$$

We can take ε from Lemma 4. For any $d \in \mathcal{W}\left(d^{0}\right), \lambda \in[0, \varepsilon), r>0$ and $t \in[0,1]$ we know that there is no $U \in \partial B_{1}(0)$ such that $H(t, U)=0$ because of $E_{I_{d}}(\lambda)=\{[0,0]\}$ (see Lemma 4 again).

Proof of Theorem 1. Let $\mathcal{W}\left(d^{0}\right)$ be from Lemma $5, d \in \mathcal{W}\left(d^{0}\right) \cap D_{S}, \lambda_{1} \in(0, \varepsilon)$, $\lambda_{2} \geqslant k$. Let there be no solution U of the problem (EP_{W}) such that $U \neq[0,0]$ and $\|U\|=1$ for any $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$. Then due to the homotopy invariance of the LeraySchauder degree, Lemma 3 and Lemma 6 we have

$$
0=\operatorname{deg}\left(T\left(d, \lambda_{1}, 0, .\right), B_{1}(0), 0\right)=\operatorname{deg}\left(T\left(d, \lambda_{2}, 0, .\right), B_{1}(0), 0\right)=1
$$

because we can take the homotopy

$$
H(t, U)=\left[\begin{array}{c}
u-\left(d_{1}\right)^{-1}\left(b_{11} A u+b_{12} A v-\left(t \lambda_{1}+(1-t) \lambda_{2}\right) A u\right) \\
v-P_{v}\left(\left(d_{2}\right)^{-1}\left(b_{21} A u+b_{22} A v-\left(t \lambda_{1}+(1-t) \lambda_{2}\right) A v\right)\right)
\end{array}\right]
$$

arriving at a contradiction. In conclusion, for any $d \in \mathcal{W}\left(d^{0}\right) \cap D_{S}$ there is $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$ such that the problem $\left(\mathrm{EP}_{\mathrm{W}}\right)$ has a nontrivial solution. It means that $\lambda \in \sigma_{I_{d}}$ is a positive eigenvalue.

Proof of Corollary 1. Let $\left[u_{0}, v_{0}\right]$ be a nontrivial solution of the problem $\left(E P_{W}\right)$ for some $\lambda>0$ (see Theorem 1). Then $U(t)=\left[e^{\lambda t} \tau u_{0}, e^{\lambda t} \tau v_{0}\right]$ is a solution of the evolution problem $\left(\left(\mathrm{RD}_{\mathrm{L}}\right),(\mathrm{UC})\right)$ for any $\tau>0$. Now, for any $\delta>0$ there is $\tau>0$ sufficiently small such that for $t_{0}=0$ we have $\|U(0)\|<\delta$ and simultaneously $\lim _{t \rightarrow \infty}\|U(t)\|=+\infty$. Hence, by the standard definition (cf., e.g., [3]) the solution $\bar{U}=[0,0]$ is unstable.

Proof of Corollary 2. Let $\omega>0$ be fixed small enough. It is clear that there is $\varrho>0$ small enough such that $E_{I_{d(s)}}(\lambda)=\{[0,0]\}$ also holds for all $\lambda \in[0, \varrho)$ and $s \in[0,1-\omega]$. The reason is that in the opposite case we find $\lambda_{n} \rightarrow 0, s_{n} \in[0,1-\omega]$ and $U_{n}=\left[u_{n}, v_{n}\right] \in \mathbb{H} \times \mathbb{H}$ such that $\left\|U_{n}\right\|=1$ and $U_{n} \in E_{I_{d\left(s_{n}\right)}}\left(\lambda_{n}\right)$. We extract a convergent subsequence $s_{n} \rightarrow s \in[0,1-\omega]$ and obtain by the limit procedure based on Lemma 1 (as in the proof of Lemma 4) also $U_{n} \rightarrow U,\|U\|=1$ and $U \in E_{I_{d(s)}}(0)$. So, we have a contradiction with the assumption.

Now, by the standard homotopy argument as in the proof of Lemma 6 we obtain

$$
\operatorname{deg}\left(T(d(s), \lambda, 0, .), B_{1}(0), 0\right)=0 \quad \forall s \in[0,1-\omega] \quad \forall \lambda \in[0, \varrho)
$$

Finally, for fixed $s \in[0,1)$, if there is no positive eigenvalue $\lambda \in \sigma_{I_{d(s)}}$ then as in the proof of Theorem 1 according to Lemma 3 by the homotopy argument again we obtain

$$
0=\operatorname{deg}\left(T\left(d(s), \lambda_{1}, 0, .\right), B_{1}(0), 0\right)=\operatorname{deg}\left(T\left(d(s), \lambda_{2}, 0, .\right), B_{1}(0), 0\right)=1
$$

for some $\lambda_{1} \in(0, \varrho)$ and $\lambda_{2} \geqslant k$, which yields a contradiction. Thus, there is $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$ a positive eigenvalue of the problem $\left(\left(\mathrm{RD}_{\mathrm{L}}\right),(\mathrm{UC})\right)$ with the parameter $d(s)$.

Acknowledgement. I would like to thank Dr. Milan Kučera for inspiring and fruitful discussions about the subject.

References

[1] A. Gierer, H. Meinhardt: Biological pattern formation involving lateral inhibition. In: Some Mathematical Questions in Biology. VI. Lectures on Mathematics in the Life Sciences, vol 7. 1974, pp. 163-183.
[2] P. Quittner: On the principle of linearized stability for variational inequalities. Math. Ann. 283 (1989), 257-270.
[3] P. Drábek, M. Kučera: Reaction-diffusion systems: Destabilizing effect of unilateral conditions. Nonlinear Analysis, Theory, Methods and Applications 12 (1988), 1172-1192.
[4] M. Kučera, J. Neustupa: Destabilizing effect of unilateral conditions in reaction-diffusion systems. Comment. Math. Univ. Carolinae 27 (1986), 171-187.
[5] P. Quittner: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. Reine Angew. Math. 380 (1987), 1-13.
[6] M. Bosák, M. Kučera: Bifurcation for quasivariational inequalities of reaction-diffusion type. Stability and Appl. Anal. of Cont. Media 3 (1993), 111-127.
[7] M. Kučera: Reaction-diffusion systems: Bifurcation and stabilizing effect of conditions given by inclusions. Nonlinear Analysis, Theory, Methods and Applications 27 (1996), 249-260.
[8] M. Kučera: Bifurcation of solutions to reaction-diffusion systems with unilateral conditions. In: Navier-Stokes Equations and Related Nonlinear Problems (A. Sequeira, ed.). Plenum Press, New York, 1995, pp. 307-322.
[9] J. Eisner, M. Kučera: Spatial patterns for reaction-diffusion systems with conditions described by inclusions. Appl. Math. 42 (1997), 421-449.
[10] J. Eisner, M. Kučera: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions. To appear in Fields Inst. Comm. Operator Theory and Its Applications (2000).
[11] J. L. Lions, E. Magenes: Problèmes aux Limites non Homogènes et Applications. Dunod, Paris, 1970.
[12] G. Duvaut, J. L. Lions: Les Inéquations en Mécanique et en Physique. Dunod, Paris, 1972.
[13] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory. In: Contributions to Nonlinear Functional Analysis. Academic Press, New York, 1971, pp. 237-424.
[14] M. Mimura, Y. Nishiura and M. Yamaguti: Some diffusive prey and predator systems and their bifurcation problems. Ann. N. Y. Acad. Sci. 316 (1979), 490-521.
[15] Y. Nishiura: Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Analysis 13 (1982), 555-593.
[16] P. Quittner: Solvability and multiplicity results for variational inequalities. Comment. Math. Univ. Carolinae 30 (1989), 281-302.

Author's address: Vitězslav Babický, Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18000 Prague 8, Czech Republic, email: babicky@karlin.mff.cuni.cz.

[^0]: * This research was supported by the grant No. 201/95/0630 of the Grant Agency of the Czech Republic.

