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Abstract. The aim of the paper is to get an estimation of the error of the general
interpolation rule for functions which are real valued on the interval [−a, a], a ∈ (0, 1), have a
holomorphic extension on the unit circle and are quadratic integrable on the boundary of it.
The obtained estimate does not depend on the derivatives of the function to be interpolated.
The optimal interpolation formula with mutually different nodes is constructed and an error
estimate as well as the rate of convergence are obtained. The general extremal problem
with free weights and knots is solved.
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1. The space H2(K1)

Notation. By the symbol H(K1) we denote the space of all functions which are
holomorphic in the open unit circle K1. By M2 we denote

(1) M2(f ; r) =

{∫ 2�

0
|f(reiϕ)|2 dϕ

} 1
2

, r ∈ [0, 1).

It is known (see Rudin [10]) that the functionM2(f ; r) is nondecreasing as a function

of the variable r ∈ [0, 1), thus we may define

(2) ‖f‖2 = lim
r→1−

M2(f ; r).

*This work was supported by the Grant MSM 113200007.
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Definition 1. By H2(K1) we define the space of all functions from the space
H(K1) for which the inequality ‖f‖2 < +∞ holds.

������ 1. (Properties of the functions from the space H2(K1).) The main
property of the space H2(K1) is that it can be considered to be a Hilbert space

which may be identified with a certain subspace of the space L2(∂K1). The norm of
a function g ∈ L2(∂K1) is defined as

‖g‖2 =
(∫ 2�

0
|g(eiϕ)|2 dϕ

) 1
2

.

Fourier’s coefficients of the function g ∈ L2(∂K1) are defined by the formulas

ĝ(n) =
∫ 2�

0
g(eiϕ)e−inϕ dϕ, n = 0,±1,±2, . . . .

A function f ∈ H(K1) of the form

f(z) =
∞∑

n=0

anz
n

is an element of H2(K1) iff
∞∑

n=0
|an|2 < +∞; in this case

‖f‖2 =
{
2�

∞∑

n=0

|an|2
} 1
2

.

If f ∈ H2(K1) then f has radial limits (r → −1) f∗(eiϕ) almost everywhere in ∂K1,
f∗ ∈ L2(∂K1), the n-th Fourier’s coefficient of the function f∗ is

√
2� an for n � 0

and it is equal to zero for n < 0. We have

lim
r→1−

∫ 2�

0
|f∗(eiϕ)− f(reiϕ)|2 dϕ = 0.

For z = reiϕ the equality

f(z) =
1
2�i

∫

Γ

f∗(ζ)
ζ − z

dζ

holds. (Γ is the positively oriented unit circle.) The mapping f → f∗ is an isometric

one of the space H2(K1) onto the subspace of the space L2(∂K1) formed by all
elements g ∈ L2(∂K1) for which ĝ(n) = 0 for n < 0 holds.
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Definition 2. We say that a function K(z, u) is the reproduction kernel of the
space H2(K1) if for every function f ∈ H2(K1) the identity

f(z) = (f∗(. ),K(z, . )), z ∈ K1

holds.

Lemma. The function

(3) K(z, u) =
1

2�(1− zu)

is the reproduction kernel of the space H2(K1).

�����. For every f ∈ H2(K1) and z ∈ K1 we may write

f(z) =
1
2�i

∫

Γ

f∗(ζ)
ζ − z

dζ =
1
2�

∫ 2�

0

f∗(eiϕ)
1− ze−iϕ

dϕ

=
∫ 2�

0
f∗(eiϕ)K(z, eiϕ) dϕ = (f∗(. ),K(z, . )).

�

2. Linear interpolants on H2(K1)

We define a linear interpolating operator on H2(K1) in this section and give the
form of the norm of the error functional for the general interpolation formula on the

interval [−a,+a]. We will also study the problem of the optimal coefficients of the
interpolating operator under the condition that the nodes of the given interpolation
are fixed. We will establish a point estimate of the error of interpolation and obtain

also the norm of the truncation error for non-optimal interpolation. In what follows,
we denote by a a positive constant from the interval (0, 1).

Definition 3. We call Ln an interpolating operator on H2(K1), if Ln is an
additive, homogeneous operator of the form

Ln(f ;x) =
n∑

k=1

A
(n)
k (x)f(x

(n)
k )

where

(4)
n∑

k=1

|A(n)k (x)| < +∞ ∀x ∈ [−a, a];
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A
(n)
k (x), k = 1, 2, . . . , n are continuous functions of x ∈ [−a,+a], a ∈ (0, 1) and

x
(n)
k ∈ [−a,+a], x(n)i �= x

(n)
j , i �= j, i, j = 1, 2, . . . , n. Let a function f be real-

valued on [−a,+a]. We write I(f ;x) = f(x) for every x ∈ [−a,+a] and define the
truncation-error operator by

(5) Rn(f ;x) = I(f ;x)− Ln(f ;x).

Theorem 1. Let a point x ∈ [−a,+a] be fixed, a ∈ (0, 1). Then Rn(f ;x) is
a linear, continuous functional on the Hilbert space H2(K1) which can be written in

the form

(6) Rn(f ;x) =

(
f, gx −

n∑

k=1

A
(n)
k (x) gx

(n)
k

)
,

where

(7) gx = gx(ζ) = K(x, ζ), ζ ∈ K1.

The norm on Rn can be written as

(8) ‖Rn‖ =
∥∥∥∥gx −

n∑

k=1

A
(n)
k (x)gx

(n)
k

∥∥∥∥.

�����. In view of (4) we have according to Lemma that

Ln(f ;x) =
n∑

k=1

A
(n)
k (x)f(x

(n)
k ) =

∫ 2�

0
f(eiϕ)

n∑

k=1

A
(n)
k (x)K(x

(n)
k , e−iϕ) dϕ

=

(
f,

n∑

k=1

A
(n)
k (x)K(x

(n)
k , e−iϕ)

)
=

(
f,

n∑

k=1

A
(n)
k (x)gx

(n)
k

)
.

Further,

I(f ;x) = f(x) =
1
2�

∫ 2�

0
f(eiϕ)

1
1− xe−iϕ

dϕ

= (f,K(x, e−iϕ)) = (f, gx).

Finally,

Rn(f ;x) =

(
f, gx −

n∑

k=1

A
(n)
k (x)gx

(n)
k

)
,

which proves (6).

The function h(ξ) = gx(ξ)−
n∑

k=1
A
(n)
k (x) gx

(n)
k

(ξ) is an element of H2(K1), because

x ∈ [−a,+a], x(n)k ∈ [−a,+a], k = 1, 2, . . . , n, a ∈ (0, 1). According to the Riesz
theorem ‖Rn‖ = ‖h‖ and the norm ‖Rn‖ is a function of x ∈ [−a,+a]. �
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Definition 4. The interpolating operator (opt)Lx
n, where x ∈ [−a,+a] is fixed,

a ∈ (0, 1),
(opt)Ln(f ;x) =

n∑

k=1

(opt)A
(n)
k (x)f(x

(n)
k )

is said to be optimal if

(9)

∥∥∥∥gx −
n∑

k=1

(opt)A
(n)
k (x)gx

(n)
k

∥∥∥∥ = inf
A
(n)
k (x)∈C, k=1,2,...,n

∥∥∥∥gx −
n∑

k=1

A
(n)
k (x)gx

(n)
k

∥∥∥∥,

where C is the set of all complex numbers. By the symbol (opt)Rx
n we denote the

error of the operator (opt)Lx
n.

������ 2. It follows immediately from Theorem 1 that the error functional

Rn(f ;x) can be estimated as follows:

|Rn(f ;x)| � ‖Rn‖ ‖f‖.

For fixed x ∈ [−a,+a] the norm ‖Rn‖ can be considered a quadratic function of n
variables A(n)1 , A

(n)
2 , . . . , A

(n)
n . The next theorem implies that there exist uniquely

determined numbers (opt)A(n)i , i = 1, 2, . . . , n realizing the minimum of the norm

‖Rn‖ and thus the symbols (opt)A(n)i can be viewed as functions of x ∈ [−a,+a].

Theorem 2. Let x ∈ [−a,+a], a ∈ (0, 1), be fixed. The optimal coefficients
(opt)A

(n)
k (x), k = 1, 2, . . . , n, satisfy a Gram system of linear algebraic equations

(10)
n∑

l=1

(g
x
(n)
l

, g
x
(n)
k

)(opt)A(n)k (x) = (gx
(n)
l

, g
x
(n)
k

), k = 1, 2, . . . , n.

This yields

(11) (opt)A
(n)
k (x) =

n∏

i=1

1− x
(n)
i x

(n)
k

1− xx
(n)
i

n∏

i=1, i�=k

x− x
(n)
i

x
(n)
k − x

(n)
i

or

(11′) (opt)A
(n)
k (x) =

(x(n)k )
nω

(
1

x
(n)
k

)

xnωn( 1x )

ωn(x)

(x− x
(n)
k )ω

′
n(x

(n)
k )

,

where

ωn(x) =
n∏

i=1

(x− x
(n)
i ).
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Moreover

(12) (opt)A
(n)
k (x

(n)
j ) = δk,j , k, j = 1, 2, . . . , n.

�����. The problem (9) can be solved by using the Gram matrix (see [2]) of

elements g
x
(n)
k

, k = 1, 2, . . . , n. The functions

(13) g
x
(n)
k

(y) =
1

2�(1− x
(n)
k y)

, k = 1, 2, . . . , n,

x
(n)
i �= x(n)j , i �= j, i, j = 1, 2, . . . , n, are linearly independent on the interval [−a,+a],
a ∈ (0, 1). They form a Chebyshev system in the interval [−a,+a]. This fact can be
seen from the identity

1
2�

n∑

k=1

αk
1

1− x
(n)
k y

= 0,
n∑

k=1

|αk| > 0,

from which it follows that

n∑

k=1

αk

n∏

j=1, j �=k

(1− x
(n)
k y) = 0.

The left-hand side of this relation is a polynomial of degree at most n−1 with at most
n − 1 knots on the interval [−a,+a]. These considerations imply that (opt)A(n)k (x),

k = 1, 2, . . . , n (x is fixed, x ∈ [−a,+a]), satisfy the following normal system of linear
algebraic equations:

n∑

k=1

(g
x
(n)
l

, g
x
(n)
k

)(opt)A(n)l (x) = (gx, gx
(n)
k

), k = 1, 2, . . . , n.

Hence, (10) is proved.

By (7) and (13) (x, x(n)k , k = 1, 2, . . . , n are real),

(gx, gx
(n)
k

) =
(
K(x, . ),K(x(n)k , . )

)
= K(x, x(n)k ) =

1

2�(1− xx
(n)
k )

.

Analogously we have

(g
x
(n)
l

, g
x
(n)
k

) =
(
K(x(n)l , . ),K(x(n)k , . )

)
= K(x(n)l , x

(n)
k ) =

1

2�(1− x
(n)
l x

(n)
k )

for l, k = 1, 2, . . . , n.
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The system (10) can be written in the form

(14)
n∑

l=1

(opt)A
(n)
l (x)

1

1 − x
(n)
l x

(n)
k

=
1

1− xx
(n)
k

, k = 1, 2, . . . , n.

By Dn we denote the determinant of the system (14). Then according to [3], we may
write

(15) Dn =

n∏
i>k=1

(x(n)i − x
(n)
k )

2

n∏
i=1
(1− (x(n)i )

2)
n∏

i>k=1
(1− x

(n)
i x

(n)
k )

2
> 0,

where x(n)i �= x(n)j , i �= j, i, j = 1, 2, . . . , n, x
(n)
i ∈ [−a,+a], i = 1, 2, . . . , n, a ∈ (0, 1).

By Cramer’s rule we have

(16) (opt)A
(n)
k (x) =

D
(k)
n

Dn
,

where D(k)n results by replacing the k-th column of the determinant Dn by the right-
hand side of the system of equation (14). For further considerations note that

(17) (g
x
(n)
i

, g
y
(n)
j

) =
1

2�(1 − x
(n)
i y

(n)
j )

, i, j = 1, 2, . . . , n.

Then according to [4] we may write

det{(g
x
(n)
i

, g
y
(n)
j

)}n
i,j=1 =

1

(2�)nx(n)1 x
(n)
2 . . . x

(n)
n

(18)

×
n∏

i>j=1

(
1

x
(n)
i

− 1

x
(n)
j

)
(y(n)j − y

(n)
i )

×
[ n∏

i,j=1

(
1

x
(n)
i

− y
(n)
j

)]−1
.

Setting x(n)l instead of y(n)l , l = 1, 2, . . . , n, we get

Dn = (2�)
n det{(g

x
(n)
i
, g

x
(n)
j
)}n

i,j=1(19)

=
1

x
(n)
1 x

(n)
2 . . . x

(n)
n

n∏

i>j=1

(
1

x
(n)
i

− 1

x
(n)
j

)
(x(n)j − x

(n)
i )

×
[ n∏

i,j=1

(
1

x
(n)
i

− x
(n)
j

)]−1
.
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We substitute the k-th column of the determinant Dn by the right-hand side of the

system. Using (18), where we put y(n)j = x(n)j for j = 1, 2, . . . , k− 1, k+1, . . . , n and
y
(n)
k = x for k = 1, 2, . . . , n we obtain

D(k)n (x) =
1

x
(n)
1 x

(n)
2 . . . x

(n)
n

n∏

i>j=1

(
1

x
(n)
i

− 1

x
(n)
j

)
(20)

×
n∏

i>j=1, i,j �=k

(x(n)j − x
(n)
i )

n∏

i=k+1

(x − x
(n)
i )

×
k−1∏

j=1

(x(n)j − x)

[ n∏

i,j=1, j �=k

(
1

x
(n)
i

− x
(n)
j

)]−1[ n∏

i=1

(
1

x
(n)
i

− x

)]−1
.

From this, (20) and (19) we get the identity

D
(k)
n

Dn
=

n∏
i>j=1

( 1
x
(n)
i

− 1
x
(n)
j

)
n∏

i>j=1, i,j �=k

(x(n)j − x
(n)
i )

n∏
i=k+1

(x − x
(n)
i )

n∏
i,j=1, j �=k

( 1
x
(n)
i

− x
(n)
j )

n∏
i=1
( 1

x
(n)
i

− x)
n∏

i>j=1
( 1

x
(n)
i

− 1
x
(n)
j

)

×

k−1∏
j=1
(x(n)j − x)

n∏
i,j=1
( 1

x
(n)
i

− x
(n)
j )

n∏
i>j=1

(x(n)j − x
(n)
i )

=

n∏
i=1
( 1

x
(n)
i

− x
(n)
k )

n∏
i=k+1

(x− x
(n)
i )

(x(n)k − x
(n)
k+1)(x

(n)
k − x

(n)
k+2) . . . (x

(n)
k − x

(n)
n )

×

k−1∏
j=1
(x(n)j − x)

(x(n)1 − x
(n)
k )(x

(n)
2 − x

(n)
k ) . . . (x

(n)
k−1 − x

(n)
k )

n∏
i=1

1−xx
(n)
i

x
(n)
i

=

n∏
i=1
(1 − x

(n)
i x

(n)
k )

n∏
i=k+1

(x− x
(n)
i )

(x(n)k − x
(n)
k+1)(x

(n)
k − x

(n)
k+2) . . . (x

(n)
k − x

(n)
n )

×

k−1∏
j=1
(x(n)j − x)

(x(n)1 − x
(n)
k )(x

(n)
2 − x

(n)
k ) . . . (x

(n)
k−1 − x

(n)
k )

n∏
i=1
(1− xx

(n)
i )

= (−1)n−k(−1)k−1
n∏

i=1

1− x
(n)
i x

(n)
k

1− xx
(n)
i

n∏

i=1, i�=k

1

x
(n)
i − x

(n)
k

n∏

l=1, l �=k

(x− x
(n)
l )
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=
n∏

i=1

1− x
(n)
i x

(n)
k

1− xx
(n)
i

n∏

i=1, i�=k

x− x
(n)
i

x
(n)
k − x

(n)
i

.

This and (16) immediately imply (11) and (12).

Further,

ω′n(x
(n)
k ) =

n∏

i=1, i�=k

(x(n)k − x
(n)
i ).

From (11) we see that

(opt)A
(n)
k (x) =

(x(n)k )
nωn( 1

x
(n)
k

)

xnωn( 1x )

ωn(x)

(x− x
(n)
k )ω

′
n(x

(n)
k )

,

which is (11′). Note that lim
x→0

xnωn( 1x ) = 1. �

Theorem 3. The following two expressions for the norm ‖(opt)Rn‖ are equivalent:

(21) ‖(opt)Rn‖2 =
1

2�(1− x2)

( n∏

j=1

x
(n)
j − x

1− xx
(n)
j

)2
,

and, if we write ωn(x) =
n∏

j=1
(x− x

(n)
j ),

(21′) ‖(opt)Rn‖2 =
1

2�(1− x2)

(
ωn(x)

xnωn( 1x )

)2
.

�����. It is possible to write the expression ‖(opt)Rn‖2 in the form (cf. [2])

(22) ‖(opt)Rn‖2 =
Dn+1(x)
Dn

,

where Dn+1(x) is the determinant arising from the determinant Dn if we add to Dn

the column (
(gx, gx

(n)
1
), (gx, gx

(n)
2

)
, . . . ,

(
gx, gx

(n)
n
), (gx, gx)

)T

and the row (
(g

x
(n)
1
, gx), (gx

(n)
2
, gx), . . . , (gx

(n)
n
, gx), (gx, gx)

)
.

From the proof of Theorem 2 we have

(g
x
(n)
k

, gx) =
1

2�(1− xx
(n)
k )

, k = 1, 2, . . . , n
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and

(23) (gx, gx) =
1

2�(1− x2)
.

In view of (19), where we put x(n+1)n+1 := x and x
(n+1)
i := x(n)i , i = 1, 2, . . . , n, we have

Dn+1(x) =
1

(2�)n+1x(n+1)1 x
(n+1)
2 . . . x

(n+1)
n x

(n+1)
n+1

(24)

×
n+1∏

i>j=1

(
1

x
(n+1)
i

− 1

x
(n+1)
j

)
(x(n+1)j − x

(n+1)
i )

×
[ n+1∏

i,j=1

(
1

x
(n+1)
i

− x
(n+1)
j

)]−1

=
1

(2�)n+1x(n)1 x
(n)
2 . . . x

(n)
n x

×
n∏

i>j=1

(
1

x
(n)
i

− 1

x
(n)
j

)
(x(n)j − x

(n)
i )

×
[ n∏

i,j=1

(
1

x
(n)
i

− x
(n)
j

)]−1 n∏

j=1

(
1
x
− 1

x
(n)
j

)
(x(n)j − x)

×
[ n∏

j=1

(
1
x
− x

(n)
j

) n∏

i=1

(
1

x
(n)
i

− x

)(
1
x
− x

)]−1
.

From this we get for ‖(opt)Rx
n‖2 according to (22), (24) and (19)

‖(opt)Rx
n‖2 =

n∏
i>j=1

( 1
x
(n)
i

− 1
x
(n)
j

)(x(n)j − x
(n)
i )

2�x
n∏

i,j=1
( 1

x
(n)
i

− x
(n)
j )

n∏
j=1
( 1x − x

(n)
j )

×

n∏
j=1
( 1x − 1

x
(n)
j

)(x(n)j − x)
n∏

i,j=1
( 1

x
(n)
i

− x
(n)
j )

n∏
i=1
( 1

x
(n)
i

− x)( 1x − x)
n∏

i>j=1
( 1

x
(n)
i

− 1
x
(n)
j

)(x(n)j − x
(n)
i )

=

n∏
j=1
( 1x − 1

x
(n)
j

)(x(n)j − x)

2�
n∏

j=1
( 1x − x

(n)
j )

n∏
i=1
( 1

x
(n)
i

− x)( 1x − x)
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=
1

2�(1− x2)

n∏
j=1

(x(n)j −x)(x(n)j −x)

xx
(n)
j

n∏
j=1

1−xx
(n)
j

x

n∏
j=1

1−xx
(n)
j

x

=

n∏
j=1
(x(n)j − x)2

2�(1− x2)
n∏

j=1
(1− xx

(n)
j )

2
=

1
2�(1− x2)

( n∏

j=1

x
(n)
j − x

1− xx
(n)
j

)2
.

Setting ωn(x) =
n∏

i=1
(x − x

(n)
i ) it is possible to write the last expression in the form

of (21′). �

������ 3. Theorem 3 can be also proved in the following way: We calculate

the norm of the representant of the functional (opt)Rx
n (x is fixed, x ∈ [−a,+a],

a ∈ (0, 1)) (cf. (6), (9)):

‖(opt)Rn‖2 =
∥∥∥∥gx −

n∑

k=1

(opt)A
(n)
k (x)gx

(n)
k

∥∥∥∥
2

= ‖gx‖2 − 2
n∑

k=1

(opt)A
(n)
k (x)(gx, gx

(n)
k

)

+
n∑

k=1

n∑

l=1

(opt)A
(n)
k (x)

(opt)A
(n)
l (x)(gx

(n)
l

, g
x
(n)
k

)

= ‖gx‖2 −
n∑

k=1

(opt)A
(n)
k (x)(gx, gx

(n)
k

)

= ‖gx‖2 −
n∑

k=1

(opt)A
(n)
k (x)

1
2�

1

1− xx
(n)
k

.

Here we have used the identity

n∑

k=1

n∑

l=1

(opt)A
(n)
k (x)

(opt)A
(n)
l (x)(gx

(n)
l

, g
x
(n)
k

) =
n∑

k=1

(opt)A
(n)
k (x)(gx, gx

(n)
k

),

which follows from (10) by multiplying the k-th equation by (opt)A(n)k (x) and adding
all equations. When we rewrite the last expression for ‖(opt)Rn‖2 substituting for
(opt)A

(n)
k (x) from (11) and (11

′) we get (21) and (21′), respectively.

Our goal is to prove the following fundamental result.

Theorem 4. Let x be fixed, x ∈ [−a,+a], a ∈ (0, 1). Let Rn be an arbitrary

error functional defined by (5), where x(n)k ∈ [−a,+a], k = 1, 2, . . . , n, x(n)i �= x
(n)
j ,
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i �= j, i, j = 1, 2, . . . , n. Then for every function f ∈ H2(K1), which is real-valued in
interval [−a,+a], the inequality

(25) |Rn(f, x)|2 � ‖Rn‖2‖f‖2

holds, where

(26) ‖f‖2 =
∫ 2�

0
|f(eiϕ)|2 dϕ

and

2�‖Rn‖2 =
1

1− x2
− 2

n∑

k=1

A
(n)
k (x)

1

1 − xx
(n)
k

(27)

+
n∑

k=1

n∑

l=1

A
(n)
k (x)A

(n)
l (x)

1

1 − x
(n)
k x

(n)
l

.

�����. The inequality (25) follows directly from (5) and from the definition of
the space H2(K1). We get the formula (27) in the following way:

Rn(f, x) = f(x)−
n∑

k=1

A
(n)
k (x)f(x

(n)
k )

is for fixed x a functional on H2(K1). According to Lemma we have

f(x) = (f(. ),K(x, . )),

f(x(n)k ) = (f(. ),K(x
(n)
k , . )), k = 1, 2, . . . , n,

which gives

Rn(f, x) = (f(. ),K(x, . )−
n∑

k=1

A
(n)
k (x)K(x

(n)
k , . ))

and

|Rn(f, x)|2 � ‖f‖2‖K(x, . )−
n∑

k=1

A
(n)
k (x)K(x

(n)
k , . )‖2.
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This yields

‖Rn‖2 =
∥∥∥∥K(x, . )−

n∑

k=1

A
(n)
k (x)K(x

(n)
k , . )

∥∥∥∥
2

=

(
K(x, . )−

n∑

k=1

A
(n)
k (x)K(x

(n)
k , . ),K(x, . )−

n∑

l=1

A
(n)
l (x)K(x

(n)
l , . )

)

= (K(x, . ),K(x, . )) − 2
n∑

k=1

A
(n)
k (x)

(
K(x, . ),K(x(n)k , . )

)

+
n∑

k=1

n∑

l=1

A
(n)
k (x)A

(n)
l (x)

(
K(x(n)k , . ),K(x(n)l , . )

)

=
1

2�(1− x2)
− 1

�

n∑

k=1

A
(n)
k (x)

1

1 − xx
(n)
k

+
1
2�

n∑

k=1

n∑

l=1

A
(n)
k (x)A

(n)
l (x)

1

1 − x
(n)
k x

(n)
l

,

which is the formula (27). �

������ 4. Theorem 4 is the main result. In order to compute the error of the

interpolation of the type (5) using (4) for a given function f ∈ H2(K1) it is sufficient
to know the value of the integral (26) or an estimate of this integral without any

knowledge about derivatives of the function f . It is clear that the norm ‖Rn‖2
depends on the chosen interpolatory rule only.

������ 5. From the formula (27) we get immediately

(28) 2�
∂‖Rn‖2

∂A
(n)
i (x)

= − 2

1− xx
(n)
i

+ 2
n∑

k=1

A
(n)
k (x)

1

1 − x
(n)
k x

(n)
i

, k = 1, 2, . . . , n,

which gives the system (14) for the optimal weights (opt)A(n)i , i = 1, 2, . . . , n.

The conditions
∂‖Rn‖2

∂A
(n)
i (x)

= 0, i = 1, 2, . . . , n

are necessary and sufficient for the minimum of ‖Rn‖2 because it is a nonnegative
quadratic function of A(n)i (x), i = 1, 2, . . . , n. From the formula (27) and rela-

tions (14) we have

Theorem 5. Let x be fixed, x ∈ [−a,+a], a ∈ (0, 1), x(n)k ∈ [−a,+a], k =
1, 2, . . . , n, x(n)i �= x

(n)
j , i �= j, i, j = 1, 2, . . . , n. Let (opt)A(n)i (x), i = 1, 2, . . . , n, be

173



the weights of the optimal interpolation formula of type (4) on H2(K1). Then we

have

2�‖(opt)Rx
n‖2 =

1
1− x2

−
n∑

k=1

(opt)A
(n)
i (x)

1

1− xx
(n)
k

(29)

or

2�‖(opt)Rx
n‖2 =

1
1− x2

−
n∑

k=1

n∑

l=1

(opt)A
(n)
i (x)

(opt)A
(n)
l (x)

1

1− x
(n)
k x

(n)
l

.(29′)

�����. Multiplying the k-th equation (14) by the function (opt)A(n)k (x),
k = 1, 2, . . . , n, and adding for k = 1, 2, . . . , n, we get

n∑

k=1

n∑

l=1

(opt)A
(n)
k (x)

(opt)A
(n)
l (x)

1

1− x
(n)
l x

(n)
k

=
n∑

k=1

(opt)A
(n)
k (x)

1

1− xx
(n)
k

.

The formulae (25) and (25′) we obtain by inserting this identity for (opt)A(n)k (x),
k = 1, 2, . . . , n, into (27). �

������ 6. The formulae (29) and (29′) are obviously other expressions for (21)
and (21′). They may be used if the optimal weights (opt)A(n)k (x), k = 1, 2, . . . , n,

are known. Then the value ‖(opt)Rx
n‖2 for a given x ∈ [−a,+a] is easier to compute

using (29) and (29′) than using (21) and (21′).

������ 7. From relations (14) it follows that the optimal interpolatory rule of
the type (4) interpolates the functions

1

1− xx
(n)
i

, i = 1, 2, . . . , n,

exactly if x(n)i ∈ [−a,+a], i = 1, 2, . . . , n, x(n)i �= x(n)j , i �= j, i, j = 1, 2, . . . , n.
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3. The convergence of the norm of the optimal error functional

In what follows, we will study the rate of convergence of ‖(opt)Rx
n‖ for an arbitrary

distribution of nodes. The estimate obtained is sharpened for the roots of Chebyshev

polynomials as the nodes of interpolation.

Theorem 6. Let x be arbitrary and fixed, x ∈ [−a,+a], a ∈ (0, 1), x(n)k ∈
[−a,+a], k = 1, 2, . . . , n, x(n)i �= x(n)j , i �= j, i, j = 1, 2, . . . , n. Then we have

(30) ‖(opt)Rn‖2 � 1
2�(1− a2)

e−2n ln
1+a2

2a , for n→∞

where ‖(opt)Rn‖ is a function of x.

�����. We define ψ(x(n)j , x) by

ψ(x(n)j , x) =
x− x

(n)
j

1− xx
(n)
j

.

Then

ψ(x(n)j , x) � 2a
1 + a2

for every x ∈ [−a,+a] and j = 1, 2, . . . , n. It is easy to see that

∂

∂x
(n)
j

ψ(x(n)j , x) =
x2 − 1

(1− xx
(n)
j )

2
< 0.

Hence ψ(x(n)j , x) is decreasing as a function of the variable x(n)j for every j = 1, . . . , n
and x ∈ (−a,+a). Further,

∂

∂x
ψ(x(n)j , x) =

1− (x(n)j )
2

(1− xx
(n)
j )

2
> 0

so that the function ψ(x(n)j , x) is increasing as a function of x ∈ (−a,+a) for every
x
(n)
j , j = 1, . . . , n. This implies that the maximum of the function ψ(x

(n)
j , x) is

achieved at [−a,+a]. This maximum equals 2a
1+a2 . The function ψ(x

(n)
j , x) has its

minimum at [+a,−a] and it equals −2a
1+a2 . Thus we have

∣∣∣∣
n∏

j=1

x− x
(n)
j

1− xx
(n)
j

∣∣∣∣ �
( 2a
1 + a2

)n

→ 0
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for n→∞ because 2a
1+a2 < 1 for a �= 1. Finally, from (21) we get

‖(opt)Rn‖2 � 1
2�(1 − a2)

(
2a
1 + a2

)2n
=

1
2�(1− a2)

e−2n ln
1+a2

2a ,

where 1+a2

2a > 1. �

Theorem 7. Let x be arbitrary, x ∈ [−a,+a], a ∈ (0, 1). Let x(n)i , i = 1, 2, . . . , n,
be the roots of the Chebyshev polynomials T̃n(x) at [−a,+a]. Then

(31) ‖(opt)Rn‖2 � 1
2�(1 − a2)

e−2n ln
1+a2 cos(�/2n)
a(1+cos(�/2n)) → 0 for n→∞.

�����. From the definition of Chebyshev polynomials T̃n(x) defined on the
interval [−a,+a] we get easily

(32)
T̃n(x)

xnT̃n( 1x )
=

n∏

k=1

x− a cos (2k−1)�2n

1− xa cos (2k−1)�2n

,

where x(n)k = a cos (2k−1)�2n , k = 1, 2, . . . , n, and cos (2k−1)�2n , k = 1, 2, . . . , n, are the
roots of the Chebyshev polynomials lying in [−a,+a]. Let us introduce the following
notation:

t
(n)
k = cos

(2k − 1)�
2n

for k = 1, 2, . . . , n.

Then t(n)n < t
(n)
n−1 < . . . < t

(n)
1 and similarly as in the proof of Theorem 6 we have

ψ(t(n)k , x) =
x− at

(n)
k

1− xat
(n)
k

, k = 1, 2, . . . , n.

It is obvious that
∂

∂x
ψ(t(n)k , x) > 0 for k = 1, 2, . . . , n.

Thus

max
x∈[−a,+a]

x− at
(n)
k

1− xat
(n)
k

=
a(1− t

(n)
k )

1− a2t
(n)
k

> 0,

min
x∈[−a,+a]

x− at
(n)
k

1− xat
(n)
k

=
−a(1 + t(n)k )

1 + a2t(n)k

< 0, k = 1, 2, . . . , n.

Further,

a
d
dt

( 1− t

1− a2t

)
= a

a2 − 1
(1− a2t)2

< 0.
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Consequently,

max
t
(n)
k ∈[t(n)n ,t

(n)
1 ]

k=1,2,...,n

a(1− t
(n)
k )

1− a2t
(n)
k

=
a(1 − t

(n)
n )

1− a2t
(n)
n

=
a(1 + t(n)1 )

1 + a2t(n)1
,

(−a) d
dt

(
1 + t
1 + a2t

)
= (−a) 1− a2

1 + a2t
< 0,

which gives

min
t
(n)
k ∈[t(n)n ,t

(n)
1 ]

k=1,2,...,n

(−a) 1 + t
(n)
k

1 + a2t(n)k

= (−a) 1 + t
(n)
1

1 + a2t(n)1
.

Thus ∣∣∣∣
n∏

k=1

x− a cos (2k−1)�2n

1− xa cos (2k−1)�2n

∣∣∣∣ �
(
a(1 + cos �

2n )

1 + a2 cos �

2n

)n

.

It is very easy to verify that the following inequality holds:

(33)
1 + a2 cos �

2n

a(1 + cos �

2n )
> 0.

From (33) it follows that 1+a2 cos �

2n > a+a cos �

2n ⇒ a cos �

2n < 1, which obviously
holds because of a ∈ (0, 1). With the aid of (21), (32) and (33) we easily establish
the formula (31). �

4. Existence and uniqueness of the optimal nodes
of the interpolation

Hitherto we have dealt with the problem of interpolation under the condition that
the nodes of interpolation are mutually different and arbitrarily given in [−a,+a].
Then for the optimal coefficients of the interpolation rule the expressions (11) or
(11′) are valid. The norm ‖(opt)Rn‖ for the optimal error functional is given by the
formulas (21) or (21′), respectively.

Further, we get ahead starting from the formula (21) in order to minimize the
norm ‖(opt)Rn‖ in the following sense: we shall solve the problem of finding En,n,

where

(34) En,n = min
x
(n)
k
∈[−a,+a], k=1,2,...,n

x
(n)
i �=x

(n)
j , i�=j, i,j=1,2,...,n

a∈(0,1), a fixed

max
x∈[−a,+a]

∣∣∣∣
1√

2�(1− x2)

n∏

j=1

x
(n)
j − x

1− xx
(n)
j

∣∣∣∣.
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Then we prove that the function of the form

(35)
(−1)nωn(x)√

2�(1− x2)xnωn( 1x )

possesses in the interval [−a,+a], a ∈ (0, 1), the minimal deviation from zero under
the condition that xnωn( 1x ) > 0.

Theorem 8. There exists only one minimal solution of the problem (34), namely

(36)
(−1)nω∗n(x)√

2�(1− x2)xnω∗n(
1
x)
.

This solution has the following properties:

1) All nodes of the polynomial ω∗n(x) lie in the interval [−a,+a], a ∈ (0, 1), and
are mutually different.

2) The length of the alternant of the minimal solution of the problem (36) is n+1.
3) For all n we have

(37) En,n �
√
2
�

(
a

2

)n

.

�����. In the same way as in [2] and [5] we use the theory of the Chebyshev
approximations.

We denote

(38) S(x) =
1√

2�(1− x2)
.

Let us suppose that n is fixed. By F (α, x) let us denote functions of the form

(39) F (α, x) = S(x)
(−1)nPn(x)

xnPn( 1x )
= S(x)

(−1)n
n∑

i=0
αix

i

n∑
i=0

αn−ixi

.

The parameter α is a vector-parameter with real components α0, α1, . . . , αn. In what
follows we set αn = 1. In accordance with (34) we have

(40) xnPn

(
1
x

)
=

n∑

i=0

αn−ix
i > 0
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for [−a,+a], a ∈ (0, 1). By V we denote the set of functions F (α, x). It is easy to
see that

∂F (α, x)
∂αj

= (−1)nS(x)
xj

n∑
i=0

αn−ix
i − xn−j

n∑
i=0

αix
i

( n∑
i=0

αn−ixi
)2(41)

= (−1)nS(x) x
n+jPn( 1x )− xn−jPn(x)

(xnPn( 1x ))
2

, j = 0, 1, . . . , n− 1.

From this expression we get

gradα F (α, x) =
(−1)nS(x)
(xnPn( 1x))

2
(42)

=

(
xnPn

(
1
x

)
−xnPn(x), x

n+1Pn

(
1
x

)
−xn−1Pn(x), . . . , x

2n−1Pn

(
1
x

)
−xPn(x)

)T

.

Obviously the degree of the polynomial Pn(x) is n.

By A we denote the set of all vectors α = (α0, α1, . . . , αn−1), which is open. The
set B = [−a,+a], a ∈ (0, 1), is compact. The functions F (α, x) ∈ V are obviously

continuous with respect to α ∈ A for every x ∈ B. By the symbol W (α) we denote
the space of all linear combinations of the components of the vector gradα F (α, x).

Obviously dimW (α) = n is independent of α = (α0, α1, . . . , αn−1). In accordance
with [5] the set V fulfils the local Haar condition when it fulfils the classical Haar

condition, i.e. every function � ∈W (α), � �= 0, has in interval B at most n−1 roots.
Now let us show that the function

(43)
(−1)nS(x)
(xnPn( 1x))

2

n−1∑

j=0

βj

(
xn+jPn

(1
x

)
− xn−jPn(x)

)

has in the interval B at most n− 1 roots if
n−1∑
j=0

|βj | > 0. Obviously the degree of the
polynomial

(44)
n−1∑

j=0

βj

(
xn+jPn

( 1
x

)
− xn−jPn(x)

)

is at most 2n (and equals 2n if β0 �= 0).
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Because S(x) �= 0 in B we have (xnPn( 1x )) > 0 in B. We can write

n−1∑

j=0

βj

(
xn+jPn

(1
x

)
− xn−jPn(x)

)

=
n−1∑

j=0

βj

(
xj

n∑

i=0

αn−ix
i − xn−j

n∑

i=0

αix
i

)

=
n−1∑

j=0

βj

( n∑

i=0

αn−ix
i+j −

n∑

i=0

αix
n+1−j

)

=
n−1∑

j=0

n∑

i=0

αn−iβjx
i+j −

n∑

k=1

n∑

i=0

αiβn−kx
i+k

= β0

n∑

i=0

αn−ix
i − β0

n∑

i=0

αix
n+i +

n−1∑

j=1

n∑

i=0

(αn−iβj − αiβn−j)xi+j .

If k = 0, 1, . . . , n− 1 then the coefficient at xk equals

β0αn−k +
n−1∑

j=1

n∑

i=0
i+j=k

(αn−iβj − αiβn−j).

Analogously we get for the coefficient at x2n−k (k = 0, 1, . . . , n− 1):

− β0αn−k +
n−1∑

j=1

n∑

i=0
i+j=2n−k

(αn−iβj − αiβn−j)

= − β0αn−k +
n−1∑

m=1

n∑

l=0
l+m=k

(αlβn−m − αn−lβm)

(here we have used the transformation n− i = l, n− j = m⇒ l +m = k)

= − β0αn−k +
n−1∑

j=1

n∑

i=0
i+j=k

(αiβn−j − αn−iβj).
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If k = 0, 1, . . . , n it is clear that the coefficient at xk equals the coefficient at x2n−k

(except for the sign). For the coefficient by xn we get

(β0α0 − β0α0) +
n−1∑

j=1

n∑

i=0
i+j=n

(αn−iβj − αiβn−j)

=
n−1∑

j=1

n−1∑

i=1
i+j=n

(αn−iβj − αiβn−j) =
n−1∑

j=1

(αjβj − αn−jβn−j)

=
n−1∑

j=1

αjβj −
n−1∑

k=1

αkβk = 0.

(We have set n− j = k.) It follows that the equation

(45)
n−1∑

j=0

βj

(
xn+jPn

( 1
x

)
− xn−jPn(x)

)
= 0

is negative reciprocal of an even degree at most 2n. If β0 �= 0 then the coefficient at
x2n equals −β0 and that at x0, as follows from (45), equals β0.
Thus the equation (45) is of the form

−β0x2n + β1x2n−1 + . . .+ β0 = 0⇒ x2n + . . .+ (−1) = 0.

Let us denote the roots of this equation by ξ1, ξ2, . . . , ξ2n. It is well known that in
this case

ξ1ξ2 . . . ξ2n = −1.

It follows from the theory of reciprocal equations that the equation (45) has one root
ξ2n = −1. The equation (45) has the root ξ2n−1 = 1 as well. Then

ξ1ξ2 . . . ξ2n−2 = 1.

From these facts we may conclude that the coefficients ξi for i = 1, 2, . . . , 2n− 2 are
either reciprocal (real or complex) or they equal −1,+1, respectively. Moreover, it
follows that for arbitrary βj , j = 1, 2, . . . , n− 1, β0 �= 0, the polynomial (45) has in
(−1,+1) at most n − 1 roots. If β0 = 0, the equation (45) is reciprocal of a degree
at most 2n− 1 and it is of the form

(46) −β1x2n−1 + . . .+ β1x = 0.
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This equation has one root x = 0 ∈ (−1,+1). When we divide the equation (46) by
x �= 0 we get the equation

−β1x2n−2 + . . .+ β1 = 0.

From the above considerations it follows that this equation has at most n− 2 roots
in (−1,+1) provided we put n := n − 1. Thus the equation (46) has at most n − 1
roots in (−1,+1) altogether.
Now, summarizing the above properties, we have that the function (43) has in B

at most n− 1 roots.
We have proved that the functions

(47)
(−1)nS(x)
(xnPn( 1x))

2

(
xn+jPn

(
1
x

)
− xn−jPn(x)

)
, j = 0, 1, . . . , n− 1

fulfil in B the classical Haar condition and the functions (39) fulfil the local Haar

condition.

In addition, dimW (α) = n independently of α = (α0, α1, . . . , αn−1). In view of
Theorem 9 in [5] and [2] we have that the length of the alternant of the only one

minimal solution equals n+ 1.

Further, all roots of the minimal solution lie in B and are mutually different. Thus,
we have proved the existence and uniqueness of a solution of the problem (34) which

has properties 1) and 2) of Theorem 8.

Now, let us prove the inequalities (37) using Theorem 18 in [5].

We choose instead of Pn(x) the polynomial T̃n(x) the roots of which lie in the

interval B = [−a,+a], a ∈ (0, 1),

t̃
(n)
k = a cos

(2k − 1)�
2n

, k = 1, 2, . . . , n

and we choose the points ξ̃(n)k = a cos k�
2n , k = 0, 1, . . . , n.

Further, we write

T̃n(x)

xnT̃n( 1x )
=

n∏

j=1

1− t̃
(n)
j

1− xt̃
(n)
j

.
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From this we get setting k = n
2 for n even

T̃n(ξ̃
(n)
k )

(ξ̃(n)k )
n
T̃n( 1

ξ̃
(n)
k

)
=

n∏

j=1

a(cos k�
n − cos (2j−1)�2n )

a2 cos k�
n (

1
a2 cos k�

n

− cos (2j−1)�2n )
(48)

=
1

an cosn k�
n

n∏

j=1

cos k�
n − cos (2j−1)�2n

a−2 cos−1 k�
n − cos (2j−1)�2n

=
(−1)k

2n−1an cosn k�
n

n∏

j=1

1

a−2 cos−1 k�
n − cos (2j−1)�2n

=
(−1)k

2n−1an cosn k�
n

1

Tn(a−2 cos−1 k�
n )
,

where Tn(x) = 1
2n−1 cos(n arccosx), x ∈ [−1,+1], is the Chebyshev polynomial, the

deviation of which is minimal under the condition that the coefficient at the highest

power of x equals 1. It is well known that

(49) 2n−1Tn(x) =
1
2

{
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

}

for |x| > 1. From this expression it follows for each k = 0, 1, . . . , n with the exception
of k = n

2 , n even

(
a cos

k�

n

)n

2n−1Tn

( 1

a2 cos k�
n

)

=
1
2

{(
a cos k�

n

a2 cos k�
n

+

√(
a cos k�

n

a2 cos k�
n

)2
− a2 cos2

k�

n

)n

+

(
a cos k�

n

a2 cos k�
n

−
√(

a cos k�
n

a2 cos k�
n

)2
− a2 cos2

k�

n

)n
}

=
1
2

{(
1
a
+

√
1
a2
− a2 cos2

k�

n

)n

+

(
1
a
−

√
1
a2
− a2 cos2

k�

n

)n}

=
1
2an

{(
1 +

√
1− a4 cos2

k�

n

)n

+

(
1−

√
1− a4 cos2

k�

n

)n}

=
1
2an

{en ln(1+
√
1−a4 cos2 k�

n ) + en ln(1−
√
1−a4 cos2 k�

n )}.

Obviously

(50) 1 +

√
1− a4 cos2

k�

n
> 1, 0 � 1−

√
1− a4 cos2

k�

n
< 1.
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Finally, we get for (−1)nS(x) T̃n(x)
xnT̃n( 1x )

altogether

(51) (−1)n+k 2an

√
2�(1 − a2 cos2 k�

n )

1

en ln(1+
√
1−a4 cos2 k�

n ) + en ln(1−
√
1−a4 cos2 k�

n )

for k = 0, 1, . . . , n except for k = n
2 , n even. At the points ξ

(n)
k , k = 0, 1, . . . , n,

the values (51) change their sign. Now in the same way we get the formula (48) for

n even, k = n
2 , ξn

2
= 0:

T̃n(x)

xnT̃n( 1x )

∣∣∣∣
x=ξ

(n)
n
2

=
n∏

j=1

(−t̃(n)j ) = a
n

n∏

j=1

(−t(n)j ) = a
nTn(0) = an (−1)

n
2

2n−1
.

Altogether we get for n even

(52) (−1)nS(x) T̃n(x)

xnT̃n( 1x )

∣∣∣∣
x=ξ

(n)
n
2

= (−1)n
2

an

2n−1
√
2�
.

It can be very easily shown that by virtue of (50) the formula (51) for n even, k = n
2

comes over to (52), setting zero instead of the second term in the denominator of the

second multiplier in the formula (51). Let k = 0, 1, . . . , n. Let us seek such a k for
which the absolute value of the function (51) attains its minimum. It can be seen

from (51) that it is sufficient to consider the problem

(53) max
y∈{a cos k�

n , k=0,1,...,n}

√
1− y2

{(
1 +

√
1− a2y2

)n
+

(
1−

√
1− a2y2

)n
}
.

Let us consider the function γ(x) = (1+x)n+(1−x)n in the interval
[
(1−a4)1/2, 1

]

for n even and in the interval
[
(1−a4)1/2, (1−a4 sin2 �

2n )
1/2

]
for n odd because if n is

even the values a2 cos2 k�
n lie in the interval [0, a

2]⇒ (1− a2y2)1/2 lie in the interval
[(1−a4)1/2, 1]; if n is odd, the values a2 cos2 k�

n lie in the interval
[
a2 cos2 (n−1)�2n , a2

]
=[

a2 sin2 �

2n , a
2
]
⇒ (1 − a2y2)1/2 lie in the interval

[
(1 − a4)1/2, (1 − a4 sin2 �

2n )
1/2

]
.

The first derivative of the function γ is

γ′(x) = n[(1 + x)n−1 − (1− x)n−1],

hence with the aid of the binomial formula we obtain that the inequality

γ′(x) = n
n−1∑

i=0

(
n− 1
i

)
xn−1−i(1− (−1)n−i−1) > 0

for x > 0 holds.

184



Then the function γ(x) is increasing, thus it assumes its minimum at the point

x = 1 for n even and at the point x = (1− a4 sin2 �

2n )
1/2 for n odd.

For n even the point y = 0 corresponds to the point x = 1 and the maximum of (53)
is 2n. For n odd the point y = a sin �

2n corresponds to the point x = (1−a4 sin2 �

2n )
1/2

and the maximum in formula (53) is
√
1− a2 sin2

�

2n

{(
1 +

√
1− a4 sin2

�

2n

)n

+

(
1−

√
1− a4 sin2

�

2n

)n}
.

For the minimum of the absolute value of the function defined in (51) we obtain

immediately

En,n � 2an

√
2�2n

=

√
2
�

(a
2

)n

for each n.
Hence, (3) is proved. �

������ 8. The explicit solution of the problem (34) was not found. The
problem may be solved through various methods numerically, for instance using

Newton’s method or other methods given in [5] and [7]. From the proof of Theorem 8
it follows (property 3) that the polynomial T̃n(x) may be taken as a good initial

approximation for the solution for sufficiently small a ∈ (0, 1).
Let us consider instead of (53) the expression

(54) min
y∈{a cos k�

n , k=0,1,...,n}

√
1− y2{(1 +

√
1− a2y2)n + (1 −

√
1− a2y2)n}.

The function γ(x) attains its minimum at the point x = (1 − a4)1/2 (see the proof
of Theorem 8) for arbitrary natural n. This point corresponds to the point y = a.

Then we have for the expression in (54)
√
1− a2

{
(1 +

√
1− a4)n + (1−

√
1− a4)n

}
,

from which we get for the maximum of the absolute value of (51)

λmax =

√
2
�

an

√
1− a2

1(
1 +

√
1− a4

)n
+

(
1−

√
1− a4

)n .

In view of (37), we have

qn =
2n√
1− a2

1(
1 +

√
1− a4

)n
+

(
1−

√
1− a4

)n → 1 (a→ 0+)

for each n.
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5. Minimization of the error estimate of the interpolatory rule

In this part we study the possibility of minimization of the estimate (25) for the

case of optimal interpolatory rule with respect to the subspace that is generated by
functions for which the optimal rule is exact.

Theorem 9. Let (opt)Rn for fixed x ∈ [−a,+a], a ∈ (0, 1), be the error functional
of the optimal interpolatory rule of the type (4). Let f ∈ H2(K1) be a real-valued
function on [−a,+a]. Let us assume that the nodes of interpolation are mutually
different and lie in [−a,+a]. Then

(55) |(opt)Rn(f, x)|2 � ‖(opt)Rn‖2(‖f‖2 − ‖Pn(f)‖2),

where

(56) ‖f‖2 =
∫ 2�

0
|f(eiϕ)|2 dϕ.

The norm ‖(opt)Rn‖ is given by the formula (21) or (21′). Further, Pn is the orthog-

onal projection from H2(K1) onto span(Φ
(n)
1 ,Φ(n)2 , . . . ,Φ(n)n ) and

‖Pn(f)‖2 =
1
�

n∑

k=1

n∑

l=1

a
(n)
k (f)a

(n)
l (f)

1

1− x
(n)
k x

(n)
l

,(57)

or

‖Pn(f)‖2 =
n∑

k=1

a
(n)
k (f)f(x

(n)
k )(57′)

respectively, where a(n)k (f), k = 1, 2, . . . , n, are the solutions of the system of normal

equations

(58) Ga = p

where the elements of the matrix G are given by

(59) gk,l =
1

2�(1 − x
(n)
k x

(n)
l )

, k, l = 1, 2, . . . , n

and the vector p = {pk} on the right-hand side of the system is given by

(60) pk = (Φ
(n)
k , f), k = 1, 2, . . . , n.

Moreover, the determinant of the matrix G is positive.
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�����. We prove this theorem in the same way as in [8] (where it is given for

a case of quadrature) but in more detail.
From (14) it follows that the optimal interpolatory rule interpolates the functions

Φ(n)i (x) =
1

2�(1− xx
(n)
i )

, i = 1, 2, . . . , n,

exactly. Then Rn(Φ
(n)
i ;x) = 0, i = 1, 2, . . . , n. This implies

g(x) =
n∑

k=1

ckΦ
(n)
k (x)

for each g ∈ span(Φ(n)1 ,Φ(n)2 , . . . ,Φ(n)n ) and thus

Rn(g;x) = 0

for each x ∈ [−a,+a], a ∈ (0, 1).
Let f ∈ H2(K1), g ∈ span(Φ(n)1 ,Φ(n)2 , . . . ,Φ(n)n ). It is easy to see that

Rn(f + g;x) = Rn(f ;x).

Let Pn be the operator of the orthogonal projection from H2(K1) into span(Φ
(n)
1 ,

Φ(n)2 , . . . ,Φ(n)n ); then we have

Rn(f ;x) = Rn(f − Pn(f);x).

Because Pn is the orthogonal projector, a
(n)
k (f), k = 1, 2, . . . , n, can be calculated

from the expression

(61) Pn(f) =
n∑

k=1

a
(n)
k (f)Φ

(n)
k

as the solution of the system of normal equations

(62) Ga = p

where

p = [(Φ(n)1 , f), (Φ(n)2 , f), . . . , (Φ(n)n , f)]T ,

G = (Φ(n)i ,Φ(n)j )
n
i,j ,

a = (a(n)1 (f), a
(n)
2 (f), . . . , a

(n)
n (f))

T
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and

(Φ(n)k , f) =
1
2�

∫ 2�

0

1

1− eiϕx(n)k

f(eiϕ) dϕ(63)

=
1
2�

∫ 2�

0
f(eiϕ)

1

1− e−iϕx(n)k

dϕ

=
∫ 2�

0
f(eiϕ)K(x(n)k , eiϕ) dϕ = f(x(n)k ), k = 1, 2, . . . , n,

(Φ(n)i ,Φ(n)j ) =
1

2�(1 − x
(n)
i x

(n)
j )

, i, j = 1, 2, . . . , n

(see the proof of Theorem 2).

The determinant Dn of the system is given by the formula (15). Because x
(n)
i �=

x
(n)
j , i �= j, i, j = 1, 2, . . . , n, Dn is positive (according to (15)) and the system (62)

has only one solution. The solution a(n)i (f), i = 1, 2, . . . , n, is real and independent
of x ∈ [−a,+a] and a ∈ (0, 1).
According to Theorem 4 (inequality (25)) we have

|Rn(f ;x)|2 = |Rn(f − Pn(f);x)|2 � ‖Rn‖2‖f − Pn(f)‖2,
‖f − Pn(f)‖2 =

(
f − Pn(f), f − Pn(f)

)
= ‖f‖2 − (f, Pn(f)).

By (63) we have

(f, Pn(f)) =
∫ 2�

0
f(eiϕ)

n∑

k=1

a
(n)
k (f)Φ

(n)
k (e

iϕ) dϕ

=
n∑

k=1

a
(n)
k (f)f(x

(n)
k ).

Finally,

(
Pn(f), Pn(f)

)
=

∫ 2�

0

n∑

k=1

a
(n)
k (f)Φ

(n)
k (e

iϕ)
n∑

l=1

a
(n)
l (f)Φ

(n)
l (e

iϕ) dϕ

=
n∑

k=1

n∑

l=1

a
(n)
k (f)a

(n)
l (f)

∫ 2�

0
Φ(n)k (e

iϕ)Φ(n)l (e
iϕ) dϕ

=
n∑

k=1

n∑

l=1

a
(n)
k (f)a

(n)
l (f)

1

2�(1 − x
(n)
k x

(n)
l )

,

which we wanted to prove. �
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������ 9. Theorem 7 is of theoretical importance only; the coefficients a(n)k ,
k = 1, 2, . . . , n, must be calculated as the solution of the system (58).
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