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Abstract. Tetrahedral finite C0-elements of the Hermite type satisfying the maximum
angle condition are presented and the corresponding finite element interpolation theorems
in the maximum norm are proved.
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1. Introduction

The problem of finite element interpolation theorems under the maximum angle

condition was studied in several papers (see [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], pp. 209–213, [11], pp. 391–396, [12]); however, almost all results concern only

triangular and tetrahedral finite elements of the Lagrange type. The exception are
[11] and [12] (the remark on triangular finite elements of Hermite type in [1], p. 222

is not sufficiently general—see [12], Remark 5.3).
This paper is a generalization of some theorems from [12] and [13] to the three-

dimensional case of tetrahedral finite elements. The case of tetrahedral finite el-
ements of the Hermite type is rather different from the case of triangles: In the
two-dimensional case the cubic element has nine parameters fixed—they are the

function values and the first partial derivatives at the vertices; these nine para-
meters guarantee the C0-continuity. The tenth parameter can be chosen relatively

freely, because it has no influence on the C0-continuity of the element. Thus, in [12]

*This work was supported partly by grants Nos. 201/97/0153 and 201/00/0557 of the
Grant Agency of the Czech Republic and by MSM 262100001.
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various possibilities for the tenth parameter were examined. In the three-dimensional

case all twenty parameters of the cubic polynomial on a tetrahedron are necessary
for guaranteeing the C0-continuity and sixteen parameters are fixed (the function
values and first partial derivatives at the vertices). (This follows from the fact that

if two tetrahedra have a common face we need for guaranteeing the C0-continuity ten
parameters on the face—and only nine of them are obtained as linear combinations

of the parameters prescribed at the vertices of the common face.) Thus the problem
how to choose the remaining four parameters on a semiregular tetrahedron is more

complicated than in the two-dimensional case (also because of greater complexity of a
three-dimensional simplex). However, it can be expected that the three-dimensional

case is in a certain way a generalization of the two-dimensional one. This expectation
is confirmed in this paper.

We start with the notion “a semiregular tetrahedron.” Its definition is a general-
ization of the two-dimensional case: A tetrahedron is semiregular iff the maximum

angle made by two arbitrary faces is less than or equal to ω0 < �. There are three
basic types of semiregular tetrahedra (see Figs. 1–3).
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Fig. 1. Semiregular tetrahedron of
type K1.

Fig. 2. Semiregular tetrahedron of
type K2.

We say that a tetrahedron is regular iff it is semiregular and has regular triangular

faces.
A tetrahedron which is not semiregular is called irregular. Such a tetrahedron

can have regular triangular faces (see Fig. 4, where the tetrahedron has vertices
[0, 0, 0], [1, 0, 0], [0, 1, 0] and [13 ,

1
3 , ε]; here ε can be arbitrarily small).

It is interesting that in this paper only known results from two dimensions are
directly applied to Hermite tetrahedra.
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Fig. 3. Semiregular tetrahedron of
type K3.

Fig. 4. An irregular tetrahedron.

2. Basic estimates

In [12], the following theorem was proved; this theorem will be generalized in this
section to the three-dimensional case.

Theorem 2.1. Let T be a closed triangle with the interior T and vertices P1,
P2, P3. Let

a = dist(P2, P3), b = dist(P1, P3), c = dist(P1, P2)

and let α, β and γ be the angles at P1, P2 and P3, respectively. Let the vertices be

denoted in such a way that

(2.1) a � b � c, α � β � γ.

Let ϕ ∈ C1(T ) and let ϕ have bounded classical derivatives in the interior T of T ,

|Diϕ(P )| � M4 ∀|i| = 4 ∀P ∈ T,(2.2)

Diϕ(Pj) = 0 ∀|i| � 1 (j = 1, 2, 3),
∂ϕ

∂na
(Q1) = 0,(2.3)

where Q1 is the midpoint of the side P2P3 and na the unit normal to P2P3 and where

the following multiindex notation for derivatives is used:

i = (i1, i2), |i| = i1 + i2 (i1 � 0, i2 � 0), Diu =
∂|i|u

∂xi1∂yi2
.
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Then

|ϕ(P )| � 1
96

(
1 + 8

(a
c

)3)
M4 c

4 ∀P ∈ T ,(2.4)
∣∣∣∣
∂ϕ

∂xj
(P )

∣∣∣∣ � 4
15

(
1 + 5

(a
c

)2) 1
sinβ

M4c
3 ∀P ∈ T (j = 1, 2).(2.5)

Let K1 be a tetrahedron with one short side P2P3 (see Fig. 5; we first consider

tetrahedra with three edges perpendicular to one another; the general case is men-
tioned in the text connected with Fig. 9). The symbol K1 will denote its interior

and ∂K1 its boundary. We will consider a function ϕ ∈ C4(K1) with the following
properties (we have now α = (α1, α2, α3)):

Dαϕ(Pi) = 0 |α| � 1 (i = 1, . . . , 4),(2.6)
∂ϕ

∂n1
(Q23) =

∂ϕ

∂n2
(Q14) =

∂ϕ

∂n3
(Q14) =

∂ϕ

∂n4
(Q23) = 0,(2.7)

|Dαϕ(P )| � M4 ∀|α| = 4 ∀P ∈ K1,(2.8)

where P1, . . . , P4 are the vertices of the tetrahedron K1 (see Fig. 5) and Qij is the

midpoint of the edge PiPj . The symbol �i will denote the plane containing the
triangular face T i opposite to the vertex Pi. The symbol ni appearing in (2.7)

denotes the unit normal to the boundary ∂Ti of the triangle T i (in Fig. 5 all these
normals are outward; of course, in a tetragonalization each normal common to more

tetrahedra will be outward for some tetrahedra and inward for other tetrahedra);
this normal lies, of course, in the plane �i. (As to weakening inequality (2.8) see

Remark 2.5.)

The symbols αi (i = 2, 3, 4) will denote the three angles at the vertex P1 lying in

triangular faces T 2, T 3, T 4. Similarly, βi (i = 1, 3, 4) denote the angles at the vertex
P2, γi (i = 1, 2, 4) denote the angles at the vertex P3 and δi (i = 1, 2, 3) the angles

at the vertex P4. The symbol ωij will denote the acute angle made by the planes �i

and �j .

In each plane �i we can choose a Cartesian coordinate system xi, yi. The axis zi

belonging to this system is oriented in the direction of the normal to the triangular

face T i, so that it is not necessary to choose a special symbol for the normals to the
triangular faces.
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Fig. 5. Choosing the normals in the case of type K1.

Theorem 2.1 and assumptions (2.6)–(2.8) imply the following estimates:

|ϕ(P )| �CM4h4 ∀P ∈ ∂K1,(2.9) ∣∣∣∣
∂ϕ

∂x1
(P )

∣∣∣∣,
∣∣∣∣
∂ϕ

∂y1
(P )

∣∣∣∣ �CM4
sin γ1

h3 ∀P ∈ T 1,(2.10)
∣∣∣∣
∂ϕ

∂x2
(P )

∣∣∣∣,
∣∣∣∣
∂ϕ

∂y2
(P )

∣∣∣∣ � CM4
sin(max(α2, δ2))

h3 ∀P ∈ T 2,(2.11)
∣∣∣∣
∂ϕ

∂x3
(P )

∣∣∣∣,
∣∣∣∣
∂ϕ

∂y3
(P )

∣∣∣∣ � CM4
sin(max(α3, δ3))

h3 ∀P ∈ T 3,(2.12)
∣∣∣∣
∂ϕ

∂x4
(P )

∣∣∣∣,
∣∣∣∣
∂ϕ

∂y4
(P )

∣∣∣∣ �CM4
sin γ4

h3 ∀P ∈ T 4,(2.13)

where h is the length of the largest edge of the tetrahedron K1 and C is a generic

constant.

Now we estimate the derivatives ∂ϕ
∂zi
at the vertices of K1 and at the midpoints

Qij of the edges. Assumptions (2.6) and (2.7) imply

∂ϕ

∂zj
(Pi) = 0 (i = 1, . . . , 4; j = 1, . . . , 4, j �= i),(2.14)

∂ϕ

∂z1
(Q23) =

∂ϕ

∂z4
(Q23) = 0,

∂ϕ

∂z2
(Q14) =

∂ϕ

∂z3
(Q14) = 0.(2.15)
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As ∂ϕ
∂z1
is a linear combination of the derivatives ∂ϕ

∂x3
and ∂ϕ

∂y3
, estimates (2.12) imply

(2.16)

∣∣∣∣
∂ϕ

∂z1
(Q24)

∣∣∣∣ � CM4
sin(max(α3, δ3))

h3.

Similarly, estimates (2.10) give

(2.17)

∣∣∣∣
∂ϕ

∂z3
(Q24)

∣∣∣∣ � CM4
sinγ1

h3;

estimates (2.13) yield

(2.18)

∣∣∣∣
∂ϕ

∂z3
(Q12)

∣∣∣∣ � CM4
sin γ4

h3

and estimates (2.12) imply

(2.19)

∣∣∣∣
∂ϕ

∂z4
(Q12)

∣∣∣∣ � CM4
sin(max(α3, δ3))

h3.

Let s1 be a direction parallel to the plane �1 and perpendicular to the edge P3P4
and s2 a direction parallel to the plane �2 and perpendicular also to the edge P3P4.

These two directions make an angle ω12 (which is the angle made by the planes �1
and �2). According to (2.10) and (2.11), we have

∣∣∣∣
∂ϕ

∂s1
(Q34)

∣∣∣∣ � CM4
sin γ1

h3,

∣∣∣∣
∂ϕ

∂s2
(Q34)

∣∣∣∣ � CM4
sin(max(α2, δ2))

h3,

hence (see Fig. 6a; in Fig. 6b, (ξ, η) is the plane orthogonal to P3P4 which passes

through the point Q34)

(2.20)

∣∣∣∣
∂ϕ

∂z1
(Q34)

∣∣∣∣ � CM4
sinω12

(
1
sin γ1

+
1

sin(max(α2, δ2))

)
h3.

Similarly we obtain

∣∣∣∣
∂ϕ

∂z2
(Q34)

∣∣∣∣ � CM4
sinω12

(
1
sin γ1

+
1

sin(max(α2, δ2))

)
h3,(2.21)

∣∣∣∣
∂ϕ

∂z2
(Q13)

∣∣∣∣ � CM4
sinω24

(
1

sin(max(α2, δ2))
+

1
sinγ4

)
h3,(2.22)

∣∣∣∣
∂ϕ

∂z4
(Q13)

∣∣∣∣ � CM4
sinω24

(
1

sin(max(α2, δ2))
+

1
sinγ4

)
h3.(2.23)
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Fig. 6a. To the proof of (2.20). Fig. 6b. To the proof of (2.20).

Let us set

(2.24) ω = min(ω12, ω24), σ = min(α2, α3, γ1, γ4, δ2, δ3).

Then we can write relations (2.15)–(2.23) in a unique form

(2.25)

∣∣∣∣
∂ϕ

∂zi
(Qjk)

∣∣∣∣ � CM4
sinω sinσ

h3 (i = 1, . . . , 4; j �= i, k �= i, k �= j).

Now we come to the crucial point of our considerations which consists of several

applications of the following Lemma 2.2. Although this lemma was proved in [13],
we reproduce briefly its proof because of the importance of the lemma in this paper.

Lemma 2.2. Let a function ψ(xi, yi) be continuous on a closed triangle T i

and have derivatives of the third order in its interior Ti bounded by a constant K3.

Further, let ψ(Pj) = ηj , ψ(Qkm) = ζkm, Pj being the vertices of T i and Qkm the

midpoints of its sides. Then we have on T i

(2.26) |ψ(xi, yi)| � 6η + 13K3h3, η = max(|ηj |, |ζkm|).

����� is based on the following three lemmas:

Lemma A. Let f ∈ C1(T ). Let s1, s2 be two directions making an angle ω. Let
∂f
∂s1
(P ) = k1,

∂f
∂s2
(P ) = k2, P being a point in the (xi, yi)-plane. If 0 < ω < 1

3� then

∣∣∣∣
∂f

∂t
(P )

∣∣∣∣ � 2
√
3
3
max |kj |,

where t is any direction lying inside the acute angle formed by s1 and s2.
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Lemma B. Let g(0) = η1, g(l/2) = η2, g(l) = η3 and |g(3)(s)| � N3 in (0, l).

Then for s ∈ [0, l]

|g(s)| � 5
4
max |ηj |+

√
3
63

N3l
3,

|g′(s)| � 8
l
max |ηj |+

1
4
N3l

2.

Lemma C. Let g(0) = η1, g′(0) = k1, g(l) = η2 and |g(3)(s)| � N3 in (0, l).
Then for s ∈ [0, l]

|g(s)| � max |ηj |+
l

4
|k1|+

2
81
N3l

3.

Lemmas B and C are simple results of the interpolation theory in one variable.

As to Lemma A, let ω = β − α, where α and β are the angles made by s1 and s2,
respectively, with the positive direction of the x-axis (β > α). We have

k1 =
∂f

∂x
(P ) cosα+

∂f

∂y
(P ) sinα, k2 =

∂f

∂x
(P ) cosβ +

∂f

∂y
(P ) sinβ.

Solving these two equations with respect to ∂f
∂x ,

∂f
∂y we obtain

∂f

∂x
(P ) =

k1 sinβ − k2 sinα
sinω

,
∂f

∂y
(P ) =

−k1 cosβ + k2 cosα
sinω

.

Hence,

∣∣∣∣
∂f

∂t
(P )

∣∣∣∣ =
k1 sin(ω − ε) + k2 sin ε

sinω
� max

j=1,2
|kj |
sin(ω − ε) + sin ε

sinω
,

where ε is the angle which is made by the direction t with the direction s1. It is easy

to see that

max(sin(ω − ε) + sin ε) = 2 sin
ω

2
.

As 0 < ω � 1
3�, the assertion of Lemma A follows.

We sketch the proof of Lemma 2.2 only in the case that ψ has bounded derivatives
of the third order on T i. (For more details see [13].)

Let us denote the sides of T i by ai � bi � ci. By the second part of Lemma B we

have (with N3 = 2
√
2K3)

(2.27)

∣∣∣∣
∂ψ

∂s1
(P1)

∣∣∣∣ � 8
bi
η +

√
2
2
K3c

2
i ,

∣∣∣∣
∂ψ

∂s2
(P1)

∣∣∣∣ � 8
ci
η +

√
2
2
K3c

2
i ,
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s1 and s2 being now the directions of the sides bi and ci, respectively, and P1 the

vertex lying opposite the side ai. By Lemma A we obtain from inequalities (2.27)
that

(2.28)

∣∣∣∣
∂ψ

∂s
(P1)

∣∣∣∣ � 16
√
3
3

η

bi
+

√
6
3
K3c

2
i ,

s being any direction lying in the angle made by the sides bi and ci. Let P �= P1 be
an arbitrary point of T i and P ′ the point on the side ai which lies on the line going

through P1 and P . By the first part of Lemma B we obtain

|ψ(P ′)| � 5
4
η +
2
√
6
63

K3c
3
i .

This inequality, the assumption |ψ(P1)| � η and (2.28) imply, according to Lemma C,

|ψ(P )| � 5
4
η +
2
√
6
63

K3c
3
i +
4
√
3
3

ci
bi
η +

√
6
12
K3c

3
i +

√
2
20
K3c

3
i � 6η + 1

3
K3c

3
i

because ci/bi < 2. �

Lemma 2.2 and relations (2.8), (2.14), (2.25) imply the following estimates (we set

ψ = ∂ϕ
∂zi
):

(2.29)

∣∣∣∣
∂ϕ

∂zi
(P )

∣∣∣∣ � CM4h
3

sinω sinσ
∀P ∈ T i (i = 1, . . . , 4).

Using the angle σ, we can write estimates (2.10)–(2.13) for the derivatives with

respect to xi and yi also in a concise form:

∣∣∣∣
∂ϕ

∂xi
(P )

∣∣∣∣ �CM4h
3

sinσ
∀P ∈ T i (i = 1, . . . , 4),(2.30)

∣∣∣∣
∂ϕ

∂yi
(P )

∣∣∣∣ �CM4h
3

sinσ
∀P ∈ T i (i = 1, . . . , 4).(2.31)

As xiyizi are Cartesian coordinate systems, we have by (2.29)–(2.31) in the global
Cartesian coordinate system x, y, z

(2.32)

∣∣∣∣
∂ϕ

∂x
(P )

∣∣∣∣,
∣∣∣∣
∂ϕ

∂y
(P )

∣∣∣∣,
∣∣∣∣
∂ϕ

∂z
(P )

∣∣∣∣ � CM4h
3

sinω sinσ
∀P ∈ T i (i = 1, . . . , 4).

Let A ∈ K1 (A �= P1) be an arbitrary fixed point and �(A) the plane passing

through the point A and parallel to the (x, y)-plane. Let T = �(A) ∩K1. At every
point P ∈ ∂T estimates (2.32) are satisfied. Hence, using again Lemma 2.2,

(2.33)

∣∣∣∣
∂ϕ

∂x
(A)

∣∣∣∣,
∣∣∣∣
∂ϕ

∂y
(A)

∣∣∣∣,
∣∣∣∣
∂ϕ

∂z
(A)

∣∣∣∣ � CM4h
3

sinω sinσ
∀A ∈ K1.
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In estimating the function values we will use the following lemma which is proved

in [13, Lemma 5]:

Lemma 2.3. Let g(0) = η0, g(l) = η1, g′(0) = k0, g′(l) = k1 and |g(4)(s)| � K4

in (0, l). Then for s ∈ [0, l]

|g(s)| � max |ηj |+
4l
27
(|k0|+ |k1|) +

K4
16 · 24 l

4,

|g′(s)| � 3
2l
(|η0|+ |η1|) +

1
3
(|k0|+ |k1|) +

K4
24
l3.

Let A ∈ K1 be an arbitrary fixed point for which A �= P1. Let B ∈ T 1 be the
point lying on the line passing through P1 and A. Let us set l = dist(P1, B) and

consider the function g = ϕ
∣∣
P1B
. Then, using the first part of Lemma 2.3, we obtain

from relations (2.6), (2.8), (2.9), (2.10) and (2.29) (for i = 1)

(2.34) |ϕ(A)| � CM4h
4

sinω sinσ
∀A ∈ K1.

This result together with (2.33) is sufficient for obtaining all results introduced in

Section 3. Nevertheless, to satisfy the law of mathematical elegance we derive (at
least in the case of K1) an estimate for the function values independent of the

geometry of the tetrahedron considered.

The transformation

(2.35) x = hxξ, y = hyη, z = hzζ

with hx = P2P3, hy = P2P4, hz = P1P2 maps one-to-one the tetrahedron K1 lying

in the Cartesian coordinate system (x, y, z) onto the reference tetrahedron K0 lying
in the Cartesian system (ξ, η, ζ) and having the vertices

P ∗1 = [0, 0, 1], P
∗
2 = [0, 0, 0], P

∗
3 = [1, 0, 0], P

∗
4 = [0, 1, 0].

In the case considered both the coordinate systems are identical; however, this does

not violate the universality of the idea.

Let us define a function

(2.36) ϕ̃(ξ, η, ζ) =
1

M4h4
ϕ(hxξ, hyη, hzζ).
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As ϕ ∈ C4(K1), we have ϕ̃ ∈ C4(K0) and

Dαϕ̃(P ∗i ) = 0 |α| � 1 (i = 1, . . . , 4),(2.37)

|Dαϕ̃(ξ, η, ζ)| � 1 ∀ |α| = 4 ∀ [ξ, η, ζ] ∈ K0,(2.38)
∂ϕ̃

∂η
(Q∗23) = 0,

∂ϕ̃

∂ζ
(Q∗23) = 0,(2.39)

where Q∗23 corresponds to Q23 in transformation (2.35).

It remains to estimate
∣∣ ∂ϕ̃
∂ν2
(Q∗14)

∣∣ and
∣∣ ∂ϕ̃
∂ν3
(Q∗14)

∣∣, where Q∗14 corresponds to Q14
and νi is the unit normal to ∂T ∗i of the triangle T

∗
i which lies in the plane �

∗
i . (T

∗
i

corresponds to T i and �∗i to �i in (2.35).) Let s1 be the direction of
−−→
P1P4 and

s2, s3 two mutually orthogonal directions which are orthogonal to s1. Then we have
by (2.7)

(2.40)
∂ϕ

∂s2
(Q14) =

∂ϕ

∂s3
(Q14) = 0.

According to the second part of Lemma 2.3, we can write using (2.6) and (2.8)

(2.41)

∣∣∣∣
∂ϕ

∂s1
(Q14)

∣∣∣∣ � CM4h
3.

Relations (2.40) and (2.41) imply

(2.42)

∣∣∣∣
∂ϕ

∂x
(Q14)

∣∣∣∣,
∣∣∣∣
∂ϕ

∂y
(Q14)

∣∣∣∣,
∣∣∣∣
∂ϕ

∂z
(Q14)

∣∣∣∣ � CM4h
3.

Hence by (2.36) and (2.42)

(2.43)

∣∣∣∣
∂ϕ̃

∂ξ
(Q∗14)

∣∣∣∣ =
∣∣∣∣
1

M4h4
∂ϕ

∂x
(Q14)hx

∣∣∣∣ � C.

Similarly,

(2.44)

∣∣∣∣
∂ϕ̃

∂η
(Q∗14)

∣∣∣∣ � C,

∣∣∣∣
∂ϕ̃

∂ζ
(Q∗14)

∣∣∣∣ � C.

It is necessary to estimate ∂ϕ̃
∂ξi
, ∂ϕ̃

∂ηi
on T

∗
i for i = 1, . . . , 4. Theorem 2.1 implies

|Dα
1 ϕ̃(ξ1, η1)| � C∗1 |α| � 1, ∀ [ξ1, η1] ∈ T

∗
1,(2.45)

|Dα
4 ϕ̃(ξ4, η4)| � C∗4 |α| � 1, ∀ [ξ4, η4] ∈ T

∗
4,(2.46)
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where

(2.47) Dα
i u =

∂|α|u
∂xα1

i ∂yα2
i

, α = (α1, α2), |α| = α1 + α2.

Repeating the considerations of the proof of [12, Theorem 2.1], we obtain on the
base of (2.37), (2.43) and (2.44)

|Dα
2 ϕ̃(ξ2, η2)| � C∗2 |α| � 1, ∀ [ξ2, η2] ∈ T

∗
2,(2.48)

|Dα
3 ϕ̃(ξ3, η3)| � C∗3 |α| � 1, ∀ [ξ3, η3] ∈ T ∗3.(2.49)

Relations (2.37), (2.38) and (2.45)–(2.49) yield again by means of Lemma 2.2

(2.50)

∣∣∣∣
∂ϕ̃

∂ζ
(ξ, η, 0)

∣∣∣∣ � C∗ ∀ [ξ, η] ∈ T ∗1.

Let us choose an arbitrary fixed point A∗ ∈ K0 (A∗ �= P ∗1 ). Let B
∗ ∈ T

∗
1 be a

point lying on the line passing through P ∗1 and A
∗. Let us consider the function

g = ϕ̃
∣∣
P∗
1 B∗ . Then using the first part of Lemma 2.3, we obtain by means of (2.37)

(for i = 1), (2.45) and (2.50)

(2.51) |ϕ̃(A∗)| � C(K0) ∀A∗ ∈ K0,

where the constant C(K0) depends on the tetrahedron K0 only. Relations (2.36)

and (2.51) yield

(2.52) |ϕ(A)| � C(K0)M4h4 ∀A ∈ K1,

which was to be proved.

The second group of semiregular tetrahedral finite elements are tetrahedra with

two short edges (which cannot have a common vertex). A typical representative,
which will be denoted K2, can be obtained from K1 by contracting the edge P1P4
(and appropriately dilating the edges P1P2 and P1P3)—see Fig. 7. The definition
of the nodal points and of the parameters prescribed at them is in the case of K2

the same as in the case of K1. Parameters at Qij are prescribed as couples on both
short edges, at which faces making small angles meet. Hence, estimates (2.33) and

(2.34) can be obtained in the same way as in the case of K1.

It remains to analyze the case of tetrahedra with three short edges. The corre-

sponding representative tetrahedron, which will be denoted by the symbol K3, can
be obtained from K1 by contracting edges P2P4 and P3P4—see Fig. 8.
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x

z

yP1

P2 P3

P4

x

z

y

z

P1

P2 P3

P4

Fig. 7. Tetrahedron of typeK2 with
normals.

Fig. 8. Tetrahedron of typeK3 with
normals.

On edges, the nodal points Qij and parameters defined at them are prescribed in
a way different from the cases of K1 and K2 (cf. (2.7)):

(2.53)
∂ϕ

∂n1
(Q34) =

∂ϕ

∂n2
(Q34) =

∂ϕ

∂n3
(Q24) =

∂ϕ

∂n4
(Q23) = 0.

The way how to derive estimates (2.33) and (2.34) is only a simple modification of
the way used in the case of K1; thus we omit it. Hence, we arrive at the following

theorem:

Theorem 2.4. Let K be one of the tetrahedra K1, K2, K3. Let ϕ ∈ C4(K)
and let

|Dαϕ(P )| � M4 ∀ |α| = 4 ∀P ∈ K,(2.54)

Dαϕ(Pj) = 0 ∀ |α| � 1 (j = 1, . . . , 4),(2.55)

where P1, . . . , P4 are vertices of K in the order which is indicated in Fig. 5. Let in

the cases of K1 and K2 the remaining four conditions be of the form (2.7) and in
the case of K3 of the form (2.53). Then estimates of the type (2.33), (2.34) hold,

i.e.,

∣∣∣∣
∂ϕ

∂x
(A)

∣∣∣∣,
∣∣∣∣
∂ϕ

y
(A)

∣∣∣∣,
∣∣∣∣
∂ϕ

∂z
(A)

∣∣∣∣ � CM4h
3

sinω sinσ
∀A ∈ K,(2.56)

|ϕ(A)| � CM4h
4

sinω sinσ
∀A ∈ K,(2.57)
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where in the cases of K1 and K2 the angles ω and σ are defined in relations (2.24)

and in the case of K3 we have

(2.58) ω = min(ω12, ω23, ω24), σ = min(γ1, γ2, γ4, δ2, δ3).

������ 2.5. Assumption (2.54) can be weakened to the form

(2.59) |Dαϕ(P )| � M4 ∀|α| = 4, ∀P ∈ K,

whereK is the interior ofK. In the case (2.59) we can use the trick with an inscribed

tetrahedron K
′ ⊂ K in the same way as in [13]. Considerations connected with it

are cumbersome; thus we omitted it. Similar remark concerns (2.8).

������ 2.6. Similarly to the case of K1 estimate (2.57) can be improved to the
form (2.52). However, this improvement has no influence on the results introduced

in Section 3.

3. Applications of basic estimates

Theorem 3.1. A polynomial p(x, y, z) of degree not greater than three in three
variables is uniquely determined by its twenty values which have in the cases of K1

and K2 the form

Dαp(Pj) |α| � 1 (j = 1, . . . , 4),(3.1)
∂p

∂n1
(Q23),

∂p

∂n2
(Q14),

∂p

∂n3
(Q14),

∂p

∂n4
(Q23),(3.2)

where the meaning of the symbols Pi, Qjk and ni is the same as in Section 2. In the
case of K3 the twenty values have the form (3.1) and (3.3), where

(3.3)
∂p

∂n1
(Q34),

∂p

∂n2
(Q34),

∂p

∂n3
(Q24),

∂p

∂n4
(Q23).

�����. It is sufficient to prove the uniqueness. In the cases of K1 and K2, let
us assume that the values (3.1), (3.2) are equal to zero. Setting ϕ(x, y, z) = p(x, y, z)

in Theorem 2.4, we haveM4 = 0 and estimate (2.57) implies p(x, y, z) ≡ 0. The case
of K3 can be treated in the same way. �
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Theorem 3.2. Let u ∈ C4(K) and let |Dαu(P )| � M4 for all |α| = 4 and all
P ∈ K. Let p(x, y, z) be a polynomial of degree not greater than three which satisfies
for K = K1 or K = K2 the relations

Dαp(Pj) = Dαu(Pj) |α| � 1 (j = 1, . . . , 4),(3.4)
∂p

∂n1
(Q23) =

∂u

∂n1
(Q23),

∂p

∂n2
(Q14) =

∂u

∂n2
(Q14),

∂p

∂n3
(Q14) =

∂u

∂n3
(Q14),

∂p

∂n4
(Q23) =

∂u

∂n4
(Q23).

(3.5)

Then the function

(3.6) ϕ(x, y, z) ≡ u(x, y, z)− p(x, y, z)

satisfies relations (2.56)–(2.57). The modification of assumption (3.5) in the case of
K3 is obvious.

�����. It follows from the assumptions of Theorem 3.2 that function (3.6)

satisfies all conditions of Theorem 2.4. �

Of course, Theorems 3.1 and 3.2 hold not only for tetrahedra K1, K2 and K3 but
also for tetrahedra arising from K1, K2 and K3 by deformation (see, e.g., Fig. 9

where dist(P1, (y, z)) > 0 and possibly dist(P1, (x, z)) > 0). The proof of Theo-
rem 2.4 is in this case without any change, assuming that the resulting tetrahedra

remain semiregular.

x

y

z

P1

P2 P3

P4

Fig. 9. A general case of type K1.
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The tetrahedra used most frequently are flat tetrahedra which arise from K1 by

means of deformation (see Fig. 10). However, in such tetragonalizations the finite
element method cannot be used. The explanation is clear from Fig. 11: on a common
face of two tetrahedra the tenth parameters (i.e., normal derivatives) are situated on

different sides of the face; thus the continuity of the global function is not guaranteed.

x

y

z

Fig. 10. The use of semiregular tetrahedral elements.

x

y

z

Fig. 11. Disaster.

It seems that we have got into a blind alley. However, there is a remedy having at
least three variants which we will introduce. The first is sketched in Fig. 12. Instead

of prescribing two normal derivatives at the point Q12 in the directions n123 and n126
we prescribe only one in the normal direction n123 which lies in the plane P1P2P3.
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The twentieth parameter in the tetrahedron P1P2P3P6 will be prescribed at the point

Q26 as the normal derivative in the direction n∗126 which lies in the plane P1P2P6.
This is the only parameter prescribed at the point Q26. Instead of the derivative

∂ϕ
∂n264

(Q26) we prescribe the normal derivative
∂ϕ

∂n∗264
(Q46). If the tetragonalization

has only one layer (see Fig. 10) then we can prescribe at the point Q46 the derivative
∂ϕ

∂n456
(Q46) (in this case we obtain at this point a better accuracy—see later); however

for the symmetry reason we can prescribe the derivative ∂ϕ
∂n∗456

(Q45). Doing this
we obtain a piecewise polynomial function which is continuous in the polyhedron

with six vertices P1, . . . , P6 which consists of three tetrahedra P1P2P3P6, P1P2P6P4,
P2P6P4P5 with disjoint interiors.

x

y

z
P5

P2P4

P6

P1

P3

n∗264

n∗126

n126

n264

n∗456

n456

n123

Fig. 12. The remedy.

Of course, we must pay something for this change: now the semiregular (flat)

tetrahedron cannot have the short edge arbitrarily small; we must assume that (see
Fig. 13)

dist(P2, P3) = O(h
1+ε), 0 < ε < 3

with

sinω23 =
O(h1+ε)
O(h)

� Chε (0 < ε < 3).(3.7)

In applications we usually take (because of error estimates and a sufficient semireg-
ularity) ε = 1.

Inspecting the proof of Theorem 2.4 we see that at the point Q14 (a critical point—
this notion is used for a point in which the optimum estimate (2.25) does not hold)

311



x

y

z

P1

P2 P3

P4

Q23

Q24

Q14

n1 n4

n2

n3

Fig. 13. Concerning the estimates (3.9), (3.10).

we have

(3.8)

∣∣∣∣
∂ϕ

∂z2
(Q14)

∣∣∣∣,
∣∣∣∣
∂ϕ

∂z3
(Q14)

∣∣∣∣ � C∗h3−ε.

The other relations and estimates from (2.14), (2.15) and (2.25) remain without any
change. Thus, instead of estimates (2.56), (2.57) we derive

∣∣∣∣
∂ϕ

∂x
(A)

∣∣∣∣,
∣∣∣∣
∂ϕ

∂y
(A)

∣∣∣∣,
∣∣∣∣
∂ϕ

∂z
(A)

∣∣∣∣ � CM4h
3−ε

sinω sinσ
∀A ∈ K1,(3.9)

|ϕ(A)| � CM4h
4−ε

sinω sinσ
∀A ∈ K1,(3.10)

where 0 < ε < 3.

The second variant: Instead of conditions

∂ϕ

∂n2
(Q14) =

∂ϕ

∂n3
(Q24) = 0

we prescribe

ϕ(S2) = ϕ(S3) = 0

where S2 and S3 are the centers of gravity of the triangular faces T2 and T3, respec-
tively. We have again one critical point Q14 at which (3.8) holds with a presumably

greater constant C∗. (This fact follows from [13, Theorem 2].) Thus we arrive again
at estimates (3.9), (3.10).
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The third variant (the case of the classical parameters for the cubic Hermite tetra-

hedral finite element): Instead of four normal derivatives (see Fig. 13) we prescribe

ϕ(Si) = 0 (i = 1, . . . , 4)

where Si is the center of gravity of the triangular face Ti (i = 1, . . . , 4). In this case all
six midpoints Qij of the edges PiPj are critical points (this follows from the estimates

for gradients in the case of regular triangular cubic elements with sinα � Ch—see
[13, Theorem 2]); we have instead of (2.15), (2.25)

∣∣∣∣
∂ϕ

∂zi
(Qjk)

∣∣∣∣ � C∗h3−ε (i = 1, . . . , 4; j �= i, k �= i, k �= j).

Estimates (3.9), (3.10) again hold; only numerical experiments will show whether the
third variant is worse (because of six critical points instead of one; this fact follows

again from [13, Theorem 2]).
Using estimates (3.9), (3.10), we can prove a general convergence theorem of the

finite element method for a finite element procedure using Hermite tetrahedral fi-
nite C0-elements just described (this means, to prove the convergence of the finite

element method without any rate of convergence under the assumptions guaran-
teeing the unique existence of the solution of the given variational problem only).
We restrict ourselves, for simplicity, to the linear problem corresponding to a mixed

boundary value problem of the Poisson equation with the homogeneous Dirichlet
boundary condition on Γ1 in a bounded polyhedral domain Ω (without use of nu-

merical integration), where Γ1 ⊂ ∂Ω, meas2 Γ1 > 0 (we assume that Γ1 is a union of
polygons which can lie in different faces of Ω): Find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V,

where

V = {v ∈ H1(Ω): v = 0 on Γ1},

a(u, v) =
∫∫∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
+
∂u

∂z

∂v

∂z

)
dxdy dz,

L(v) =
∫∫∫

Ω
vf dxdy dz +

∫∫

Γ2

vq dσ (Γ2 = ∂Ω− Γ1)

with f ∈ L2(Ω) and q ∈ L2(Γ2).
We divide the given polyhedral domain Ω (in this case usually narrow) into semi-

regular tetrahedra in such a way that each two tetrahedra are either disjoint, or have
a common vertex, or a common edge, or a common face and

(3.11) ω � ω0 > 0, σ � σ0 > 0
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and consider a sequence {Dh} of such divisions, where every member satisfies (3.11)
and assumption (3.7) and where h→ 0 (with h being the length of the largest edge
in the given division). We define on every division Dh the finite dimensional space

Vh = {v ∈ C0(Ω): v(x, y, z) = p(x, y, z) ∀(x, y, z) ∈ K ⊂ Dh, v = 0 on Γ1},

where p(x, y, z) is the polynomial from the remedy. We look for a uh ∈ Vh such that

a(uh, v) = L(v) ∀v ∈ Vh.

The theorem on the convergence of Galerkin’s method says that if

(3.12) dist(Vh, v) = inf
w∈Vh

‖w − v‖1,Ω → 0 ∀v ∈ V

then

(3.13) ‖u− uh‖1,Ω → 0.

It is sufficient to prove (3.12) for all v ∈ C∞(Ω) ∩ V because C∞(Ω) ∩ V is dense
in V .

Let v0 ∈ C∞(Ω) ∩ V be an arbitrary fixed function. It satisfies the relation

|Dαv0(x, y, z)| � M4(v0) [x, y, z] ∈ Ω, |α| = 4,

whereM4(v0) is a constant depending on v0. We construct a function wh ∈ Vh which

on tetrahedra K ∈ Dh is equal to our polynomials determined by parameters equal
to the corresponding parameters of the function v0(x, y, z). We have

‖wh − v0‖21,Ω =
∑

K⊂Dh

∫∫∫

K

∑

|α|�1
[Dα(wh − v0)]2 dxdy dz.

Hence, according to estimates (3.9), (3.10) and assumptions (3.7) and (3.11),

‖wh − v0‖1,Ω � C

sinω0 sinσ0
M4(v0)h3−ε.

Thus ‖wh − v0‖1,Ω → 0 for h→ 0 and as

dist(Vh, v0) � ‖wh − v0‖1,Ω,

relation (3.12) follows and (3.13) holds.

If u ∈ C1(Ω) and |Dαu(x, y, z)| � M4(u) for all [x, y, z] ∈ Ω with all |α| = 4 then
we can prove in a similar way that

(3.14) ‖uh − u‖1,Ω � C

sinω0 sinσ0
M4(u)h3−ε.

This means that the maximum rate of convergence in the case of our finite elements
is O(h3−ε).
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