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Abstract. The present paper describes mobile carrier transport in semiconductor devices
with constant densities of ionized impurities. For this purpose we use one-dimensional
partial differential equations. The work gives the proofs of global existence of solutions
of systems of such kind, their bifurcations and their stability under the corresponding
assumptions.
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Introduction

This paper intends to extend the theory of L. Recke [1]. In his paper he considers a

simple mathematical model describing the mobile carrier transport in semiconductor
devices. Two functions E(x) and n(x) describe the electric field strength and the

density of mobile electrons and satisfy under 0 < x < 1 the system

(
D(|E|)(n′ + nE)

)′
= 0,(1)

E′ = f − n

and boundary conditions

(2) E(0) = E(1) = E0, D(|E(0)|)
(
n′(0) + n(0)E(0)

)
= j0.
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Here the constant f > 0 represents the homogeneous density of ionized impurities,

D(|E|) is the diffusion coefficient, j0 is the electron current density for x = 0. For
sake of definiteness we shall presume E0 > 0. The paper [1] proposes

(3) j0 = D(E0)E0f.

Under such conditions the problem (1)–(3) has a trivial solution E(x) = E0,

n(x) = f . If K(E0) < 0 (where K(E0) = 1 +D′(E0)E0D−1(E0)), then there exists
a denumerable set of points fk(E0) = −K(E0)−1(E20/4 + �

2k2), k = 1, 2, . . ., in the

neighbourhood of which small bifurcational solutions of the problem (1)–(3) appear
[1]. In this paper we prove that the condition K(E0) < 0 implies that the diffusion

coefficient D as a function of the field strength has an N -shaped form and contains
an interval (E1, E2), in which this function has a negative derivative and D(E0) +

E0D
′(E0) < 0, i.e. the so called condition of negative differential conductivity (NDC)

is valid. In Section 1 we prove that the NDC-condition is necessary and sufficient for

the existence of bifurcational solutions of the problem (1)–(3). Then in Section 2 the
extendibility of the bifurcation branch for large parameters is demonstrated. The

corresponding bifurcational problem can be considered as an eigenvalue nonlinear
problem; in Section 3 we discuss forms of eigenfunctions of this problem. It appears

that the asymptotic behaviour of bifurcational solutions under large values of the
parameter f depends essentially on the parameter E0. In Section 4 we prove that in

the interval (E1, E2) there exists a unique point E∗0 such that the so called interior
transition layer phenomena [2], [3] arise in the problem (1)–(3). If E0 ∈ (E1, E2) but
E0 �= E∗0 , then the asymptotic behaviour of bifurcational solutions has a completely
different nature. In Section 5 the existence and uniqueness of solutions of an initial-
boundary value problem for the nonstationary version of (1)–(3) for every t > 0 is

discussed; this theory is applied to investigate stability and instability of bifurcational
solutions. It appears that the stability of the first (positive) and the second (negative)

eigenfunctions depends also on the parameter E0. In Section 6 it is proved: if
E0 = E∗0 , then the pair eigenfunctions are stable; if E1 < E0 < E∗0 , then only the

negative function is stable, and if E∗0 < E0 < E2 or vice versa, only the positive one
is stable. Other eigenfunctions are unstable for any E0 ∈ (E1, E2) for those values
of the parameter f for which they exist. In the last Section 7 the existence of a
parabolic travelling wave for E0 = E∗0 and its stability for sufficiently large f are

proved.
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1. Existence of bifurcational solutions dependent

on the parameter E0

The problem (1)–(3) is equivalent to the boundary value problem

E′′ + E′E = fH(E,E0), 0 < x < 1,(4)

E(0) = E(1) = E0,

where H(E,E0) = E − E0D(E0)D−1(|E|). This problem has a trivial solution
E(x) = E0 for any f . Let the diffusion coefficient satisfy the conditions

1) D(y) ∈ C(2)(�+ ), D : �+ → �+ ;

2) D(y) has a unique local maximum and a unique point of inflection for y > 0;

3) lim
y→+∞

D(y) = D0 > 0.

Let E(x) = E0 + u(x) and g(u) = D(E0)D−1(|E0 + u|)− 1. The function g(u) is
continuously differentiable for u �= −E0 and

0 < gi = sup
u

∣∣g(i)(u)
∣∣ < +∞, i = 0, 1.

Proposition 1.1. If the inequality f < �
2

E0g1
is valid, then the problem (4) has a

unique (trivial) solution.

�����. Let us write the problem (4) in the form

−u′′ − E0u
′ + fu− u′u = E0fg(u),(5)

u(0) = u(1) = 0

and let u be a nontrivial solution of this problem. Multiplying the equation (5) by
u(x) and integrating by parts we obtain

∫ 1

0
u′
2(x) dx � E0fg1

∫ 1

0
u2(x) dx,

and since

(6) �
2
∫ 1

0
u2(x) dx �

∫ 1

0
u′
2(x) dx,

the estimate f � �
2

E0g1
holds, which gives Proposition 1.1. �
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Let C(2)0 ([0, 1]) be the space of functions u(x) which are continuous on [0, 1], have
continuous second derivatives on (0, 1) and satisfy the conditions u(0) = u(1) = 0;

let C([0, 1]) be the space of continuous functions on [0, 1]. We will consider the
problem (5) as a nonlinear eigenvalue problem:

Lu+ fK(E0)u +N(E0, f, u) = 0,(7)

u(0) = u(1) = 0,

where Lu = −u′′ − E0u
′ is a linear operator mapping from X = C

(2)
0 ([0, 1]) into

Y = C([0, 1]), K(E0) = 1 +D′(E0)E0D−1(E0), and

N(E0, f, u) = −u′u− E0f

(
D(E0)

D(|E0 + u|)
+
D′(E0)u
D(E0)

− 1
)

is a nonlinear mapping from �
2 × X into Y . By S we denote the closure of the

set of all nontrivial solutions (f, u) ∈ � × X to (7) with u �=0, and let Sk be the
maximal connected component of S containing (fk, 0), fk = −K(E0)−1(E20/4+�2k2),
k = 1, 2, . . .

Theorem 1.1 [1]. Suppose K(E0) < 0. Then the following holds:
(i) Sk is unbounded;

(ii) suppose (f, u) ∈ Sk and u �≡ 0. Then u(x) has exactly (k + 1) zeros in [0, 1],
and all zeros are simple;

(iii) for all k ∈ � there exists a constant sk > 0, a neighbourhood Uk ⊂ � × X

of (fk, 0) and two C1-mappings f̂k : (−sk, sk) → �, ûk : (−sk, sk) → X such

that f̂k(s) = fk + O(s), ûk(s) = suk(x) + O(s2) for s → 0 and S ∩ Uk ={
(f̂k(s), ûk(s)) : |s| < sk

}
, where uk(x) = e−E0 x/2 sin(�kx).

These solutions are called the bifurcational ones [4].

It is fairly evident that the condition K(E0) < 0 is equivalent to the condition of

negative differential conductivity (NDC) (see Introduction).

Proposition 1.2 [5]. Let D(|E|) satisfy the NDC. Then there exists a unique E∗0
such that

a) 0 < G(Emin) < G(E∗0 ) < G(Emax), where Emax, Emin are the local extrema of
the function G(E) = ED(E) for E > 0;

b) the derivative G′(E0) < 0 for E0 ∈ (Emax, Emin), which is equivalent to the
condition K(E0) < 0;

c) the equation H(E,E0) = 0 for E0 ∈ (Emax, Emin) has only three positive solu-
tions 0 < E1(E0) < E0 < E2(E0), moreover H ′

E

(
Ei(E0), E0

)
> 0, i = 1, 2;
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d)
∫ E

E1(E∗
0 )
H(s, E∗0 ) ds

{ > 0 for E ∈
(
E1(E

∗
0 ), E2(E

∗
0 )

)
,

= 0 for E = E2(E∗0 ).

Let us analyze for which values of the parameter E0 nontrivial solutions of prob-

lem (4) exist.

Proposition 1.3. If 0 < E0 � Emax or E0 � Emin then the problem (4) has

only the trivial solution E(x) = E0. If E0 ∈ (Emax, Emin) then the problem (4) has
nontrivial (bifurcational) solutions.

�����. If E0 ∈ (Emax, Emin) then G′(E0) < 0, i.e. K(E0) < 0 and by virtue
of Theorem 1.1 the problem (4) has nontrivial solutions. If 0 < E0 � Emax or
E0 � Emin then K(E0) � 0. Let us consider the problem (7). Further we prove that
if K(E0) � 0, then this problem has no small nontrivial solutions; from this and from
Rabinowitz’s results (see Theorem 2.3 [6]) it follows that the problem (7) cannot have

any nontrivial solutions. The problem (7) can be linearized in the neighbourhood of
a zero solution

Lu = −fK(E0)u,
u(0) = u(1) = 0.

Since the last form of the problem has only a zero solution, the problem (7) has no
nontrivial solutions. �

2. Extendibility of bifurcational solutions
with respect to parameter f

We show in this section that the bifurcation branch is extendible for parameters
f > fk, where fk = −K(E0)−1(E20/4+ �

2k2), k = 1, 2, . . . Let us prove the following

proposition.

Proposition 2.1. Let E0 ∈ (Emax, Emin). Then there exists a positive contin-
uous function ϕ(f) : �+ → �+ that for any solution (u, f) of the problem (7) the

inequality

(8) ‖u‖X(f) � ϕ(f)

is fulfilled.
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�����. From the form of the differential equation and the inequality (6) we

have an estimate

(9) ‖u′‖L2 � �
−1E0fg0.

This estimate gives an analogous estimate in the norm of C0([0, 1]). The estimate of

u′′(x) is based on (7) and on inequalities (6) and (9). As a result we have

‖u′′‖L2 � c1f
2 + c2f3 + c3f4,

where constants ci depend only on E0 and g0. The same estimate is valid for u(x)
in the norm of C(1)([0, 1]). To estimate the uniform norm of u′′(x) the equation (7)
can be used; it gives the estimate (8).

Now let us return to the problem (7). If E0 ∈ (Emax, Emin), then it follows from
the proposition a) of Theorem 1.1 and Propositions 1.1, 2.1 that the bifurcational

solutions, which were obtained in the proposition b) of Theorem 1.1, are extendable
with respect to the parameter f for any f > fk, k = 1, 2, . . .

To synthesize these results we denote by U+k the set of u(x) ∈ X which have (k+1)
simple zeros and sign

x→0+
u(x) = 1, U−k = −U+k , k ∈ �. �

Theorem 2.1. Given E0 ∈ (Emax, Emin), then for every k ∈ �, every ν = + or −
and for every f > fk there exists at least one solution u(x) of the boundary value
problem (7) such that u ∈ Uν

k .

Theorem 2.1 is proved analogously to Theorem 2.3 [6], because the linear oper-

ator L from (7) satisfies the maximum principle. Note that if (f, u) is a solution
of (7) and u has a double zero, then the behaviour of operator N near the double

zero and the linearity of L and fK(E0)u imply that u = 0 on [0, 1]. Therefore, in
particular, any solution (f, u) of (7) with uν

k(x) ∈ ∂Uν
k satisfies u = 0. In the sequel

the functions uν
k(x) ∈ Uν

k will be called eigenfunctions of the nonlinear operator of
the problem (7).

3. Forms of eigenfunctions

To investigate the forms of these eigenfunctions let the problem (4) be reformulated
as

−E′′ − E′E = f
(
G(E0)−G(E)

)
D−1(|E|),(10)

E(0) = E(1) = E0.
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If E0 ∈ (Emax, Emin) and (f,E) is a nontrivial solution of the problem (10), then
for each x ∈ [0, 1] the inequality E1(E0) < E(x) < E2(E0) is fulfilled. In this
inequality Ei(E0) (i = 1, 2) is the solution of the equation H(E,E0) = 0, which was
mentioned in Proposition 1.2. This result follows from the fact that the constants

E0, E1(E0) and E2(E0) are solutions of the differential equation (10).

The solution E(x) of the problem (10) will be called a positive one if the corre-

sponding function u(x) = E(x)− E0 is positive on (0, 1).

Let E(x) be a positive solution of the problem (10). Let us prove that E(x) has
only one maximum. If it is not so, then there exists such x0 ∈ (0, 1) that E(x0) is a
local minimum. However then

0 � −E′′(x0) = f
(
G(E0)−G(E(x0))

)
D−1(E(x0)) > 0,

which is impossible.

Theorem 1.1 shows that each solution from Sk has (k + 1) simple zeros on [0, 1];

similar reasoning gives the next result.

Proposition 3.1. Let E(x) = u(x)+E0 be such a solution of the boundary value
problem (10) that (f, u) ∈ Sk, k = 1, 2, . . .. Then

a) if k = 2n, then E(x) has n maxima and n minima;

b) if k = 2n+ 1, then the numbers of minima and maxima differ by 1.

4. Asymptotic behaviour of the eigenfunctions

for large values of parameter f

The case of large concentrations of ionized impurities is of great interest for phys-

ical applications. Mathematically this fact can be associated with the asymptotical
behaviour of the eigenfunctions for large values of the parameter f . Let the prob-

lem (4) be formulated as

εE′′ + εE′E = H(E,E0),(11)

E(0) = E(1) = E0,

where ε = f−1, H(E,E0) = E − E0D(E0)D−1(|E|).
Let uν

k(x, f) be the bifurcational solutions of the problem (7), f > fk, k = 1, 2, . . .,
ν = +,−. Then Eν

k (x, ε) = u
ν
k(x, ε

−1) +E0 are solutions of the problem (11), which

are defined for 0 < ε < εk, where εk = f−1k . We will call them the eigenfunctions
of the problem (11). Let E0 ∈ (Emax, Emin) and Ei(E0), i = 1, 2 be two positive
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solutions of the equation H(E,E0) = 0 from Proposition 1.2. The main results of

this section are the next three theorems.

Theorem 4.1. Given E0 ∈ (Emax, E∗0 ), the families of solutions E−1 (x, ε),
E±k (x, ε), k = 2, 3, . . ., have the following properties:

lim
ε→0+

E−1 (x, ε) = E1(E0) uniformly for every compact set from (0, 1);

lim
ε→0+

E±k (x, ε) = E1(E0) almost everywhere on (0, 1).

Theorem 4.2. Given E0 ∈ (E∗0 , Emin), the families of solutions E+1 (x, ε),
E±k (x, ε), k = 2, 3, . . ., have the following properties:

lim
ε→0+

E+1 (x, ε) = E2(E0) uniformly for every compact set from (0, 1);

lim
ε→0+

E±k (x, ε) = E2(E0) almost everywhere on (0, 1).

The asymptotic behaviour of the eigenfunctions of the problem (11) sharply

changes when E0 = E∗0 . In this case the families of solutions have interior transition
points.

Definition [2]. Let E(x, ε) be the family of solutions for the problem (10), de-
fined for sufficiently small ε > 0. A point x0 ∈ (0, 1) is called a transition point
(interior transition one), if for some δ > 0 the condition

lim
ε→0+

E(x, ε) =

{ E1(E0), x0 − δ < x < x0,

E2(E0), x0 < x < x0 + δ

is fulfilled (or an analogous condition where E2(E0) and E1(E0) are inserted in place

of E1(E0) and E2(E0)).

Theorem 4.3 states that there exists a family of solutions of the problem (11) with

an arbitrary large number of transition points of such solutions.

Theorem 4.3. Given E0 = E∗0 , the problem (11) has families of solutions

E±k (x, ε), k = 1, 2, . . . defined for sufficiently small ε; moreover, every family E
±
k (x, ε)

has exactly k − 1 transition points in the interval (0, 1).

The proofs of these theorems follow from some results of R. O’Malley [7] and the
next three propositions. It appears that the asymptotic behaviour of the solutions of
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the problem (11) depends essentially on the properties of such differential equations

as

ÿ +
√
εẏy −H(y,E0) = 0,(12)

ü−H(u,E0) = 0.(13)

Proposition 4.1. Given E0 ∈ (Emax, E∗0 ), then for sufficiently small ε > 0 the dif-
ferential equation (12) has a solution y(t, ε) such that lim

t→+∞
y(t, ε) = lim

t→−∞
y(t, ε) =

E1(E0), and
lim

ε→0+
y(t, ε) = y0(t), t ∈ �,

where y0(t) is the solution of the equation (13); for this solution we have

lim
t→+∞

y0(t) = lim
t→−∞

y0(t) = E1(E0).

�����. Since E0 ∈ (Emax, E∗0 ), Proposition 1.2 gives
∫ E2(E0)

E1(E0)
H(s, E0) ds < 0.

Therefore it can be obtained from Proposition 5 (see theorem from [7]) that the
equation (13) has a solution y0(t) with the properties mentioned above.

Rewrite for convenience the equation (12) as

(14) G1(ÿ, ẏ, y, ε) = ÿ + εẏy −H(y,E0) = 0.

Substitution y − y0 = v gives

(15) G1(ÿ0 + v̈, ẏ0 + v̇, y0 + v, ε) = ÿ0 + v̈ + ε(ẏ0 + v̇)(y0 + v)−H(y0 + v,E0) = 0,

where lim
|t|→∞

v(t, ε) = 0.

Lemma 4.2 [3] states that the left-hand side of (14) defines an operator G̃1(v, ε)
from X×�1 into Y , where X = H2∩C2, Y = H0∩C0 are equipped with the norms

‖v‖X = |v|2 +
( 2∑

k=0

∫ +∞

−∞
|v(k)(η)|2 dη

)1/2
, ‖v‖Y = |v|0 +

(∫ +∞

−∞
v2(η) dη

)1/2
.

Let us verify the conditions of Lemma 3.1 [3]:
(i) M ≡ G̃1, m(v, ε) ≡ v(0), G̃1(0, 0) = 0, m(0, 0) = 0;

(ii) Φ = ẏ0 ∈ X , 〈Φ∗, v〉 =
∫ +∞
−∞ ẏ0v dη, R(M1(0, 0)) = {v ∈ Y : 〈Φ∗, v〉 = 0},

where M1(0, 0)w = ẅ −H ′(y0)w;

(iii) 〈Φ∗,M2(0, 0; 1)〉 =
∫ +∞
−∞ ẏ0ẏ0y0 dη �= 0;

(iv) m1(0, 0; Φ) = Φ(0) �= 0.
This lemma implies Proposition 4.1. The next proposition is proved in the same

way. �
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Proposition 4.2. Given E0 ∈ (E∗0 , Emin), then for sufficiently small ε > 0 the dif-
ferential equation (12) has a solution y(t, ε) such that lim

t→+∞
y(t, ε) = lim

t→−∞
y(t, ε) =

E2(E0) and lim
ε→0+

y(t, ε) = y0(t), t ∈ �, where y0(t) is the solution of the equa-

tion (13); for this solution we have lim
t→+∞

y0(t) = lim
t→−∞

y0(t) = E2(E0).

We have now the situation where E0 = E∗0 .

Proposition 4.3. Given E0 = E∗0 , then for sufficiently small ε > 0 the differential
equation (12) has a solution y(t, ε) such that lim

t→+∞
y(t, ε) = E2(E∗0 ), limt→−∞

y(t, ε) =

E1(E∗0 ) and lim
ε→0+

y(t, ε) = y0(t), t ∈ �, where y0(t) is the solution of (13), for which

lim
t→+∞

y0(t) = E2(E∗0 ), limt→−∞
y0(t) = E1(E∗0 ).

�����. We will use the results of P. Fife [3]. The equation εE′′ + εE′E −
H(E,E∗0 ) = 0 can be rewritten as F (εE

′′,
√
εE′, E, ε) = 0. Substitution t =

x− c/
√
ε, where c is an arbitrary constant, gives

(16) F (εE′′,
√
εE′, E, ε) ≡ G(ÿ, ẏ, y, ε) = ÿ +

√
εẏy −H(y,E∗0 ) = 0.

The function y0(t) = y(t, 0) satisfies the equation

(17) G(ÿ0, ẏ0, y0, 0) = ÿ0 −H(y,E∗0 ) = 0.

The properties c) and d) of Proposition 1.2 are equivalent to the fact that the

equation (17) has a solution y0(t) satisfying the conditions y0(−∞) = E1(E∗0 ),
y0(+∞) = E2(E∗0 ). It appears that the conditions c) and d) from Proposition 1.2

are sufficient for the existence of a solution y(t, ε) of the equation (16). This so-
lution is defined for sufficiently small ε > 0 and satisfies y(−∞, ε) = E1(E∗0 ),

y(+∞, ε) = E2(E∗0 ). This fact can be obtained from the following special case
of Theorem 4.1 [3]. �

Proposition 4.4 [3]. The conditions
1) H ′

E

(
Ei(E∗0 ), E

∗
0

)
> 0, i = 1, 2;

2)
∫ E

E1(E∗
0 )
H(s, E∗0 ) ds

{ > 0, E ∈
(
E1(E

∗
0 ), E2(E

∗
0 )

)
,

= 0, E = E2(E∗0 )

are sufficient for the existence of a family of solutions y(t, ε) of the differential equa-

tion (16); these solutions are defined for t ∈ � and for sufficiently small ε > 0 and
are uniformly continuous on ε; they satisfy y(−∞, ε) = E1(E∗0 ), y(+∞, ε) = E2(E∗0 ).

Let us return to the proof of Theorem 4.1. It is rather easy to prove that the
rest point (E0, 0) is a stable focus for sufficiently small ε > 0. By Cε we denote a
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closed loop which circles the point (E0, 0), coming out from the point (E1(E0), 0)

and returning to it. Then there exists a trajectory y(t, ε) within the domain which
is formed by the loop Cε; this trajectory has the following properties: ω(y(t, ε)) =
(E0, 0), α(y(t, ε)) = Cε, where α(y) and ω(y) are the α-limit set and the ω-limit

set of y(t, ε) [8]. Consider an arbitrary solution E(x, ε) of the problem (11). The
function y(t, ε) = E(

√
εt+ 1, ε) is a solution of the boundary value problem

ÿ +
√
εẏy −H(y,E0) = 0,(18)

y(0) = E0, y
(
− 1√

ε

)
= E0.

Since α(y(t, ε)) = Cε ⊃ (E1(E0), 0) and the point (E1(E0), 0) is a unique saddle
point with a separatrix Cε, Theorem 4.1 can be obtained by the reasoning used in
the 5-th proposition of R. O’Malley’s theorem [7].

Proof of Theorem 4.2 completely repeats that of Theorem 4.1.
The closed loop Cε is an α-limit set for any solution of the problem (18). When

E0 = E∗0 the loop Cε has two saddle points (E1(E∗0 ), 0) and (E2(E
∗
0 ), 0); this fact

and the 4-th proposition of O’Malley’s theorem [7] give Theorem 4.3.

5. Nonstationary initial-boundary value problem.
Existence and uniqueness of solutions for t > 0

It is easy to prove that the problem (4) is a stationary problem for the following
nonstationary problem [8]:

D(|E|)−1 ∂E
∂t
=
∂2E

∂x2
+
∂E

∂x
E − fH(E,E0),(19)

E(0, t) = E(1, t) = E0,

E(x, 0) = Ẽ(x).

The problem (19) is equivalent to the boundary value problem

D(|u + E0|)−1
∂u

∂t
=
∂2u

∂x2
+ E0

∂u

∂x
+
∂u

∂x
u− fh(u,E0),(20)

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x),

where h(u,E0) = H(u+ E0, E0), u0(x) = Ẽ(x)− E0.

Consider the space X = L2(0, 1) and the operator A = − d2

dx2 − E0
d
dx with the

domain of definition D(A) = H2(0, 1)∩H10 (0, 1) and D(A1/2) = X1/2 = H10 (0, 1). It
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is easy to prove that for the operator F : H10 (0, 1)→ L2(0, 1), defined by the formula

F (ϕ)(x) = ϕ(x)ϕ′(x)− fh(ϕ(x), E0), 0 < x < 1,

the conditions of Theorems 3.3.3 and 3.3.4 [8], are fulfilled. To this end it is sufficient

to prove that

1) ‖F (ϕ)‖L2 � c‖ϕ‖2
H1
0
, i.e. F maps bounded subsets of H10 (0, 1) to bounded sub-

sets of L2(0, 1);

2) F is locally Lipschitzian.

Using the Theorems 3.3.3 and 3.3.4 [8], we can formulate the following proposition.

Proposition 5.1. A unique solution u(x, t) of Cauchy problem (20) exists on
some maximal interval 0 � t � t̄. Moreover, this solution exists for any initial

condition and either t̄ = +∞ or ‖u(x, t)‖H1
0
→ +∞ for t→ t̄.

To prove the following proposition we need Theorem 3.5.2 [8] on a smoothing
differential operator.

Proposition 5.2. The solution u(x, t) of the nonstationary problem (20) is a
classical solution.

�����. u(t;u0) ∈ D(A) for t > 0. The function t 
→ du
dt ∈ H10 (0, 1) is locally

Gölderian (see theorem 3.5.2 [8]). Therefore the functions

(x, t) 
→ u(x, t;u0),
∂u

∂t
(x, t;u0)

are continuous for t0 < t < t̄ and x ∈ [0, 1]. Since u ∈ D(A), we have u′ ∈ W 1
2 (0, 1) ⊂

C(0, 1). There exists δ > 0 such that F (u) ∈ Cδ(0, 1), u(·, t) ∈ C2+δ(0, 1). Thus, for

t > 0 the function (x, t) 
→ u(x, t;u0) is continuously differentiable by t and twice
continuously differentiable by x; therefore it is a classical solution of (20). �

The main item of this section is the following proposition, based on the concept

of the dynamical system for parabolic equations [8].

Proposition 5.3. The nonstationary problem (20) defines a dynamical system
in the set C = {u ∈ H10 (0, 1)

∣∣σ1(E0) � u(x) � σ2(E0) almost everywhere on [0, 1]},
where σi(E0) = Ei(E0)− E0, i = 1, 2.

�����. First consider the fact that the solution u(x, t) of the problem (20) with

the initial condition u0 ∈ C cannot leave the set C on the interval of its existence. For
this we use a version of the maximum principle. Let t1 be a minimal value t1 ∈ (0, t̄),
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so that the solution u(x, t1) of the problem (20) has a local maximum σ = u(x1, t1),

where x1 ∈ (0, 1) and σ > σ2(E0) > 0, i.e. ∂u
∂x (x1, t1) = 0,

∂2u
∂x2 (x1, t1) � 0. Then

from the differential equation (20) we obtain that since (−h(σ,E0)) < 0, we have
u̇(x1, t1) < 0.

Furthermore, the solution u(x, t) of the problem (20) cannot have a local minimum
whose value is less than σ1(E0) < 0 (the proof is quite similar). Prove that the

solution of (20) exists for any t � 0. Let it be not so. Then Proposition 5.1 gives
that

∫ 1
0 u

′2(x, t) dx is unbounded for t→ t̄. Multiplying the equation (20) by u and

integrating its parts over [0, 1] gives

∫ 1

0

u̇u

D(|u + E0|)
dx = −

∫ 1

0
u′
2 dx− f

∫ 1

0
h(u,E0)u dx.

The integral
∫ 1
0

u̇u
D(|u+E0|) dx → −∞ for t → t̄, because

(
−f

∫ 1
0 h(u,E0)u dx

)
is

uniformly bounded for t. But the latter statement is impossible because Gron-

wall’s inequality ϕ̇ � −c1ϕ + c2 (ci > 0, i = 1, 2) is valid for the function ϕ(t) =∫ 1
0 g

(
u(x, t)

)
dx, where g(u) =

∫ u

0 sD
−1(|s+ E0|) ds. �

6. Stability and instability of eigenfunctions

This section deals with stability of solutions for the stationary problem (11) viewed
as stationary solutions to the corresponding nonstationary problem by the linear

approximation. To this aim we need two theorems (5.1.1 and 5.1.3) from [8], which
give sufficient conditions of stability and instability of such solutions. Let Eν

k (x, ε)

be the solutions of the problem (11) from Section 4 defined for sufficiently small ε,
ν = +,−; k = 1, 2, . . . The two following theorems form the main subject of this
section.

Theorem 6.1.
1) If Emax < E0 < E∗0 , then the solution E

−
1 (x, ε) of the problem (11) is stable for

sufficiently small ε;

2) if E∗0 < E0 < Emin, then the solution E
+
1 (x, ε) of the problem (11) is stable for

sufficiently small ε;

3) if E0 = E∗0 , then both solutions E
±
1 (x, ε) of the problem (11) are stable for

sufficiently small ε.

Theorem 6.2. The solutions E±k (x, ε) are unstable for 0 < ε < εk for every

E0 ∈ (Emax, Emin) and for each k = 2, 3, . . .
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������. It is easy to prove, similarly to Theorems 6.1, 6.2, that for ε > ε1 the

trivial solution E(x) = E0 is stable, for 0 < ε < ε1 it is unstable. Theorem 6.1 states
that the solutions are stable only for sufficiently small ε > 0. Apparently this fact is
not accidental; it is quite possible for the solutions E±1 (x, ε) to be unstable when ε

is not small.

Proofs of Theorems 6.1 and 6.2 must be preceded by a rather special pream-
ble. First let us discuss the case when Emax < E0 < E∗0 . For such E0 we have∫ E2(E0)

E1(E0)
H(s, E0) ds < 0 and the problem

ẑ′′0 = H(E1(E0) + ẑ0, E0),(21)

ẑ0(0) = E0 − E1(E0), ẑ0(+∞) = 0

has a unique solution ẑ0(t) which is a strongly monotonous function [7]. Let ζ(y)
be a cut-off function from the C∞-class and let the conditions 0 � ζ � 1, ζ ≡ 1
for 0 � y � 1/4, ζ ≡ 0 for y � 1

2 , be fulfilled for it. Let z0(x, ε) = ẑ0
(

x√
ε

)
ζ(x),

z1(x, ε) = ẑ0
(
1−x√

ε

)
ζ(1− x), 0 � x � 1. Consider the function

U0(x, ε) = E1(E0) + z0(x, ε) + z1(x, ε).

This function (see Theorem 4.1) is a first approximation of E−1 (x, ε) with respect
to ε. When E∗0 < E0 < Emax the function U0(x, ε) can be formed quite analogously

(E2(E0) stands at the place of E1(E0)) and it is a first approximation of E
+
1 (x, ε)

with respect to ε.

We have now to deal with the case E0 = E∗0 . Since
∫ E2(E

∗
0 )

E1(E∗
0 )
H(s, E∗0 ) ds = 0 only

for this condition, each of the problems

ẑ′′0 = H(Ei(E∗0 ) + ẑ0, E
∗
0 ),

ẑ0(0) = E
∗
0 − Ei(E

∗
0 ), ẑ0(+∞) = 0, i = 1, 2

has a unique solution ẑ(i)0 (t) (i = 1, 2) which is a strongly monotonous function [7].

Let z(i)0 (x, ε) = ẑ
(i)
0

(
x√
ε

)
ζ(x) and let ẑ(i)1 (t) be the unique strongly monotonous so-

lution of the problem

ẑ′′1 = H(Ei(E∗0 ) + ẑ1, E
∗
0 ),

ẑ1(0) = E
∗
0 − Ei(E

∗
0 ), ẑ1(+∞) = 0, i = 1, 2.

Let z(i)1 (x, ε) = ẑ
(i)
1

(
1−x√

ε

)
ζ(1 − x), 0 � x � 1. Consider the function U (i)0 (x, ε) =

Ei(E∗0 ) + z
(i)
0 (x, ε) + z

(i)
1 (x, ε), i = 1, 2. Theorem 4.1 states that they are the first
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approximation of the solutions E±1 (x, ε) of the problem (11) with respect to ε. For

ε > 0 and u ∈ C(2)0 the norm

|u|(ε)2 = |u|0 +
√
ε|u′|0 + ε|u′′|0

can be introduced, where |·|0 is the norm in C(0); let the corresponding Banach
space be denoted by C(2)0,ε . A linear operator mapping from C

(2)
0,ε into C

(0) can be
constructed:

Lεu = εu′′ + εU ′0u+ εU0u
′ −H ′(U0, E0)u

(the function U0(x, ε) is constructed in accordance with the value of E0 by the means

used above). The linear operators

L(i)ε u = εu′′ + εU (i)0
′
u+ εU (i)0 u′ −H ′(U (i)0 , E∗0 )u, (i = 1, 2)

are formed similarly.

Lemma 6.1. The operators L(i)ε , i = 1, 2 and Lε have the inverse ones, which are

uniformly bounded with respect to sufficiently small ε > 0.

�����. For the proof it is sufficient to show that there exists a constant c

independent of ε, such that for any continuous function F with |F |0 � 1 and for any
sufficiently small ε > 0 there exists a solution uε of

Lεuε = F (x), 0 � x � 1,(22)

uε(0) = uε(1) = 0,

satisfying |uε|(ε)2 � c. This can be done by constructing supersolutions uε and sub-
solutions u ε. For this supersolution the conditions Lεuε � F , uε(0) � 0, uε(1) � 0
must be valid by definition. The converse inequalities must be valid for the subsolu-
tion. If a positive supersolution can be constructed, then we merely take uε ≡ −uε.

By a theorem of Nagumo [9], there exists an exact solution (22) with |uε|0 � |uε|0.
This inequality and equation (22) together with the interpolation inequality relating

|u′′|0, |u′|0 and |u|0 give |uε|(ε)2 � const|uε|0. A positive supersolution uε with |uε|0
uniformly bounded with respect to ε can be constructed in the same way as that in
Lemma 2.1 [2]. �

����� of Theorem 6.1. For definiteness we shall presume that Emax < E0 < E∗0
and prove stability of the solution E−1 (x, ε) = E

−
1 (x, f

−1) = Ẽ−1 (x, f). Consider the
boundary value problem

v′′0 + Ẽ
−
1
′v0 + Ẽ

−
1 v

′
0 − fH ′(Ẽ−1 , E0)v0 + α0v0 = 0,

v0(0) = v0(1) = 0,
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where v0 is the first positive eigenfunction of the linear operator Lfu = u′′+ Ẽ
−
1
′u+

Ẽ−1 u
′ − fH ′(Ẽ−1 , E0)u. It is easy to show that the spectrum of the operator Lf is

real. Theorem 5.1.1 [8] states that, if α0 > 0, then the solution Ẽ
−
1 (x, f) is stable.

Consider the problem

(23) ψ′′ + Ẽ−1
′ψ + Ẽ−1 ψ

′ − fH ′(Ẽ−1 , E0)ψ = 0.

Lemma 6.1 implies that for sufficiently large f the problem (23) has only the trivial

solution. Theorem of Nagumo [9] states that α0 > 0. In fact, suppose that α0 < 0,
then we have Lfv0 � Lfψ = 0. Hence v0 � ψ(x) ≡ 0, which is impossible. The
cases when E∗0 < E0 < Emin and E0 = E∗0 can be proved similarly. �

For the proof of Theorem 6.2 we use the following proposition.

Proposition 6.1 [8]. Let functions ϕ(x), ψ(x) ∈ C2 satisfy the conditions ϕ(0) =
ψ(0) = 0, ϕ′(0) = ψ′(0) = 1, ϕ′′+b(x)ϕ′+a(x)ϕ > ψ′′+b(x)ψ′+a(x)ψ for 0 < x < x1
and ψ(x) > 0 for 0 < x < x1. Then ϕ(x) > ψ(x) for 0 < x � x1.

�����. Let ϕ±k (x, f) = E±k
′(x, f−1) = Ẽ±k

′(x, f), k = 2, 3, . . . If ψ(x) is the

solution of the problem

ψ′′ + Ẽν
k
′ψ + Ẽν

kψ
′ − fH ′(Ẽν

k , E0)ψ = 0,

ψ(0) = 0, ψ′(0) = 1,

ν = +,−, k � 2, then

ψ(x)ϕν
k
′(x) − ψ′(x)ϕν

k(x) = ce
−

∫ x
0 Ẽν

k(s) ds,

where c = const. Since ϕν
k(0) > 0, we have c < 0. Hence,

ψ(x)ϕν
k
′(x) − ψ′(x)ϕν

k(x) < 0

for x ∈ [0, 1]. Let x0 be the minimum point of the function Ẽν
k (x). Consequently,

ψ(x0)ϕν
k
′(x0) < 0 because ϕν

k(x0) = 0, ϕ
ν
k
′(x0) > 0. Therefore, ψ(x0) < 0 and ψ(x)

has negative values on [0, 1]. Consider the problem

v′′0 + Ẽ
ν
k
′v0 + Ẽν

kv
′
0 − fH ′(Ẽν

k , E0)v0 + α0v0 = 0,

v0(0) = v0(1) = 0,

where v0 is the first positive eigenfunction of the linear operator Lfu = u′′+ Ẽν
k
′u+

Ẽν
ku

′ − fH ′(Ẽν
k , E0)u. Suppose that v

′
0(0) = 1. Theorem 5.1.3 [8] states that if

α0 < 0, then the solution Ẽν
k (x, f) is unstable. In fact, let α0 > 0, then it follows

from Proposition 6.1 that v0(x) < ψ(x) for every x ∈ [0, 1] because Lfv0 < Lfψ.
This is impossible. �
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7. A parabolic travelling wave. Stability of the travelling wave

Consider the parabolic equation of the problem (19) for E0 = E∗0 , i.e.

(24) D(|E|)−1 ∂E
∂t
=
∂2E

∂x2
+
∂E

∂x
E − fH(E,E∗0 ), x ∈ �, t > 0.

It is easy to show that, if ϕ(s) is a solution of the equation

(25) ϕ′′ +
(
ϕ− V

D(|ϕ|)
)
ϕ′ = fH(ϕ,E∗0 ), s ∈ �,

then E(x, t) = ϕ(x + V t) is a travelling wave (V = const). We shall prove that

for sufficiently large f , there exists a solution of (25) such that ϕ(s) → E1(E∗0 ) for
s → −∞, ϕ(s) → E2(E∗0 ) for s → +∞. Let us divide the equation (25) by f , let
ε = f−1 and suppose τ = s√

ε
. Then we have

(26) ÿ +
√
ε
(
y − V

D(|y|)
)
ẏ = H(y,E∗0).

Theorem 4.1 [3] states that for sufficiently small ε the equation (26) has a solution
y(τ, ε) such that y(τ, ε)→ E1(E∗0 ) for τ → −∞, y(τ, ε)→ E2(E∗0 ) for τ → +∞. The
following interesting result [8] states the stability of the parabolic travelling wave.
Suppose that there exists a solution ϕ(x) of

ϕ′′(x) + f
(
ϕ(x), ϕ′(x)

)
= 0, x ∈ �,

such that ϕ(x) → α for x → −∞, ϕ(x) → β for x → +∞, f(u, p) ∈ C1 and
f(α, 0) = f(β, 0) = 0. The linearized problem is

−Lv = v′′ + a(x)v′ + b(x)v,

where a(x) = ∂f
∂p

(
ϕ(x), ϕ′(x)

)
, b(x) = ∂f

∂u

(
ϕ(x), ϕ′(x)

)
. Let a±, b± be the limits

of these functions for x → ±∞. Denote by σe(L) the essential spectrum of the

operator L [8].

Proposition 7.1 [8]. The essential spectrum σe(L) lies in the right halfplane if
and only if b+ < 0 and b− < 0, i.e. when the solution ϕ(x) connects two saddle

points.

Proposition 7.2 [8]. If the solution ϕ(x) connects two saddle points, then it is
stable.
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Since E1(E∗0 ), E2(E
∗
0 ) are saddle points, Proposition 7.1 and Proposition 7.2 state

that for sufficiently small ε the solution y(τ, ε) of the equation (26) connects two
saddle points. Exercise 6 in § 5.1 [8] gives the result that the solution E(x, t) ex-
ponentially approximates ϕ by the norm in W 1

p (�), p � 1. It means that for every
solution E(x, t) such that the norm ‖E(·, 0) − ϕ‖ in W 1

p (�), p � 1 is sufficiently
small, there exists a real c for which ‖E(·, t) − ϕ(· + c + V t)‖ = O

(
e−βt

)
, t > 0,

β > 0. Finally, we obtain stability of the parabolic travelling wave for sufficiently
large f and for arbitrary velocity V .
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