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Abstract. The method of reliable solutions alias the worst scenario method is applied
to the problem of von Kármán equations with uncertain initial deflection. Assuming two-
mode initial and total deflections and using Galerkin approximations, the analysis leads
to a system of two nonlinear algebraic equations with one or two uncertain parameters-
amplitudes of initial deflections. Numerical examples involve (i) minimization of lower
buckling loads and (ii) maximization of the maximal mean reduced stress.
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Introduction

The post-buckling behaviour of thin elastic plates is an important topic in struc-

tural mechanics since plates are used extensively as load-carrying components up to
and into the post-buckling range. Tests on plates in axial compression have shown

that the waveforms of deflections adopted at the onset of buckling may undergo
abrupt changes further into the post-buckling regimes [6]. This phenomenon has

been justified by a mathematical model using the non-linear system of von Kármán
equations involving initial geometric imperfections (see e.g. [7], [8], [2], [4]). It is

sufficient to find approximate solutions of the latter system assuming two degrees of
freedom for both the initial and total deflection forms and using the Ritz-Galerkin

method (see [4], [6]).

*This work was supported by the Grant No. 201/97/0217 of the Grant Agency of the
Czech Republic.
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In practice, however, the initial geometric imperfections are uncertain and it is

difficult to estimate the probability distribution of their amplitudes. Then the sto-
chastic approach is not applicable and another method has to be adopted. One
simple possibility is to apply the so called method of reliable solutions alias the worst

scenario method. This approach was proposed by Ben-Haim and Elishakoff (see
e.g. [1] or [3]) and independently by the author (see e.g. [5]), who established the

method upon a more general mathematical background. The main features of the
method are as follows: having a state problem (e.g. Kármán equations) and uncertain

input data z0 (e.g. initial imperfections), we assume that (i) the input data belong
to a given set Uad and (ii) the state problem has a solution u(z0) for any z0 ∈ Uad.

Then we choose a functional-criterion Φ(z0, u(z0)) (e.g. a buckling load) and seek its
extremal (minimal, i.e. most dangerous, worst) value over the set Uad.

Starting in Section 1 from some old results of the author (see [4]), which were
justified and extended by Supple in [6], we assume the initial imperfection in the

form of one halfsinewave and define “two-mode solutions” of the Kármán system.
We compute the equilibrium paths of relative loading vers. deflection amplitude

on the basis of Galerkin approximations. Applying the worst scenario method in
Section 2, we introduce two different functionals-criteria. We define the so called

lower buckling load as the minimal relative loading which admits the possibility of
an abrupt change of the waveform, i.e. a global loss of stability. We prove that the

lower buckling load is a piecewise differentiable and increasing function of the initial
deflection amplitude.

The second choice of the criterion is closely related to the so called mean reduced
stress for a given loading parameter. By several numerical examples we have shown

that this function of the initial deflection amplitude is decreasing.

In Section 3 we consider the initial imperfection as a combination of one and two

halfwaves. We have justified a hypothesis that the above mentioned abrupt change
of the waveform can be realized by a small geometric perturbation-imperfection of

the antisymmetric form. The decisive part of maximal mean reduced stress was
again computed, now as a function of the two amplitudes of the initial deflections.
Several numerical examples in Section 4 show results of the worst scenario method,

i.e. the maximization of the above-mentioned function over trapezoidal domains—
the sets of admissible amplitudes of initial deflections. The search of maximum was

accomplished by a simple direct method.
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1. Buckling of a rectangular plate

Let us consider an elastic rectangular plate of a constant thickness h (Fig. 1). Let
its middle plane occupy the rectangle Ω ≡ [−a/2, a/2]× [−b/2, b/2]. Assume that

the material of the plate is homogeneous, isotropic and a/b = 2. Let the plate be
simply supported and loaded by compressive uniformly distributed forces σ · h on
the edges x = ±a/2.

y, η

x, ξ

w

x, ξσhb σhb
h

σha/2 a/2

b/
2

b/
2

Figure 1. The coordinate system.

The mode of support is such that there are no out-of-plane deflections at the
boundaries, the loaded edges remain straight and the longitudinal edges are not

allowed to wave in the plane of the plate. The last condition applies to a single panel
of a multi-panelled infinitely wide plate loaded in axial compression, the junctions

of the panels being knife-edge supports.

It is further assumed that there is no restraint against lateral expansion of the

plate in its plane.

If u, v, w denote the total displacements in the directions of axes x, y, z (cf. Fig. 1),
these boundary conditions may be written as (cf. [6])

w = 0 on ∂Ω,(1.1)

wxx + νwyy = 0 for x = ±a/2,

wyy + νwxx = 0 for y = ±b/2,

u = const. for x = ±a/2,

v = const. for y = ±b/2.

Here and in what follows the subscripts x and y denote partial derivatives with
respect to x and y, respectively, ν is the Poisson constant.

27



The von-Kármán large deflection equations in the presence of initial geometric

imperfections w0 may be written in terms of w, w0 and Airy stress function F as

1
E
∆2F = −1

2
[w, w] +

1
2
[w0, w0],(1.2)

D

h
∆2(w − w0) = [F, w],

where

[u, v] = uxxvyy + uyyvxx − 2uxyvxy

is the Poisson bracket, E is the Young modulus and

D =
Eh3

12(1− ν2)

denotes the bending rigidity of the plate. Recall that the stress tensor components
are determined by formulae

τ(x) = Fyy, τ(y) = Fxx, τ(xy) = −Fxy.

Then we have also the boundary conditions

∫ b/2

−b/2
Fyydy = −σb for x = ±a/2 (σ = const)(1.3)

∫ a/2

−a/2
Fxxdx = 0 for y = ±b/2,

Fxy = 0 on ∂Ω.

An approximate solution of the system (1.2) with boundary conditions (1.1) and
(1.3) is now obtained using the Ritz-Galerkin technique. We assume the following

forms for w and w0:

w = (f1 cos ξ + f2 sin 2ξ) cos η,(1.4)

w0 = f0 cos ξ cos η,(1.5)

satisfying boundary conditions (1.1). Here f1, f2, f0 are arbitrary constants and

ξ = �x/a, η = �y/b.

We introduce
k = σ/σ0,
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where σ0 is the critical loading of an ideal plate, namely (see e.g. [7])

σ0 =
�
2Eh2

3(1− ν2)b2
.

Let us denote ζ = f1/h, ζ2 = f2/h, z0 = f0/h.

The expressions (1.4), (1.5) are substituted into the first of equations (1.2) and
the resulting equation solved for F to give

F =
Eh2

32

{
(z20 − ζ2)

(
4 cos 2ξ +

1
4
cos 2η

)
− ζζ2

(32
9
sin 3ξ + 32 sin ξ

)
(1.6)

− 32ζζ2 cos 2η
( 1
625
sin 3ξ +

9
289
sin ξ

)

+ ζ22 (cos 4ξ + cos 2η)
}
− σ

2
y2.

It is not difficult to verify that this expression satisfies all boundary conditions (1.3)

and the corresponding u, v, calculated via the strain-stress relations, satisfy (1.1).

Next, the expressions for w and F are substituted into the second equation of (1.2)

to obtain a residual R. The Galerkin method implies that

∫

Ω
R cos ξ cos η dxdy = 0,

∫

Ω
R sin 2ξ cos η dxdy = 0.

Performing the substitution and integrations these equations appear as (cf. [6],
eq. (9))

E�
2h2

8b2

[17
8
(ζ2 − z20)ζ + 2κζζ22 +

25
6(1− ν2)

(ζ − z0)
]
− σζ = 0,(1.7)

ζ2

(
2κζ2 + 4ζ22 − z20/2 +

32
3(1− ν2)

− σ

E

32b2

�
2h2

)
= 0,(1.8)

where

κ = 4 + 1/4 + 1/625 + 81/289
.
= 4.53188.

As the equation (1.8) yields that either

ζ2 = 0

or

(1.9) 2κζ2 + 4ζ22 − z20/2 +
32

3(1− ν2)
− σ

E

32b2

�
2h2
= 0,
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the solution of the system (1.7)–(1.8) branches in two parts:

1st branch:

ζ2 = 0,

17
8
(ζ2 − z20)ζ +

25
6(1− ν2)

(ζ − z0)−
σ

E

8b2

�
2h2

ζ = 0,

so that

(1.10) k = k(ζ, z0) =
25
16

ζ − z0
ζ
+
51
64
(1 − ν2)(ζ2 − z20);

2nd branch: from (1.9) we obtain

(1.11) ζ22 = (k − 1)
8

3(1− ν2)
− ζ2κ/2 + z20/8.

Substituting this into (1.7), we arrive at

k = k(ζ, z0) =
3(1− ν2)
8(2κ− 1) ,(1.12)

[
(κ2 − 17/8)ζ2 + (17/8− κ/4)z20 +

25
6(1− ν2)

(z0
ζ
− 1

)]
+
2κ
2κ− 1 .

Let us compute the post-buckling equilibrium paths k vers. ζ and ζ2 vers. ζ by
(1.10), (1.12) and (1.11), respectively. Due to the symmetrical configuration of the

problem we can restrict ourselves to positive values of the amplitudes z0, ζ and ζ2
only. Let k1(ζ, z0), k2(ζ, z0) be the graphs of the 1st and 2nd branch, respectively

(see Fig. 2, where the solid lines represent the 1st branch and the dashed lines the
2nd branch, for z0 = 0.2, 0.4, 0.6, 0.8, 1.0). Here and in the following ν = 0.3 is

substituted.

Note that the formula (1.12) can define a real graph k2(ζ) if and only if ζ22 (ζ) is

non-negative. Substituting for k from (1.12) in (1.11), we obtain

(1.13) ζ22 =
(
k(ζ, z0)− 1

)
· 8/

(
3(1− ν2))− ζ2κ/2 + z20/8 ≡ g(ζ, z0).

The cubic equation

ζg(ζ, z0) = 0

has three real roots for z0 � z0
.
= 0.405. In fact, it reads

(1.14) Aζ3 + (z20/8− C)ζ + Bz0 = 0,
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Figure 2. Equilibrium paths for initial deflection in one halfwave.

where

A = κ− 17/4
4κ− 2

.
= 0.0174782,

B = 25
6(1− ν2)(2κ− 1)

.
= 0.567819,

C = 3
2(1− ν2)(2κ− 1)

.
= 0.204415.

The discriminant of the equation (1.14) is positive for z0 < z0 and negative for
z0 > z0.

Let z0 � z0 and let z2(z0) and z3(z0) be the middle and the maximal root, respec-
tively, of the equation (1.14). Then ζ22 is non-negative iff ζ belongs to the union of

two intervals
(0, z2(z0)] ∪ [z3(z0),+∞).

Note that only positive z0 and ζ are considered and z2(z0) > 0 for z20 < 8C. If
z0 > z0 then ζ22 is positive for all ζ > 0.
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For the time being, assume that the function k2(ζ, z0) is defined for all positive ζ.

Then the minimum of the extended function k2(ζ, z0) is attained at the point ζd,
where

∂k2(ζd, z0)/∂ζ = 0.

We obtain

(1.15) ζd =
( 25
12(1− ν2)(κ2 − 17/8)z0

)1/3
= C0z

1/3
0 ,

where

C0
.
= 0.499112.

The point

(ζd, k2(ζd, z0)) is real iff ζ22 ≡ g(ζd, z0) � 0.

Thus we arrive at the condition

(1.16) Aζ3d + (z
2
0/8− C)ζd + Bz0 � 0

and substituting from (1.15), we have

z
1/3
0 (0.56999z

2/3
0 + 0.062389z20 − 0.102026) � 0.

Denoting χ := z
2/3
0 , we obtain

0.062389χ3+ 0.56999χ � 0.102026,

which is satisfied iff

χ � 0.178374.

Then (1.16) implies

z0 � 0.1783743/2 .
= 0.0753351 ≡ ẑ0.

As a consequence, the point of minimum is real iff z0 � ẑ0.

Definition 1.1. We call the couple {w, F} a “two-mode solution” of the sys-
tem (1.2), if w is the Galerkin approximation of the form (1.4) and F is the corre-
sponding stress function (1.6).

Definition 1.2. The minimal relative loading k for which at least two two-mode

solutions of the system (1.2) exist, will be called the lower buckling load and denoted
kd(z0).
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Let us investigate the function kd(z0) in what follows.

I. Let us consider the interval

z0 ∈ [0, ẑ0).

Then the minimum of the function k2(·, z0) is attained for ζ = z2(z0).

In fact, differentiating the formula (1.12), we obtain

(1.17) ∂k2(ζ, z0)/∂ζ =
3(1− ν2)
8(2κ− 1)ζ2

[
2(κ2 − 17/8)ζ3 − 25

6(1− ν2)
z0

]
.

If ζ < ζd(z0), then

ζ3 < ζ3d =
25z0

12(1− ν2)(κ2 − 17/8)
follows from (1.15), so that the expression (1.17) is negative. As a consequence, the

extended function k2(·, z0) is decreasing for ζ ∈ (0, ζd(z0)]. Since z2(z0) < ζd(z0) for
z0 < ẑ0 (otherwise the point (ζd, k2(ζd, z0)) would be real, which contradicts z0 < ẑ0)

and the function k2(·, z0) has a real meaning only for ζ � z2(z0), the minimum is
attained at ζ = z2(z0).

������ 1.1. The branch of k2(·, z0) for ζ � z3(z0) will be neglected, because it

corresponds to an unstable equilibrium (see [4], p. 182–183) and for the same loading
k the potential energy of this unstable branch is higher than that of the stable branch
(i.e., for ζ � z2(z0)). �

Using (1.12) we may write

kd(z0) = k2(z2(z0), z0).

Since

g(z2(z0), z0) = 0,

the definition (1.13) yields

(1.18) kd(z0) = k2
(
z2(z0), z0

)
= 1 + 38 (1− ν2)

(
−z20/8 +

1
2κz22(z0)

)
.

Since obviously

lim
z0→0+

z2(z0) = 0,

the formula (1.18) implies

lim
z0→0+

kd(z0) = 1.
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Moreover, we have

dkd(z0)/ dz0 = 3
8 (1− ν2)(−z0/4 + κz2(z0) dz2(z0)/ dz0).

For z0 < ẑ0 we may neglect the cubic term Aζ3 in the equation (1.14) to get the

estimate
z2(z0) >

Bz0
C − z20/8

>
B
C z0.

Using the implicit function theorem for the equation (1.14), we obtain

dz2(z0)/ dz0 = (B + 14z0z2(z0))/(C − 1
8z
2
0 − 3Az22(z0)) > B/C.

Then we have

(1.19) dkd(z0)/ dz0 � 3
8 (1 − ν2)z0[− 14 + κB2/C2] > 0,

since κB2/C2 − 1
4

.
= 34.718 > 0.

II. The interval z0 � ẑ0.
Using (1.12) and (1.15), we obtain

kd(z0) = k2(ζd(z0), z0)(1.20)

=
3(1− ν2)
8(2κ− 1)

[
(κ2 − 17/8)ζ2d + (17/8− κ/4)z20 +

25
6(1− ν2)

× (−1 + z0/ζd) +
16κ

3(1− ν2)

]

=
1

8(2κ− 1)
[
3(1− ν2)(17/8− κ/4)z20 +

75
4C0

z
2/3
0 + 16κ− 25/2

]
.

Moreover, we have

(1.21) dkd(z0)/ dz0 =
1

8(2κ− 1)
[
6(1− ν2)(17/8− κ/4)z0 +

25
2C0

z
−1/3
0

]
> 0.

Theorem 1.1. The function z0 �→ kd(z0) is increasing for all positive z0.

�����. Observe that

(1.22) lim
z0→ẑ0−

z2(z0) = ζd(ẑ0)

follows by comparing the equations (1.14) and (1.16). Using (1.15) and (1.22), we
can express the difference

S := kd(ẑ0)− lim
z0→ẑ0−

kd(z0)
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in terms of ẑ0. Moreover, we can employ the equality in (1.16) and multiply it by
3
8 (1− ν2)/ζd(ẑ0). In this way, we arrive at

(1.23) S = ẑ20
3
8 (1− ν2)(17/8− κ/4)/(2κ− 1) .

= 0.000238.

Numerically, we obtain

lim
z0→ẑ0−

kd(z0)
.
= 1.03412,

whereas

kd(ẑ0)
.
= 1.03435

follows from (1.20).

The formulae (1.19), (1.21) and (1.23) imply that the function kd is increasing in

(0,+∞). �

2. Worst-scenario method

Assume that the amplitude of the initial deflection (1.5) is uncertain and its
probabilistic distribution function is not available. Let the only information we have

be that the relative amplitude z0 belongs to an interval

Uad = [z0min, z0max],

where

0 < z0min < z0max

are given bounds.

Then we may employ the “method of reliable solution”, alias “worst scenario”

(cf. [1], [5]), as follows. We choose a function-criterion Φ(z0) and look for its “most
dangerous” extremal value

min
z0∈Uad

Φ(z0) or max
z0∈Uad

Φ(z0),

in accordance with the physical meaning of the criterion Φ.

	
����� 2.1. Let us consider

Φ1(z0) = kd(z0),
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i.e., let the lower buckling load be the decisive criterion, and let us look for the

minimum of Φ1 over Uad. Using Theorem 1.1, we immediately find

min
z0∈Uad

Φ1(z0) = Φ1(z0min).

	
����� 2.2. A less pessimistic choice is

(2.1) Φ2(z0) = max
{w,F}∈K(z0)

(
max

x∈[−a/2,a/2]

∫ b/2

−b/2

∣∣wxx − w0xx + ν(wyy − w0yy)
∣∣dy

)
,

where w = w(z0) is the first component of a stable two-mode solution and K(z0) is
the set of all such solutions, corresponding to the parameter z0 and to an a priori

given fixed relative loading k.

The functional Φ2 is linked with the so called “mean reduced stress” (see e.g. [2],

chapt. III, § 15)

σs(x) =
1
b

∫ b/2

−b/2

∣∣τ(x) + σ∗x/
√
2
∣∣dy,

where

σ∗x =
Eh

2(1− ν2)
(wxx + νwyy)

is the stress caused by the pure bending at the surface of the plate. Indeed, we have
the relation

(2.2) max
{w,F}∈K(z0)

{ max
x∈[−a

2 , a
2 ]

σs(x)} = σ0

(
k +

3b

2
√
2�2h

Φ2(z0)
)
.

After some calculation, we derive

(2.3) Φ2(z0) = (2�h/b) max
{w,F}∈K(z0)

[
max
|ξ|��/2

|(14 + ν)(ζ − z0) cos ξ + (1 + ν)ζ2 sin 2ξ|
]
.

If k � kd(z0), which is the more interesting case, the set K(z0) consists of two
different two-mode solutions (see Fig. 2). The second maximum (over ξ) in (2.3) is
attained at the point ξm ∈ [0, �/2), which is determined by the equation

sin ξm =
(
−(1 + 4ν)(ζ − z0)(2.4)

+
(
(1 + 4ν)2(ζ − z0)

2 + 512(1 + ν)2ζ22
)1/2)

/
(
32(1 + ν)ζ2

)
.

For the first branch we have ζ2 = 0 and then ξm = 0 follows from (2.3), so that

Φ2(z0) = (2�h/b)(14 + ν)
(
ζ(z0)− z0

)

holds for k < kd(z0). �
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Computation of Φ2(z0)—Algorithm I.

1◦ Compute kd(z0).

2◦ Choose k � kd(z0).

3◦ (First branch): compute the (unique) real root ζ′ of the cubic equation

(cf. (1.10))

x3 +
( 100− 64k
51(1− ν2)

− z20

)
x− 100z0
51(1− ν2)

= 0,

and set

f ′ = (14 + ν)(ζ′ − z0).

4◦ (Second branch): compute the middle real root ζ′′ of the cubic equation
(cf. (1.12) and Fig. 2)

100.5346x3+ [120.02 + 5.4165z20 − 129.02k]x+ 25z0 = 0,

then set

ζ′′1 = ζ′′ − z0,(2.5)

ζ2 =
[
(k − 1) 8

3(1− ν2)
− 1
2κ(ζ

′′)2 + z20/8
]1/2

,

sin ξm =
[
−(1 + 4ν)ζ′′1 +

(
(1 + 4ν)2(ζ′′1 )

2 + 512(1 + ν)2ζ22
)1/2]

/(32(1 + ν)ζ2),

f ′′ =
[(

ν + 14
)
ζ′′1 + 2(1 + ν)ζ2 sin ξm

]
(1− sin2 ξm)1/2.

5◦ Φ∗(z0) = b
2�hΦ2(z0) = max{f ′, f ′′}.

3. Numerical experiments

The computations justify the assertion of Theorem 1.1 that the function z0 →
kd(z0) is increasing—see Fig. 3 and some extracted values in Tab. 1.

z0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

kd(z0) 1 1.056 1.131 1.195 1.253 1.308 1.360 1.410 1.456 1.507

Table 1.
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Figure 3. Dependence of lower buckling
load on initial deflection ampli-
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Figure. 4. Dependence of maximal mean
reduced stress on initial deflec-
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3.1. Initial imperfection in one halfwave.
Algorithm I mentioned above has been accomplished for three different values of

the relative loading, namely for k = 1.4, 1.25 and 1.1. We have considered

z0 ∈ [0, 0.6] if k = 1.4,

z0 ∈ [0, 0.4] if k = 1.25,

z0 ∈ [0, 0.14] if k = 1.1,

since k � kd(z0) had to be fulfilled. The numerical results were calculated with the
step 0.02. They show that the function z0 → Φ2(z0) is decreasing and concave—see
Figs. 4–6. Although the function is differentiable, its derivative is not suitable for
practical use due to its complexity.
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The method of “worst scenario” seeks the maximum of Φ2(z0) over the given

interval Uad and therefore

max
z0∈Uad

Φ2(z0) = Φ2(z0min).

3.2. Initial imperfection form combined from one and two halfwaves.
In the above study of the postcritical behaviour of rectangular plates under com-

pression a possibility of a phenomenon called “snap-through” has been discovered.

In fact, for k � kd(z0) the deflection in the initial form of one halfwave (1st branch)
can change abruptly into the form of a combination of one and two halfwaves (2nd

branch). During this global loss of stability the plate loses part of its potential en-
ergy (see [4], [8]). On the other hand, the plate must overcome an energetic barrier

by means of an amount of “perturbation energy”. Assume that the influence of
the latter can be realized by a small geometric perturbation in the form of initial

imperfection of two halfwaves. Thus we are led to the assumption

(3.1) w0 = (f01 cos ξ + f02 sin 2ξ) cos η,

where f02 denotes the amplitude of the geometric perturbation.

Assume that the total deflection has again the form (1.4) and use the same Galerkin
approach as in Section 1. Let us denote

z0 =f01/h, t0 = f02/h,

z =f1/h, t = f2/h.

Due to the symmetry it is sufficient to consider positive amplitudes f01, f02 only.
Then we obtain the system of two equations

[174 (z
2 − z20) + t2 − t20]z + (4κ− 1)(zt− z0t0)t+

25
3(1− ν2)

(z − z0)(3.2)

= 16b2σz/(�2h2E),

[8(t2 − t20) + z2 − z20 ]t+ (4κ− 1)(zt− z0t0)z +
64

3(1− ν2)
(t− t0)(3.3)

= 64b2σt/(�2h2E).

By elimination of the loading parameter σ we arrive at the following cubic equation

in terms of the variable z:

(3.4) a3z
3 + a2z

2 + a1z + a0 = 0,
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where

a3 = − (κ− 17/4)/16t .
= −0.0176175t,

a2 = (κ− 1/4)/16z0t0 .
= 0.2676175z0t0,

a1 = (κ− 1/2)/4t3 − (z20/4− t20/16− 3/(16(1− ν2)))t + t0/(3(1− ν2))
.
= 1.00797t3 − (z20/4− t20/16− 0.206044)t+ t0/2.73,

a0 = − 25z0t/(48(1− ν2))− (κ− 1/4)/4z0t0t2
.
= − 0.572344z0t− 1.07047z0t0t2.

Let us introduce a new variable y by the formula

(3.5) z = y − a2/(3a3)
.
= y + 5.06348z0t0/t.

Thus we obtain a reduced cubic equation

(3.6) y3 + p(t)y + q(t) = 0,

where

p(t)
.
= − 57.2141t2 + 14.19043z20 − 3.54761t20− 11.6954
− 20.7918t0/t− 76.9164(z0t0/t)2,

q(t)
.
= 32.4872z0− 228.94z0t0t+ [(71.8526z20 − 17.9633t20 − 59.2196)/t

− 105.279t0/t2]z0t0 − 259.643(z0t0/t)3.

Choosing t we substitute it in the equation (3.6), solve for y (taking the middle
root) and calculate z(t) according to (3.5). Then the relative loading k = k(z, t) =

σ/σ0 is obtained from (3.3). The numerical results are plotted for z0 = 0.4 and
t0 = 0.1 in Fig. 7 together with the previous results (from Fig. 2) for z0 = 0.4 and

t0 = 0. Obviously, the above-mentioned “snap-through” phenomenon can be realized
by means of a small antisymmetric geometric perturbation of two halfwaves, which
enables the plate to overcome the energetic barrier.

Next, let us consider again the functional (2.1), i.e., a decisive part of the maximal

“mean reduced stress”—see (2.2). Instead of the formula (2.3), however, we derive
a simpler formula

(3.7) Φ2(z0, t0) = (2�h/b) max
|ξ|��/2

|(1/4 + ν)(z − z0) cos ξ + (1 + ν)(t− t0) sin 2ξ|,
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Figure 7. Equilibrium paths for combined initial deflections.

since the set K(z0, t0) of stable two-mode solutions, corresponding to given parame-
ters k, z0, t0, consists of a unique pair {w, F}. The maximum in the expression (3.7)
is attained at a point ξm ∈ [0, �/2], which is determined by the equation

sin ξm =
[
−(1 + 4ν)(z − z0) +

(
(1 + 4ν)2(z − z0)2(3.8)

+ 512(1 + ν)2(t− t0)2
)1/2]

/
(
32(1 + ν)(t− t0)

)
.

Finally, we obtain

Φ∗(z0, t0) ≡ b(2�h)−1Φ2(z0, t0)

= [(14 + ν)(z − z0) + 2(1 + ν)(t− t0) sin ξm](1 − sin2 ξm)1/2.(3.9)

Computation of Φ∗(z0, t0).
Choosing k > 1, we find t from the “implicit” equation (3.3), where the function

z(t) is substituted for z, i.e., the middle root of the cubic equation (3.4). In this way
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we obtain a transcendental equation

(3.10) 1−k− t0/t+3(1−ν2)
(
κz2(t)/2+ t2− t20−z20/8−(κ−1/4)z0t0z/(2t)

)
/8 = 0,

which has to be solved for t by an iterative method. Let us choose the first approxi-

mation t1 as the amplitude
t1 = ζ2

of two halfwaves from the previous case with t0 ≡ 0 (see Algorithm I, (2.5)). Then
t2 will be determined as follows: denote by g(t) the left-hand side of (3.10). Choose
a small δ > 0 (e.g. δ = 5.10−3) and set

t2 = t1 + δ or t2 = t1 − δ,

which realizes

(3.11) min{|g(t1 + δ)|, |g(t1 − δ)|}.

The following approximations will be determined by the secant method:

(3.12) ti+1 = ti − g(ti)(ti − ti−1)/(g(ti)− g(ti−1)), i = 2, 3, . . .

Having a root t of the equation (3.10), we calculate sin ξm according to (3.8) where

z = z(t), and Φ∗(z0, t0) from (3.9).

4. Worst scenario method for uncertain two-mode imperfections

In production, the amplitudes of two halfwaves do not exceed those of one halfwave.

Therefore we assume the set of uncertain amplitudes of imperfections as follows:

Uad = {(z0, t0) : z0min � z0 � z0max, t0 � z0},

where 0 < z0min < z0max are given bounds.

We accomplished the algorithm described above to get Φ∗(z0, t0). The maximum
over the set Uad has been found by a simple direct method, since the derivatives

∂Φ∗/∂z0, ∂Φ∗/∂t0 are too complicated for practical use.

	
����� 4.1. We consider k = 1.4, z0min = 0.2, z0max = 0.6. The maximal

value 1.3751 of Φ∗ was found at the point

z0 = 0.2, t0 = 0.13

(see Fig. 8). Some values of Φ∗(0.2, t0) for t0 ∈ [0, 0.2] are displayed in Tab. 2, those
of Φ∗(z0, 0.13) for z0 ∈ [0.2, 0.60] are in Tab. 3.
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Figure 8. Decisive part of the maximal mean reduced stress over the set of admissible two-
mode initial deflections for k = 1.4.

t0 0 0.04 0.08 0.12 0.13 0.14 0.16 0.20

Φ∗(0.2, t0) 1.356 1.367 1.373 1.3750 1.37512 1.3750 1.374 1.372

Table 2.

z0 0.20 0.24 0.28 0.34 0.40 0.46 0.50 0.54 0.58

Φ∗(z0, 0.13) 1.375 1.365 1.354 1.338 1.320 1.302 1.290 1.276 1.262

Table 3.

	
����� 4.2. Let k = 1.1, z0min = 0.07, z0max = 0.14. Then

max
Uad
Φ∗ = Φ∗(0.14, 0.14)

.
= 0.939.

Tables 4, 5, 6 display some values of Φ∗ for

(i) z0 ∈ [0.07, 0.14], t0 = 0,
(ii) z0 = 0.07 and t0 ∈ [0, 0.07],
(iii) z0 = 0.14 and t0 ∈ [0, 0.14].

z0 0.07 0.08 0.10 0.12 0.14

Φ∗(z0, 0) 0.691 0.685 0.672 0.651 0.617

Table 4.

t0 0 0.02 0.04 0.06 0.07

Φ∗(0.07, t0) 0.691 0.774 0.826 0.865 0.880

Table 5.

t0 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Φ∗(0.14, t0) 0.617 0.744 0.805 0.847 0.878 0.903 0.923 0.939

Table 6.

43



References

[1] Y.Ben-Haim, I. E. Elishakoff: Convex Models of Uncertainties in Applied Mechanics.
Studies in Appl. Mech. 25. Elsevier, Amsterdam, 1990.

[2] V.M. Broude: Limit States of Steel Beams. Nauka, Moskva, 1953. (In Russian.)
[3] I. E. Elishakoff, G.Q. Cai and J. H. Starnes, Jr.: Non-linear buckling of a column with
initial imperfection via stochastic and non-stochastic convex models. Int. J. Non-Linear
Mechanics 29 (1994), 71–82.

[4] I.Hlaváček: Einfluss der Form der Anfangskrümmung auf das Ausbeulen der gedrückten
rechteckigen Platte. Acta Technica ČSAV (1962), 174–206. (In German.)

[5] I.Hlaváček: Reliable solution of elliptic boundary value problems with respect to un-
certain data. Proc. 2nd WCNA, Nonlin. Anal., Theory, Meth. & Appls. 30 (1997),
3879–3890.

[6] W.J. Supple: Changes of wave-form of plates in the post-buckling range. Int. J. Solids
Structures 6 (1970), 1243–1258.

[7] S.P. Timoshenko, J.M. Gere: Theory of Elastic Stability. 2nd edn., McGraw Hill, Burr
Ridge, 1961.

[8] A.S. Volmir: Stability of Deformable Systems. Nauka, Moskva, 1967, 2nd edn. (In
Russian.)

Author’s address: Ivan Hlaváček, Mathematical Institute, Academy of Sciences of the
Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czech Republic.

44


		webmaster@dml.cz
	2020-07-02T10:18:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




