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GLOBAL EXISTENCE FOR A NUCLEAR FLUID

IN ONE DIMENSION: THE T > 0 CASE

B. Ducomet, Bruyères-le-Châtel

(Received January 10, 2000)

Abstract. We consider a simplified one-dimensional thermal model of nuclear matter,
described by a system of Navier-Stokes-Poisson type, with a non monotone equation of
state due to an effective nuclear interaction.
We prove the existence of globally defined (large) solutions of the corresponding free

boundary problem, with an exterior pressure P which is not required to be positive, provided
sufficient thermal dissipation is present. We give also a partial description of the asymptotic
behaviour of the system, in the two cases P > 0 and P < 0.
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1. Introduction

A lot of theoretical work has been devoted in recent years to hydrodynamical
description of low energy nuclear collisions between heavy ions, for which physi-

cists expect phase transition phenomena [1], analogous to condensation-nucleation
processes in classical fluids.

As nuclei are only finite systems, one realizes that a hydrodynamical regime for
them can hold only for large ones. Although such nuclei are near to unstability, they

have been produced in recent experiments.
Another physical context where this fluid approximation is valid is astrophysics of

neutron stars, which can be seen as “giant” nuclei.
So we consider a fluid limit for nuclear matter, which is a homogeneous mixture

of two kinds of nuclear constituents: protons (positively charged) and neutrons (not
charged), taking into account the short range nuclear interaction (we consider a
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simplified version of the so-called Skyrme interaction [8]) acting on both kinds of

particles, together with the long range Coulomb interaction acting only between
charged particles (protons).
A simple attractive situation to begin with is the one dimension geometry, which

has been largely considered by nuclear physicists to test more realistic situations [2],
[3].

In [5] a 3d simplified hydrodynamical model of nuclear matter has been presented,
leading to a compressible Navier-Stokes system with some special features due to

quantum effects, and in [6] we proved global existence and large time behavior for a
related zero-temperature model.

However, a well known difficulty in the hydrodynamical limit procedures is the
completely coherent derivation of the dissipative process from the microscopic theory.

In the present work, we put “by hand” the viscous and thermal effects in our model,
in the spirit of [4].

In what follows, we extend [6] to the T > 0 case, describing hot nuclear matter, and
we show that, despite a possible destabilizing influence of the pressure, which is non

monotone and not always positive, the presence of viscous and thermal dissipation
is sufficient to prevent the solution from developing singularities in finite time.

Finally, we also give some partial information on the large time behaviour of the
system, postponing a more complete asymptotic study to another work [7].

If we denote by u(x, t) = 1
n(x,t) the specific volume, v(x, t) the velocity, e(x, t)

the internal energy, θ(x, t) the temperature, Q(x, t) the thermal flux, σ(x, t) the

stress, Φ the (Coulomb) potential of electrostatic interaction between protons, the
(lagrangian) Navier-Stokes-Poisson system to be solved is (see [5])

(1)





ut = vx,

vt = σx −
Φx

u
,

et + pvx = −Qx + ν
v2x
u

,

(Φx

u

)
x
= −gC ,

for t � 0 and x ∈ [0, M ], where M is the (conserved) mass of the slab and ν > 0 is

the constant viscosity coefficient.
One computes easily the following formula for the Coulomb contribution:

(2)
Φx

u
= gC

(M

2
− x

)
,

where gC is a positive coupling constant.
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In this formula, we suppose explicitly that the potential is zero at the center of

the slab.

The stress is now σ(u, v, θ) = −p(u, θ) + ν vx

u , where p is the pressure given in the
low order Thomas-Fermi approximation by

(3) p(u, θ) =
3
8

t0u
−2 +

1
8

t3u
−3 +

h̄2

5m

(3�2
2

)2/3
u−5/3 +

Rθ

u
.

The constants t0 < 0 and t3 > 0 are the parameters of the Skyrme interaction for

nuclear matter in the so-called “spin isospin-saturated isoscalar” approximation [2],
and the last term is the well known high temperature contribution for a degenerate

Fermi gas with constant R.

The internal energy is

(4) e(u, θ) = ε(u, θ) + em.

In this expression, the first contribution is the “proper” internal energy, given by

ε(u, θ) =
3
8

t0u
−1 +

1
16

t3u
−2 +

3h̄2

10m

(3�2
2

)2/3
u−2/3 + Cvθ,

where Cv = 3
2R and em is a “zero point” energy, which is a positive constant suitably

chosen to ensure that e(u, θ) � 0 for any 0 < u < ∞ and 0 � θ < ∞.
The thermal flux is Q(u, θ) = −κ(u, θ) θx

u , where κ satisfies the growth conditions

(5)

{
κ1(1 + θq) � κ(u, θ) � κ2(1 + θq),

|κu(u, θ)|+ |κθ(u, θ)|+ |κuu(u, θ)| � κ2(1 + θq),

in which the coefficients κ1, κ2 and q are positive.

At this point, we suspect that the exponent q in (5) plays a major role in the a

priori estimates.

Recently, several authors [10], [14], [11] have considered analogous problems for
general fluids or solids, under various growth constraints of the same type for the

state functions p(u, θ), e(u, θ) and κ(u, θ), with respect to their arguments.

Unfortunately, these constraints are not satisfied in our model, and we have to

adapt their methods.

To get a well-posed problem, we consider, for each x in [0, M ], the initial conditions

(6) (u, v, θ)(x, 0) = (u0, v0, θ0)(x)
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together with, for each t � 0, dynamical conditions for the stress on the (free)
boundaries:

(7) σ(0, t) = σ(M, t) = −P,

where P is a real constant (not required to be positive).
Finally, we assume Neumann boundary conditions for the flux:

(8) Q(0, t) = Q(M, t) = 0.

We finally suppose that the following compatibility conditions hold between the data:

(9)

{
σ(u0, v0, θ0)(0, 0) = σ(u0, v0, θ0)(M, 0) = −P,

Q(u0, θ0)(0, 0) = Q(u0, θ0)(M, 0) = 0.

We emphasize that the equation of state we consider presents some analogy with

Van der Waals theory of liquid-gas transition, which is not surprising, due to the
similarities of the interaction between particles.

An elementary computation shows that there exists a critical temperature θc such
that, if θ > θc, the fluid is always in the gaseous phase, no matter how much it is

compressed.
Here, the critical temperature θc is obtained by solving the system

(10)
∂p

∂u

∣∣∣∣
θ

=
∂2p

∂u2

∣∣∣∣
θ

= 0.

One can check that this system has a unique positive solution.
One also checks that, if θ < θc, the small u region corresponds to the liquid phase

(where p ∼ 2a3
u3 ), and that the large u region corresponds to the gaseous phase (where

p ∼ Rθ
u ), these two disconnected regions being stable under small perturbations.

As in the Van der Waals theory, there also exists an unstable subdomain in the
low density region (spinodal region), corresponding to ∂p

∂u

∣∣
θ

> 0, where small pertur-

bations can grow.
Namely, there exist exactly two points um(θ) and uM (θ) satisfying

∂p
∂u (um, θ) =

∂p
∂u (uM , θ) = 0, such that the range 0 < u < um corresponds to the dense region,
um < u < uM corresponds to the unstable region, and uM < u corresponds to the
dilute phase. The two phases are separated by the spinodal curve defined as the set

of pairs (um, p(um, θ)) and (uM , p(uM , θ).
We have

(11)

{
pu(u, θ) < 0 if 0 < u < um(θ) or u > uM (θ),

pu(u, θ) > 0 if um(θ) < u < uM (θ).
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We see that there also exists a temperature θ̄ such that

1. if θ > θ̄, the pressure p(u, θ) is always positive for 0 < u < ∞,
2. if 0 < θ < θ̄, there exist exactly two numbers 0 < u− < u+ < ∞, depending on

θ, such that the pressure p(u, θ) behaves as follows:

(12)

{
p(u, θ) > 0 if 0 < u < u− or u > u+,

p(u, θ) < 0 if u− < u < u+.

As θ → p(u, θ) is increasing, one checks easily the following global bound:

(13) ∀u > 0, θ > 0: p(u, θ) � pm,

where −∞ < pm < 0.

Our purpose in the sequel is to prove that, provided the above viscous and thermal
dissipative processes are present, our model is globally defined in time.

More precisely, we are going to show that the problem (1), (6), (7), (8), (9)
with the pressure law (3) and the energy (4) can be investigated by using some ideas

developed recently to study thermoviscoelastic materials [14] modulo some additional
modifications.

We use the notation (Cr [0, M ], ‖·‖r) and (Cr,r/2(QT ), |||·|||r) with QT = [0, M ] ×
[0, T ] for the usual Hölder spaces (see [9]).

Our main result is the following.

Theorem 1. Assume that u0, u0x, v0, v0x, v0xx, θ0, θ0x, θ0xx are in Cr[0, M ] for

some 0 < r < 1.

Suppose that u0, θ0 are positive on [0, M ] and that the compatibility conditions

hold between boundary conditions and initial data.

Then if q � 2, there exists a unique solution
(
u(x, t), v(x, t), θ(x, t)

)
to the problem

(1)–(9) such that u(x, t) > 0, θ(x, t) > 0 on [0, M ]× [0,∞).
Moreover, for any T > 0 we have

(u, ux, ut, uxt, v, vx, vt, vxx, θ, θx, θt, θxx) ∈ (Cr,r/2(QT ))
12,

and

(utt, vxt, θxt) ∈ (L2(QT ))3.
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2. Proof of theorem 1

The proof of Theorem 1 is based on the Leray-Schauder fixed point theorem,

relying on suitable a priori estimates. In fact, one shows, by using a straightforward
extension of a result of Kawohl [10], that the proof of Theorem 1 is completed by

establishing the following result.

Theorem 2. Suppose that the problem (1)–(9) has at least a classical solution(
u(x, t), v(x, t), θ(x, t)

)
.

Then the functions (u, v, θ, vx, θx) are bounded on Cr,r/2(QT ) with r = 1/3:

|||u|||1/3 + |||v|||1/3 + |||θ|||1/3 + |||vx|||1/3 + |||θx|||1/3 � C(T ),

where C(T ) depends only on T , the physical parameters of the problem, and the

data.

As usual, we begin with some energy estimates.

Lemma 1. Let T > 0 be an arbitrary positive number.

The following estimates hold for any t � T :

∫ M

0

[1
2

v2 + e+ u
]
dx � C(T ),(14)

Φ(t) +
∫ t

0
Ψ(t) dt � C(T ),(15)

where Φ(t) =
∫ M

0 [R(u− logu− 1)+Cv(θ− log θ− 1)] dx, Ψ(t) =
∫ M

0

( v2x
uθ +κ

θ2x
uθ2 ) dx,

and C(T ) is a positive constant depending only on T , the physical parameters of the

problem and the data.

�����. Multiplying by v the second relation in (1) and adding the third rela-

tion (1), we find the conservation law

(16)

(
1
2

v2 + e+ gC

(1
2

M − x
)
r

)

t

= (σv −Q)x,

where r = r(x, t) is the Lagrangian position defined by ∂
∂tr(x, t) = v(x, t).

Using the first equation (1), one sees, by integrating by parts, that

(∫ M

0
gC

(1
2

M − x
)
r(x, t) dx

)

t

=

(∫ M

0

1
2

gCx(x −M)u(x, t) dx

)

t

.
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Now, by integrating (16) on [0, M ] and using boundary conditions, we obtain

(17)
∫ M

0

[1
2

v2 + e+ f(x)u
]
dx = E0,

where f(x) ≡ P − 1
2 gC x(M − x) and E0 =

∫ M

0

[
1
2 v20 + e0 + f(x)u0

]
dx.

As the quantity f(x) has not a definite sign, we need some extra information to
get (14). For this purpose, we use an argument of Nagasawa [18].

First, we remark that, by superposing if necessary a rigid motion, one can always

suppose that ∫ M

0
v(x, t) dx = 0.

Now, as the function Ω(x, t) =
∫ x

0 v(y, t) dy is clearly the unique solution of the
Dirichlet problem

(18)

{
Ωxx = ut,

Ω(0) = Ω(M) = 0,

we get the explicit formula

(19) Ω(x, t) =
∫ M

0
G(x, y)ut(y, t) dy,

where G(x, y) is the Green function of the problem (18), given by G(x, y) = 1
M [xy−

M ·min(x, y)] for (x, y) ∈ [0, M ]× [0, M ].
By multiplying (19) by u, integrating on [0, M ], integrating by parts the right-hand

sides and using the symmetry of G, we get

(20)
∫ M

0
u(x, t)

∫ x

0
v(y, t) dy =

1
2

∂

∂t

∫ M

0

∫ M

0
G(x, y)u(x, t)u(y, t) dxdy.

By integrating on [0, x] the second relation in (1), multiplying by u, and integrating
on [0, M ]× [0, t], we find

∫ t

0

∫ M

0

(
v2 + (p(u, θ)− f(x))u

)
dxds+ ν

∫ M

0
u0(x) dx(21)

−
∫ M

0
u0(x)

∫ x

0
v0(y) dy dx

= ν

∫ M

0
u(x, t) dx−

∫ M

0
u(x, t)

∫ x

0
v(y, t) dy dx.

51



By integrating one more in t we obtain

∫ t

0

∫ s

0

∫ M

0

(
v2 + (p(u, θ)− f(x))u

)
dxdτ ds(22)

= ν

∫ t

0

∫ M

0
u(x, s) dxds−

∫ t

0

∫ M

0
u(x, s)

∫ x

0
v(y, s) dy dxds

− ν t

∫ M

0
u0(x) dx+ t

∫ M

0
u0(x)

∫ x

0
v0(y) dy dx.

After (20), the second term in the right-hand side is

−1
2

(∫ M

0

∫ M

0
G(x, y)u(x, t)u(y, t) dxdy −

∫ M

0

∫ M

0
G(x, y)u0(x)u0(y) dxdy

)
,

so, by putting it into (22), we obtain

∫ t

0

∫ s

0

∫ M

0

(
v2 + (p(u, θ)− f(x))u

)
dxdτ ds(23)

= ν

∫ t

0

∫ M

0
u(x, s) dxds− 1

2

∫ M

0

∫ M

0
G(x, y)u(x, t)u(y, t) dxdy

+
1
2

∫ M

0

∫ M

0
G(x, y)u0(x)u0(y) dxdy − νt

∫ M

0
u0(x) dx

+ t

∫ M

0
u0(x)

∫ x

0
v0(y) dy dx.

As G(x, y) < 0, for (x, y) ∈ [0, M ]× [0, M ], we get the integrated bound:

(24)
∫ t

0

∫ M

0
u(x, s) dxds � C3(T ) +

∫ t

0

∫ s

0

∫ M

0

(
v2 + (p(u, θ)− f(x))u

)
dxdτ ds.

Now, if we denote by p1 the “increasing” part of p, defined by

p(u, θ) ≡ p1(u, θ)− 3
8
|t0|u−2,

and if we denote by e1 the “increasing” part of e, defined by

e(u, θ) ≡ e1(u, θ)− 3
8
|t0|u−1,

we can check easily that

(25) ∃C > 0: ∀u > 0, ∀θ > 0: u p1(u, θ) � Ce1(u, θ),

where C = max(2, Cv/R).
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So

(26)
∫ t

0

∫ M

0
u(x, s) dxds � C(T ) +

∫ t

0

∫ s

0

∫ M

0

(1
2

v2 + e1(u, θ) + u
)
dxdτ ds.

Now, using (17) we obtain

∫ M

0

(1
2

v2 + e1

)
dx � C4

(
1 +

∫ M

0
u dx+

∫ M

0
u−1 dx

)
,

where C4 = max(|E0|, 38 |t0|, |P |+ 18gCM2).

By virtue of the Cauchy-Schwarz inequality we have

∫ M

0
u−1 dx � Cε + ε

∫ M

0
u−2 dx � Cε + ε

∫ M

0
e1 dx,

so finally

(27)
∫ M

0

[1
2

v2 + e1

]
dx � C5

(
1 +

∫ M

0
u dx

)
.

By putting (27) into (26) we arrive at

∫ t

0

∫ M

0
u(x, s) dxds � C6(T )

(
1 +

∫ t

0

∫ s

0

∫ M

0
u dxdτ dt

)
.

By using Gronwall’s lemma, we get

(28)
∫ t

0

∫ M

0
u(x, s) dxds � C7(T ),

which gives an integrated bound for the energy:

(29)
∫ t

0

∫ M

0

[1
2

v2 + Cvθ + u
]
dxds � C8(T ).

Now, by virtue of (21) and (25)

∫ M

0
u(x, s) dx � C9(T )

(
1 +

∫ t

0

∫ M

0
[v2 + Cvθ + u] dxds

+
∫ M

0
u(x, t)

∫ x

0
v(y, t) dy dx

)
,
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which gives, in view of (29)

(30)
∫ M

0
u(x, s) dx � C10(T )

(
1 +

∫ M

0
u(x, t)

∫ x

0
v(y, t) dy dx

)
.

Integrating by parts in the last integral we have

∫ M

0
u(x, t)

∫ x

0
v(y, t) dy dx = −

∫ M

0
v(x, t)

∫ x

0
u(y, t) dy dx.

Now one checks that there exists a number a(t) ∈ [0, M ] such that
∫ M

0

∫ x

a(t)
u(y, t) dy dx = 0.

Consequently,

∫ M

0
u(x, t)

∫ x

0
v(y, t) dy dx = −

∫ M

0
v(x, t)

∫ x

a(t)
u(y, t) dy dx.

Inserting (30) and using the Cauchy-Schwarz inequality one has

(31)
∫ M

0
u(x, s) dx � C10(T )

(
1 + ε

∫ M

0
v2 dx+ Cε

∫ M

0

(∫ x

a(t)
u(y, t) dy

)2
dx

)
.

Now, using (23), (28) and (29), we infer

(32) −1
2

∫ M

0

∫ M

0
G(x, y)u(x, t)u(y, t) dxdy � C11(T ).

By Fourier expanding G, we get the formula

G(x, y) = −2
∑

n>0

M2

n2�2
sin

n�x

M
sin

n�y

M
,

which gives

−1
2

∫ M

0

∫ M

0
G(x, y)u(x, t)u(y, t) dxdy =

∑

n>0

(∫ M

0

M

n�
sin

n�x

M
u(x, t) dx

)2
.

Integrating by parts the right-hand sides leads to

−1
2

∫ M

0

∫ M

0
G(x, y)u(x, t)u(y, t) dxdy =

∑

n>0

(∫ M

0

(∫ x

a(t)
u(ξ, t) dξ

)
cos

n�x

M
dx

)2
.
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By Fourier expanding x →
∫ x

a(t) u(ξ, t) dξ and using Plancherel’s theorem, we obtain

finally

−1
2

∫ M

0

∫ M

0
G(x, y)u(x, t)u(y, t) dxdy =

∫ M

0

(∫ x

a(t)
u(ξ, t) dξ

)2
dx.

Then, from (32) we have

∫ M

0

(∫ x

a(t)
u(ξ, t) dξ

)2
dx � C12(T ),

and inserting it into (31) yields

(33)
∫ M

0
u(x, s) dx � C10(T )

(
1 + ε

∫ M

0
v2 dx

)
.

Substituting it into (17), we have

∫ M

0

[1
2
v2 + e

]
= dx � |E0|+

(
P +

1
8

gCM2
)∫ M

0
u dx+ ε

∫ M

0
v2 dx.

So, for ε small enough we have

∫ M

0
v2 dx � C13(T ),

which, by (33), implies ∫ M

0
u dx � C14(T ),

which gives (14) by virtue of (17).
To get (15), we rewrite the third equation (1) as follows:

(34) eθθt + θpθvx −
ν

u
v2x =

(κ

u
θx

)
x
.

If we multiply (34) by θ−1, we get

(35) eθ
θt

θ
+ pθut =

ν

uθ
v2x +

κ

uθ2
θx
2 +

( κ

uθ
θx

)
x
.

By integrating (35) on [0, M ]× [0, t] and using the above estimates, we obtain finally
∫ t

0

∫ M

0

( ν

uθ
v2x+

κ

uθ2
θx
2
)
dxdt+

∫ M

0

(
R(u−logu−1)+Cv(θ−log θ−1)

)
dx � C(T ).

�
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We get now the positivity of θ in a standard manner, by applying the maximum

principle to the parabolic equation (34) and using the boundary conditions and the
positivity of θ0:

Proposition 1. One has

(36) θ(x, t) > 0 on [0, M ]× [0,∞).

We have now the following estimates for temperature and for powers of the specific
volume.

Lemma 2. There exists a positive constant C(T ) such that

(37)

(∫ M

0
u dx,

∫ M

0

dx
uα

,

∫ M

0
θ dx

)
� C(T )

for any 2/3 � α � 2.

�����. By using Lemma 1, one gets directly
∫ M

0 u dx � C(T ) and
∫ M

0 θ dx �
C(T ).

As the coefficient t0 is negative, we write

∫ M

0

(
1
16

t3u
−2 +

3h̄2

10m

(3�2
2

)2/3
u−2/3 + em + Cvθ

)
dx � E0 +

∫ M

0

3
8
|t0|u−1 dx.

By using Schwarz’s inequality, one has, for 0 < ε < 1 and C1 > 0

∫ M

0
(u−2 + u−2/3 + θ) dx � C1(ε) + ε

∫ M

0
u−2 dx.

By absorbing the last term on the right-hand side, we get the estimate for
∫

θ and
for

∫
u−2/3 and

∫
u−2, and we conclude by interpolation for

∫
u−α. �

Lemma 3. If q � 2, we have

(38)
∫ t

0
max

x∈[0,M ]
θα(x, s) ds � C(T )

for 0 � α � 2.

�����. An elementary argument gives the inequality

θr(x, s) � 1
M

∫ M

0
θr(x, s) dx+ r

∫ M

0
θr−1|θx| dx,
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where the first integral is bounded provided that 0 � r � 1, by interpolation accord-
ing to Lemma 1.
By using the Cauchy-Schwarz inequality we obtain

θr(x, s) � C + C

∫ M

0

κ1/2

u1/2θ
|θx|

u1/2θr

κ1/2
dxds,

hence

θr(x, s) � C + C

(∫ M

0

κ

uθ2
θ2x dx

)1/2(∫ M

0
u

θ2r

1 + θq
dx

)1/2
.

By virtue of Lemma 1, the last integral is bounded if q � 2r.
So, by taking the square and integrating in t, we get finally

(39)
∫ t

0
max

x∈[0,M ]
θ2r(x, s) ds � C + C

∫ t

0

∫ M

0

κ

uθ2
θ2x dxds,

where the right-hand side is bounded due to Lemma 1. �

Lemma 4. There is a pair (um, uM ) of positive numbers, depending only on T

and the data, such that

(40) ∀(x, t) ∈ [0, M ]× [0, T ] : um � u(x, t) � uM .

�����. In the following, Cj denote various positive T -dependent constants.
Let us consider first the lower bound. From (1) we get

(41) vt + px = ν(log u)tx + gC

(
x− M

2

)
.

Integrating on [0, x]× [0, t], we find

−ν log u(x, t) +
∫ t

0
p(x, s) ds

= −
∫ x

0

(
v(z, t)− v0(z)

)
dz +

∫ t

0
p(0, s) ds− ν log u(0, t) + ν log u0(0)

− ν log u0(x) + t
gC

2
x(x−M).

Integrating on [0, t] the boundary condition σ(0, t) = −P , we have

∫ t

0
p(0, s) ds− ν log u(0, t) + ν log u0(0) = Pt,
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so we obtain the identity

(42) ν log
u(x, t)
u0(x)

=
∫ t

0
(p(x, s)− P ) ds+

∫ x

0

(
v(z, t)− v0(z)

)
dz − tf(x),

which gives the lower bound

u(x, t) � um

with um = min
[0,M ]

u0(x) exp( 1ν [−(8ME0)1/2 + T (pm − P )]).

By using (41) and Lemma 1 we find

log u(x, t) � C3 + C4

(∫ M

0

(
ν(log u(y, t))y − v

)2
dy

)1/2
.

So, we just need an upper bound for the right-hand side.

For that purpose, we multiply (41) by ν(log u(x, s))x−v and integrate on [0, M ]×
[0, t]:

∫ M

0

(
ν(log u(x, t))x − v

)2
dx−

∫ M

0

(
ν(log u0(x))x − v0

)2
dx

=
∫ t

0

∫ M

0
(puux + pθθx)

(
ν(log u(x, s))x − v

)
dxds

−
∫ t

0

∫ M

0
gC

(
x− M

2

)(
ν(log u(x, s))x − v

)
dxds.

A simple computation gives

upu = −ϕ(u)− Rθ

u
+

C5
u2

,

where ϕ is a positive function such that 0 � ϕ(u) � C6.
So we get

∫ M

0

(
ν(log u(x, t))x − v

)2
dx−

∫ M

0

(
ν(log u0(x))x − v0

)2
dx(43)

+ ν

∫ t

0

∫ M

0

(
ϕ(u) +

Rθ

u

)(
(log u(x, s))x

)2
dxds

= C5

∫ t

0

∫ M

0

(
ν

ν

u2
(
(log u(x, s))x

)2
dxds

−
∫ t

0

∫ M

0
upuv(log u(x, s))x

)
dxds

+
∫ t

0

∫ M

0
pθθx

(
ν(log u(x, s))x − v

)
dxds

−
∫ t

0

∫ M

0
gC

(
x− M

2

)(
ν(log u(x, s))x − v

)
dxds.
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We first bound the first term on the right-hand side by using Lemma 1:

C5

∫ t

0

∫ M

0

ν

u2
(
(log u(x, s))x

)2
dxds

� C7 + C8

∫ t

0

∫ M

0
(1 + θ)

(
ν(log u(x, s))x − v

)2
dxds.

The second term gives

∫ t

0

∫ M

0
|upu| |v| |(log u(x, s))x| dxds

� 1
2

∫ t

0

∫ M

0
(1 + θ)

(
(log u(x, s))x

)2
dxds

+
1
2

∫ t

0
max

x∈[0,M ]
(1 + θ(x, s))

(∫ M

0
v2 dx

)
ds.

By using Lemma 1 and 3 we have
∣∣∣∣
∫ t

0

∫ M

0
upuv(log u(x, s))x dxds

∣∣∣∣ � C9

(
1 +

∫ t

0

∫ M

0
(1 + θ)

(
(log u(x, s))x

)2
dxds

)
.

The third term gives
∣∣∣∣
∫ t

0

∫ M

0

R

u
θx

(
ν(log u(x, s))x − v

)
dxds

∣∣∣∣,

�
∫ t

0

∫ M

0

R

u

θu1/2

κ1/2

∣∣ν(log u(x, s))x − v
∣∣ κ1/2|θx|

u1/2θ
dxds,

where, by virtue of Lemma 1, the right-hand side is bounded by

C10

(
1 +

∫ t

0

∫ M

0

(
ν(log u(x, s))x − v

)2
dxds

)
.

Finally, the last term gives
∣∣∣∣
∫ t

0

∫ M

0
gC

(
x− M

2

)(
ν(log u(x, s))x − v

)
dxds

∣∣∣∣

� C11

(
1 +

∫ t

0

∫ M

0

(
ν(log u(x, s))x − v

)2
dxds

)
.

By collecting all of these estimates and putting F (t) =
∫ M

0

(
ν(log u(x, t))x − v

)2
dx

and K(t) = max
x∈[0,M ]

(1 + θ)(x, t) we get

F (t) � C12

(
1 +

∫ t

0
K(s)F (s) ds

)
.
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Now, by applying Gronwall’s lemma, we obtain finally

F (t) � C13 exp

(∫ t

0
K(s) ds

)[
1 +

∫ t

0
exp

(
−

∫ s

0
K(τ) dτ

)
ds

]
.

As the right-hand side is bounded by Lemma 3, this gives an upper bound for∫ M

0

(
ν(log u(x, t))x − v

)2
dx, and consequently for u. �

Lemma 5. One has the inequality

(44)
∫ T

0

∫ M

0
v2x dxdt � C(T ).

�����. By multiplying the second equation (1) by v and integrating on [0, M ]×
[0, T ] we have

1
2

∫ M

0
v(x, T )2 dx+

∫ T

0

∫ M

0
ν

v2x
u
dxdt

=
1
2

∫ M

0
v0(x)2 dx+ P

∫ T

0

(
v(M, t)− v(0, t)

)
dt

+
∫ T

0

∫ M

0
pvx dxdt+

∫ T

0

∫ M

0
gC

(
x− M

2

)
v dxdt.

By virtue of Lemma 1, the right-hand side is bounded by

C + C

∫ T

0

∫ M

0
p2 dxdt+

1
2

∫ T

0

∫ M

0
ν

v2x
u
dxdt,

and
∫ T

0

∫ M

0
p2 dxdt � C

∫ T

0

∫ M

0
(1 + θ2) dxdt,

where the right-hand side is bounded in view of Lemma 3. �

Lemma 6. One has the inequality

(45)
∫ T

0

∫ M

0
θq+2 dxdt+

∫ T

0
max
[0,M ]

θq+1 dt � C(T ).

�����. We have by Lemma 1

∫ T

0

∫ M

0
θq+2 dxdt �

∫ T

0

(
max

x∈[0,M ]
θq+1

∫ M

0
θ dx

)
dt � C(T )

∫ T

0
max

x∈[0,M ]
θq+1 dt.
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But we also have, by using the Sobolev imbedding theorem, Lemma 1 and 4 and the

Minkowski inequality:

max
x∈[0,M ]

θq+1 � C(T ) + (q + 1)ε
∫ M

0

uθ2q+2

κ
dx+ Cε

∫ M

0
κ

θ2x
uθ2
dx

� C(T ) + (q + 1)εuM · max
x∈[0,M ]

θq+1
∫ M

0
θ dx+ Cε

∫ M

0
κ

θ2x
uθ2
dx.

Then, by using Lemma 1 and choosing ε small enough, we get

max
x∈[0,M ]

θq+1 � C(T ) +
1
2
max

x∈[0,M ]
θq+1,

which implies (45). �

Lemma 7. One has the inequality

(46) max
t∈[0,T ]

∫ M

0
u2x dx � C(T ).

�����. As the proof of Lemma 4 tells us that
∫ M

0

(
ν(log u(x, t))x− v

)2
dx � C,

we deduce

ν2
∫ M

0

u2x
u2
dx+

∫ M

0
v2 dx � 2ν

∫ M

0
|v| |ux|

u
dx.

The result follows by using the Cauchy-Schwarz inequality. �

Now we need to improve (44).

Lemma 8. One has the bound

(47)
∫ T

0

∫ M

0
|vx|3 dxdt � C(T ).

�����. By using an argument of Dafermos and Hsiao [14] and the function Ω

introduced in (18), we check that Ω satisfies the following parabolic problem:

(48)





Ωt −
ν

u
Ωxx = −p(x, t) + f(x),

Ω(0, t) = 0,

Ω(M, t) =
∫ M

0
v(y, t) dy = 0,

Ω(x, 0) =
∫ x

0
v0(y) dy.

61



Then linear parabolic Lp estimates give in particular ‖Ωxx‖L1([0,T ];L3(0,M)) � C +

‖p‖L1([0,T ];L3(0,M)), and we have just to verify that the right-hand side is finite. We
have ∫ T

0

∫ M

0
p3(x, t) dxdt � C

∫ T

0

∫ M

0
(1 + θ + θ2 + θ3) dxdt.

By Lemma 3, the first three terms on the right-hand side are bounded and, for the
last one, we get

∫ T

0

∫ M

0
θ3 dxdt � C

∫ T

0
max

x∈[0,M ]
θ2(x, t)

(∫ M

0
θ(x, t) dx

)
dt,

which is also bounded by virtue of Lemma 3. �

Following [10], [11] we consider three quantities:

X(t) =
∫ t

0

∫ M

0
(1 + θq)θ2t dx, Y = max

t∈[0,T ]

∫ M

0
(1 + θ2q)θ2x dx, Z = max

t∈[0,T ]

∫ M

0
v2xx dx.

By Schwarz inequality we have

max
x∈[0,M ]

θ2q+2(x, t) � C + C

∫ M

0
θ2q+1|θx| dx

� C + C

(∫ M

0
θ2qθ2x dx

)1/2
max

x∈[0,M ]
θq+1/2.

So

max
x∈[0,M ]

θ2q+2(x, t) � C + CY1/2 max
x∈[0,M ]

θq+1/2,

and we obtain
max
QT

θ � C(1 +Y
1

2q+3 ).

Now, using the interpolation inequality

‖vx‖2L2(0,M) � C
(
‖v‖2L2(0,M) + ‖v‖L2(0,M)‖vxx‖L2(0,M)

)

we have

max
[0,T ]

∫ M

0
v2x dx � C(1 + Z

1
2 ).

The Sobolev imbedding theorem gives

v2x(x, t) � C‖vx‖2L2 + C

∫ M

0
|vx(x, t)| |vxx(x, t)| dx.
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By combining the last two estimates we obtain

max
QT

|vx| � C(1 + Z
3
8 ),

where QT = [0, T ]× [0, M ].

Lemma 9. One has the following inequalities:

(49) Y � C(1 + Z
2q+1
2q+2 ), X � C(1 + Z

2q+1
2q+2 ).

�����. As before, we denote by C, Cj various positive constants.
We consider the function

K(u, θ) =
∫ θ

0

κ(u, ξ)
u
dξ,

which satisfies

|Ku|, |Kuu| � C(1 + θq+1).

We multiply (34) by Kt, and integrate on Qt with t � T

(50)
∫ t

0

∫ M

0

(
Cvθt +

Rθ

u
vx −

ν

u
v2x

)
Kt dxds+

∫ t

0

∫ M

0

κ

u
θxKtx dxds = 0.

One computes easily Kt = Kuvx + κ
u θt and Ktx =

(
κ
u θx

)
t
+ Kuvxx + Kuuvxux +(

κ
u

)
u
uxθt.

So we have
∫ t

0

∫ M

0
Cv

κ

u
θ2t dxds = −

∫ t

0

∫ M

0
CvKuvxθt dxds(51)

−
∫ t

0

∫ M

0

(
Rθ

u
vx −

ν

u
v2x

)
Ku dxds

−
∫ t

0

∫ M

0

(
Cvθt +

Rθ

u
vx −

ν

u
v2x

)
κ

u
θt dxds

−
∫ t

0

∫ M

0

κ

u
θxKtx dxds.

To bound each term in (51), one first gets

∫ t

0

∫ M

0
Cv

κ

u
θ2t dxds(52)

� Cvκ1
um

∫ t

0

∫ M

0
(1 + θq)θ2t dxds−

∣∣∣∣
∫ t

0

∫ M

0
CvKuvxθt dxds

∣∣∣∣.
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Now, the Minkowski inequality yields
∣∣∣∣
∫ t

0

∫ M

0
CvKuvxθt dxds

∣∣∣∣ � Cvκ2

∫ t

0

∫ M

0
(1 + θq+1)|θt| |vx| dxds

� 1
2

Cvκ1
um

X+ C

∫ t

0

∫ M

0
(1 + θq+2)v2x dxds

� 1
2

Cvκ1
um

X+ Cmax
QT

v2x

∫ t

0

∫ M

0
(1 + θq+2) dxds.

So, by virtue of Lemma 6 we conclude

(53)

∣∣∣∣
∫ t

0

∫ M

0
CvKuvxθt dxds

∣∣∣∣ � 1
2

Cvκ1
um

X+ C1Z3/4.

Next
∣∣∣∣
∫ t

0

∫ M

0

(Rθ

u
vx −

ν

u
v2x

)
Kuvx dxds

∣∣∣∣

� C

∫ t

0

∫ M

0

(
(1 + θq+2)v2x + (1 + θq+1)|vx|3

)
dxds

� Cmax
Qt

v2x

∫ t

0

∫ M

0
(1 + θq+3) dxds+ Cmax

Qt

(1 + θq+1)
∫ t

0

∫ M

0
|vx|3 dxds.

So

(54)

∣∣∣∣
∫ t

0

∫ M

0

(Rθ

u
vx −

ν

u
v2x

)
Kuvx dxds

∣∣∣∣ � C2 + C2Z3/4 + C2Y

and consequently
∣∣∣∣
∫ t

0

∫ M

0

(Rθ

u
vx −

ν

u
v2x

)κ

u
θt dxds

∣∣∣∣

� 1
4

Cvκ1
um

X+ CZ3/4 + Cmax
QT

(1 + θq)max
QT

|vx|
∫ t

0

∫ M

0
|vx|3 dxds.

So, finally, by using Lemmas 4 and 8 we obtain

(55)

∣∣∣∣
∫ t

0

∫ M

0

(Rθ

u
vx −

ν

u
v2x

)κ

u
θt dxds

∣∣∣∣ � 1
4

Cvκ1
um

X+ C3Z3/4 + C3 +
1
2
C2Y.

We have also
∫ t

0

∫ M

0

κ

u
θx

(κ

u
θx

)
t
dxds =

1
2

∫ M

0

(κ

u
θx

)2
(x, t) dx− 1

2

∫ M

0

(κ

u
θx

)2
(x, 0) dx,

so
∫ t

0

∫ M

0

κ

u
θx

(κ

u
θx

)
t
dxds � 2C2Y − C4.(56)
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Further,
∣∣∣∣
∫ t

0

∫ M

0

κ

u
θxKuvxx dxds

∣∣∣∣ �
∫ t

0

∫ M

0
(1 + θ2q+1)|θx| |vxx| dxds

� CZ1/2Yq/(2q+1)

� C5 + C5Z(2q+1)/(2q+2) +
1
4

C2Y,

and in the same manner we estimate
∣∣∣∣
∫ t

0

∫ M

0

κ

u
θxKuuvxux dxds

∣∣∣∣ �
∫ t

0

∫ M

0
(1 + θ2q+1)|θx| |vx| |ux| dxds(57)

� C6 + C6Z3/4 +
1
8

C2Y.

Now
∣∣∣∣
∫ t

0

∫ M

0

κ

u
θx

(κ

u

)
u
uxθt dxds

∣∣∣∣

� 1
16

Cvκ1
um

X+ C

∫ t

0

∫ M

0
|θx|(1 + θq)

(κ

u
θx

)2
u2x dxds

� 1
16

Cvκ1
um

X+ Cmax
QT

(1 + θq)
∫ t

0
max
QT

(κ

u
θx

)2
ds

� 1
16

Cvκ1
um

X+ C(1 +Yq/(2q+3))

×
∫ t

0

∫ M

0
(1 + θ2q)θ2x +

∣∣∣κ
u

θx

∣∣∣
∣∣∣
(κ

u
θx

)
x

∣∣∣ dxds,

so the left-hand side of the above inequality is bounded by

� 1
16

Cvκ1
um

X+C(1+Y(2q+1)/(2q+3))+C(1+Yq/(2q+3))
∫ t

0

∫ M

0

∣∣∣κ
u

θx

∣∣∣
∣∣∣
(κ

u
θx

)
x

∣∣∣ dxds.

But we have, by virtue of Lemma 1
∫ t

0

∫ M

0

∣∣∣κ
u

θx

∣∣∣
∣∣∣
(κ

u
θx

)
x

∣∣∣ dxds � C

(∫ t

0

∫ M

0
(1 + θq+1)

(κ

u
θx

)2
x
dxds

)1/2

� C(1 + max
QT

θ1/2)X1/2 + CZ3/8 + C(1 + max
QT

θ(q+3)/2).

By using this estimate, we get finally

(58)

∣∣∣∣
∫ t

0

∫ M

0

κ

u
θx

(κ

u

)
u
uxθt dxds

∣∣∣∣ � C5 +
1
8

Cvκ1
um

X+ C5Z3/4 +
1
16

C2Y.

By collecting all of the above estimates, we conclude

Y +X � C(T )(1 + Z(2q+1)/(2q+2)),

which completes the proof. �
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Lemma 10. One has the inequality

(59) max
[0,T ]

∫ M

0
v2t dx+

∫ T

0

∫ M

0
v2xt dxdt � C(T )

(
1 + Z(2q+1)/(2q+2)

)
.

�����. We sketch a formal proof, which can be made rigorous, by using adapted

mollifiers (see [10], [11]).
If we differentiate with respect to t the second equation (1), multiply it by vt and

integrate on QT , we get

1
2

∫ M

0
v2t (x, t) dx− 1

2

∫ M

0
v2t (x, 0) dx =

∫ T

0

∫ M

0
vtσxt dxdt.

By integrating by parts on [0, M ], the right-hand side becomes

∫ T

0

∫ M

0
vtx

[
pt − ν

vtx

u
+ ν

v2x
u2

]
dxdt,

and we get the majorization

1
2

∫ M

0
v2t (x, t) dx+

∫ T

0

∫ M

0
ν

v2tx
u
dxdt � C + C

∫ T

0

∫ M

0
(p2t + v4x) dxdt.

The integral in the right-hand side is bounded by

C

∫ T

0

∫ M

0

(
θ2t + (1 + θ2)v2x + v4x

)
dxdt

� C + CX+ CZ
3
4 + Cmax

QT

v2x

∫ T

0

∫ M

0
v2x dxdt,

which completes the proof, by virtue of Lemma 9. �

Lemma 11. There exists a constant C(T ) such that

(
Z, X, θ, Y, max

[0,T ]

∫ M

0
v2x dx, max

QT

|vx|, max
[0,T ]

∫ M

0
v2t dx,

∫ T

0

∫ M

0
v2xt dxdt

)
(60)

� C(T ).

�����. By the second equation (1)

vxx =
u

ν

(
vt + px +

ν

u2
uxvx

)
.
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So

∫ M

0
v2xx dx � C

∫ M

0

(
v2t + θ2x + (1 + θ2)u2x + u2xv2x

)
dx

� C

∫ M

0

(
v2t + θ2x + (1 + θ2)u2x + v2x

)
dx.

By virtue of Lemma 10

Z � C + C(1 + Z(2q+1)/(2q+2)) + CY + C(1 +Y2/(2q+5)) + CZ3/4,

so, acording to Lemma 9, we obtain

Z � C(1 + Z(2q+1)/(2q+2)).

This implies that Z is bounded, so is Y, and all the other quantities. �

Lemma 12. There exists a constant C(T ) such that

(61)

(
max
[0,T ]

∫ M

0
θ2t dx,

∫ T

0

∫ M

0
θ2xt dxdt,

∫ T

0

∫ M

0
θ2xx dx

)
� C(T ).

�����. By differentiating equation (34) with respect to t, multiplying by θt

and integrating on [0, M ], we get

1
2
Cv

∫ M

0
θ2t dx+

∫ t

0

∫ M

0

κ

u
θ2xt dxdt

=
1
2
Cv

∫ M

0
θ2t (x, 0) dx−

∫ t

0

∫ M

0

[R

u
θ2t vx −

Rθ

u2
θtv
2
x +

Rθ

u
θtvxt +

ν

u2
θtv
3
x

− 2ν
u

θtvxvxt +
κu

u
vxθxθxt +

κθ

u
θtθxθxt −

κ

u2
utθxθxt

]
dxdt.

So, we have

1
2
Cv

∫ M

0
θ2t dx+

∫ t

0

∫ M

0

κ

u
θ2xt dxdt

� C + C

∫ t

0

∫ M

0

[
|vx|θ2t + |θt|v2x + |θtvxt|+ |θtv

3
x|+ |θtvxvxt|

+ (1 + θq)(|vx|+ |θt|)|θxtθx|
]
dxdt.
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By Lemma 11 one gets

1
2
Cv

∫ M

0
θ2t dx+

∫ t

0

∫ M

0

κ

u
θ2xt dxdt

� C + ε

∫ t

0

∫ M

0

κ

u
θ2xt dxdt+ C(ε)

∫ t

0

∫ M

0
θ2t θ2x dxdt,

where the first term on the right-hand side is absorbed in the left-hand side for ε

small enough, and the last term is bounded by virtue of Lemma 11.

To obtain the last estimate in (61), one gets by using the third equation (1)

∫ t

0

∫ M

0
θ2xx dxdt �

∫ t

0

∫ M

0
[u2xθ2x + θ4x + θ2t + v2x + v4x] dxdt,

where the right-hand side is bounded according to Lemma 11. �

The Hölder regularity of the solution is now proved in the same manner that

in [11], which completes the proof of Theorem 2.

3. Asymptotic behaviour in the neutral case

We suppose from now on that the fluid has only a neutral component, which
corresponds physically to the situation of neutron stars.

3.1. A partial asymptotic result in the confining case.
Clearly, the above a-priori estimates are not sufficient to investigate the asymptotic

behaviour of the system, and we have to derive more accurate bounds, independent
of time.

In fact, the non-monotone character of the pressure makes a precise asymptotic
study difficult to carry out: the unstable zone corresponding to the pu > 0 region

may produce some high frequency density waves for large time.

In the past, few authors considered asymptotic problems for non monotone fluids
or solids: Hsiao and Luo [16] have studied the large time behaviour for a model of

thermoviscoelastic material with a non-monotone pressure previously introduced by
Dafermos and Hsiao [14], by using results of Andrews and Ball [19].

More recently Shen, Zheng and Zhu [17] have investigated the large time behaviour
for another model of thermoviscoelastic material, appearing in the theory of phase

transitions for shape memory alloys.

Unfortunately, the constraints proposed in all these various works are not satisfied
by our model. Moreover, we suspect that they are not sufficient to prevent the
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appearance of high-frequency density oscillations, due to the presence of the non

monotone contribution, independent of the temperature, in the pressure.
Although these oscillations are not sufficient to alter the existence of a global

solution, they seem to destroy the attractor structure of the system.

Theorem 3. Let r(x, t) be the Lagrangian position r(x, t) of a point (x, t) of the
slab, defined by

dr(x, t)
dt

= v(x, t),

and

R(t) := r(M, t) − r(0, t),

the spatial extension of the domain.

There exist two positive numbers 0 < Rm < RM < ∞, independent of time, such
that

(62) ∀t > 0: Rm � R(t) � RM .

This (weak) result tells us that the fluid remains confined in a fixed slab for any

time: the free boundaries neither collapse, nor escape to the infinity.

This simple result is a direct consequence of the two following lemmas.

Lemma 13. Provided P > 0, the following estimates hold for any t � 0:

(63)
∫ M

0

[1
2
v2 + e+ Pu

]
dx = E0,

where E0 =
∫ M

0

[
1
2v
2
0 + e0 + Pu0

]
dx;

Φ(t) +
∫ t

0
Ψ(t) dt � E1,(64)

where

Φ(t) =
∫ M

0
[R(u− log u− 1) + Cv(θ − log θ − 1)] dx,

Ψ(t) =
∫ M

0

(
ν

v2x
uθ
+ κ(u, θ)

θ2x
uθ2

)
dx,

and the constants E0 and E1 are positive and independent of t.

69



�����. The inequality (63) is obtained by integrating the fourth relation (1)

on [0, M ]× (0, t) and using the boundary conditions (7), (8).
Multiplying by v the second relation in (1) we find the relation

(65)
(1
2
v2 + e

)
t
= (σv − q)x.

Now, by integrating (65) on [0, M ] and using the boundary conditions, we obtain (63).
If we multiply the third equation (1) by θ−1, we get

(66) eθ
θt

θ
+ pθut =

ν

uθ
v2x +

κ

uθ2
θx
2 −

(qx

θ

)
x
.

By integrating on [0, M ]× [0, t] and using (5),we get (64). �

Lemma 14. There is a pair (u, u) of positive numbers, depending only on the
initial data and the physical constants, such that

(67) ∀(x, t) ∈ [0, M ]× [0, T ] : u � u(x, t) � u.

�����. If we denote by u0− the smallest real zero of u → p(u, 0)− P , we check
first easily that

(68) ∀0 < u < u0−, ∀θ > 0: p(u, θ) > P.

Using (68) we arrive at
p(u, θ) > 0, if 0 < u < u−0 .

So, provided
u := min

{
u−0 , min

x∈[0,M ]
u0(x)

}
exp

(
−

√
2E0

)
,

let us prove that one has the lower bound

(69) u(x, t) > u.

In fact, by integrating the second equation (1), one obtains the formula

log u(y, τ) = log u(y, s) +
1
ν

∫ τ

s

[
p
(
u(y, t), θ(y, t)

)
− P

]
dt

+
1
ν

∫ y

0
v(x, τ) dx− 1

ν

∫ y

0
v(x, s) dx.

Clearly u0(x) > u.
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Suppose that the bound u(x, t) > u is violated on [0, M ]× (0,∞).
In that case, there is a number τ > 0 and a y(τ) ∈ [0, M ] such that u(x, t) > u

except at (y, τ), where

(70) u(y, τ) = u.

There are two possibilities:

1. u(y, τ) < u− for 0 � t < τ ,
2. u(y, τ) < u− for 0 � s < t � τ but u(y, s) = u−.

In the first case

log u(y, τ) = log u(y, 0) +
1
ν

∫ τ

0

[
p
(
u(y, t), θ(y, t)

)
− P

]
dt(71)

+
1
ν

∫ y

0
v(x, τ) dx− 1

ν

∫ y

0
v(x, 0) dx,

hence

log u(y, τ) > log u0(y)− 2
√

E0 > log u,

which contradicts (70).

In the second case we have

log u(y, τ) > log u− − 2
√

E0,

which also contradicts (70), so we have proved (69).

To get the upper bound, we use the following formula, easily obtained from (71):

(72) u(x, t) =
1

B(x, t)Y (t)

[
u0(x) +

1
ν

∫ t

0
B(x, s)Y (s)p(u, θ)u(x, s) ds

]
,

where Y (t) = exp Ps
ν and B(x, t) = exp

(
1
ν

∫ x

0

(
v0(y)− v(y, t)

)
dy

)
.

One has, according to Lemma 1:

C−1 � B(x, t) � C.

Now
p(u, θ) = p1(u) +

Rθ

u
,

so, by (69) we have
|p(u, θ)| � C(1 + θ).

By putting it into (72) we obtain

u(x, t) � C

(
1 +

∫ t

0
e−(t−s)P

ν ds+
∫ t

0
θ(x, s) e−(t−s)P

ν ds

)
.
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But, according to the proof of Lemma 3 we conclude

θ(x, s) � C(1 + V (s)),

where V ∈ L1(0,∞), so

u(x, t) � C

(
1 +

∫ t

0
V (s) ds

)
,

which completes the proof of (67). �

To prove Theorem 3, one just integrates the first equation (1):

R(t) =
∫ M

0
u(x, t) dx.

Then, by Lemma 14, one has (62) with Rm =Mum and RM =MuM .

3.2. Asymptotic behaviour in the “strongly deconfining” case.
When P is sufficiently negative, one can expect that the slab is forced to expand

in all the available space.

This conjecture is true for a large class of gases (see [12], [18], [13]), and for |P |
large enough (less than pm, the bottom of the curve u → p(u, 0)), we show below
that it also holds in the present case.

Theorem 4. Consider the unique solution (u, v, θ) ∈ (Cr,r/2(QT ))3 of prob-
lem (1), (6), (7), (8), (9), given by Theorem 1.

Moreover, suppose that

(73) P < pm,

and that the “proper” total energy E0 satisfies

(74) E0 =
∫ M

0

[1
2
v20 + ε(u0, θ0) + f(x)u0

]
dx > 0.

Then there exists T0 such that

(75) ∀t > T0 :
∫ M

0
u(x, t) dx � C

√
t,

where C is a positive constant independent of t.
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�����. In the following, all the Cj are positive constant independent of t.

First, in view of (17), it is clear that the “proper” total energy is conserved:

(76)
∫ M

0

[1
2
v2 + ε(u, θ) + f(x)u

]
dx =

∫ M

0

[1
2
v20 + ε(u0, θ0) + f(x)u0

]
dx.

Due to (42) and by using (73), we have the estimate

ν log
u(x, t)
u0(x)

� t(pm − P )− 2(E0 +Mem).

So we get the lower bound

(77) u(x, t) � umeηt

with um = min
x∈[0,M ]

u0(x) exp
(
−(2(E0 +Mem))/ν

)
, and η = (pm − P )/ν is a positive

number.

Now, from (21) one gets
∫ t

0

∫ M

0

(
v2 +

(
p(u, θ)− f(x)

)
u
)
dxds

� C1

(
1 +

∫ M

0
u(x, t) dx+

∫ M

0
u(x, t)

∫ x

0
|v(y, t)| dy dx

)
.

So, by using the Cauchy-Schwarz inequality we arrive at

(78)
∫ t

0

∫ M

0
up(u, θ) dxds � C2

(
1 +

(∫ M

0
u(x, t) dx

)2)
.

Taking into account the decomposition p = p1 − 3
8 |t0|u−2 and the bound (25), one

checks that there exist two constants C3 and C4, such that
∫ t

0

∫ M

0
up(u, θ) dxds � C3

∫ t

0

∫ M

0

(1
2
v2 + ε+ f(x)u

)
dxds

− C4

∫ t

0

∫ M

0

3
8
|t0|u−1 dxds.

By using the lower bound (77) we obtain
∫ t

0

∫ M

0
up(u, θ) dxds � C3

∫ t

0

∫ M

0

(1
2
v2 + ε+ f(x)u

)
dxds− C5

∫ t

0
e−ηs ds.

So we have finally
∫ t

0

∫ M

0
up(u, θ) dxds � C3E0t+ C6(1− e−ηt) � Ct

for t large enough, and, by putting it into (78), we get (75). �
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Finally, by integrating the first equation (1) on [0, M ], one gets a simple geomet-

rical consequence of Theorem 3:

Corollary 1. Let r(x, t) be the Eulerian position of the Lagrangian point (x, t),
defined by

v(x, t) =
d
dt

r(x, t).

Then, under the conditions (73) and (74), there exists a positive constant T0 such

that the thickness of the slab R(t) = r(M, t)− r(0, t) satisfies

∀t > T0 : R(t) � C
√

t,

where C is a positive constant independent of t.

Acknowledgements. This work has been completed while the author was visit-
ing the Institute of Mathematics of the Academy of Sciences of the Czech Republic in

Prague. I wish to thank I. Straškraba, Š. Matuš̊u-Nečasová, E. Feireisl and H. Pet-
zeltová for their hospitality and for providing a stimulating research environment.

References

[1] P. J. Siemens: Liquid-gas phase transition in nuclear matter. Nature 305 (1983),
410–412.

[2] P. Bonche, S. Koonin and J.W. Negele: One-dimensional nuclear dynamics in the
TDHF approximation. Phys. Rev. C 13 (1976), 1226–1258.

[3] D.K. Campbell: Nuclear Physics in one dimension. In: Nuclear Physics with Heavy Ions
and Mesons (R. Balian et al., eds.). North Holland, 1980.

[4] C.Y. Wong, J. A. Maruhn and T.A. Welton: Dynamics of nuclear fluids. I. Foundations.
Nucl. Phys. A253 (1975), 469–489.

[5] B. Ducomet: Simplified models of quantum fluids in nuclear physics. Math. Bohem. 126
(2001), 323–336.

[6] B. Ducomet: Global existence for a simplified model of nuclear fluid in one dimension.
J. Math. Fluid Mech. 2 (2000), 1–15.

[7] B. Ducomet: Asymptotic behaviour for a nuclear fluid in one dimension. Math. Methods
Appl. Sci. 24 (2001), 543–559.

[8] P. Ring, P. Schuck: The Nuclear Many-Body Problem. Springer-Verlag, 1980.
[9] S.N. Antontsev, A.V. Kazhikhov and V.N. Monakhov: Boundary Value Problems in
Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and Its Applications
Vol. 22. North Holland, Amsterdam, 1990.

[10] B. Kawohl: Global existence of large solutions to initial boundary value problems for a
viscous heat-conducting one-dimensional real gas. J. Differential Equations 58 (1985),
76–103.

[11] S. Jiang: On initial boundary value problems for a viscous heat-conducting one-dimen-
sional real gas. J. Differential Equations 110 (1994), 157–181.

[12] S. Jiang: On the asymptotic behaviour of the motion of a viscous heat-conducting,
one-dimensional real gas. Math. Z. 216 (1994), 317–336.

74



[13] B. Ducomet: On the stability of a stellar structure in one dimension II: The reactive
case. RAIRO Modél. Math. Anal. Numér. 31 (1997), 381–407.

[14] C. Dafermos, L. Hsiao: Global smooth thermomechanical processes in one-dimensional
nonlinear thermoviscoelasticity. Nonlinear Anal. Theory Methods Appl. 6 (1982),
435–454.

[15] S. Jiang: Global large solutions to initial boundary value problems in one-dimensional
nonlinear thermoviscoelasticity. Quart. Appl. Math. 51 (1993), 731–744.

[16] L. Hsiao, T. Luo: Large time behaviour of solutions to the equations of one-dimensional
nonlinear thermoviscoelasticity. Quart. Appl. Math. 61 (1998), 201–219.

[17] W. Shen, S. Zheng and P. Zhu: Global existence and asymptotic behaviour of weak
solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions.
Quart. Appl. Math. 57 (1999), 93–116.

[18] T. Nagasawa: On the outer pressure problem of the one-dimensional polytropic ideal
gas. Japan J. Appl. Math. 5 (1988), 53–85.

[19] G. Andrews, J.M. Ball: Asymptotic behaviour and changes of phase in one-dimensional
non linear viscoelasticity. J. Differential Equations 44 (1982), 306–341.

Author’s address: B. Ducomet, CEA-Département de Physique Théorique et Ap-
pliquée, Service de Physique Nucléaire, BP 12, 91680 Bruyères-le-Châtel, France, e-mail:
bernard.ducomet@cea.fr.

75


		webmaster@dml.cz
	2020-07-02T10:19:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




