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ON A 1-D MODEL OF STRESS RELAXATION

IN AN ANNEALED GLASS*

Vladimír Janovský, Praha, David Just, Sázava

Abstract. A 1-D model of a slab of glass of a small thickness is considered. The governing
equations are those of the classical 1-D linear viscoelasticity. A load due to the temperature
gradients is assumed. The aim is to model the process called annealing.
It is shown that an additional load due to structural strain is crucial for the success of

the model. Algorithms of a numerical solution of the governing equations are proposed.
Numerical results are presented and commented.
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1. Introduction

The industrial process called annealing consists in regulated heating and subse-
quent cooling of sheet glass. The most delicate problem is to propose a suitable

cooling schedule. The consequence of a fast cooling would be a large residual strain
and the development of cracks. On the other hand, a slow cooling in not economical

and it would also lead to crystallization (phase change).

Recently, a small size annealing furnace have appeared on the market. In this

particular device, the cooling is symmetric, i.e. both faces of the sheet have the same
temperature. The cooling schedule is given by a nonincreasing function t �→ ϑe(t),

0 � t � T . The typical ranges are ϑe(0) ∼ 600 ◦C, ϑe(T ) ∼ 20 ◦C, T ∼ 6000 s.
Our aim is to formulate a mathematical model of the furnace. The model should

predict both the displacements and the stresses of the medium at each position and
time. The medium (i.e. the initially melted glass) is subject to a transition from the

“liquid” state to the “glassy” state.

*The first author was supported by the Grant No. 201/98/0220 of the Grant Agency of
the Czech Republic and the Grant MSM 113200007.
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We will consider a 1-D model of the reality assuming that the thickness 2a of the

sheet of glass is small in comparison with its width and length. Data of our model
are the cooling schedule and the initial temperature of the glass which is assumed to
be a constant ϑ0.

The basic governing equation is a linear model of viscoelasticity, see e.g. [1]. We
assume u to be a 1-D field of displacements on the interval [−a, a]. The field depends
on time t ∈ [0, T ], i.e., u = u(t). In particular, for all 0 � t � T we assume u(t) ∈ V ,
where V ≡ H10 (Ω), Ω = (−a, a). In a weak formulation, see e.g. [6], we seek for
u ∈ L∞([0, T ],V) such that

(1) a
(
u(t), v

)
+

∫ t

0
ψ(t, s) a

(
u(s), v

)
ds =

(
f(t), v

)

for any test function v ∈ V and for almost any time t ∈ [0, T ]. Here a(· , ·) denotes
the bilinear form a(v, w) = D

∫ a

−a
∂v(x)

∂x
∂w(x)

∂x dx and ψ(t, s) = −∂M(t,s)
∂s

1
M(t,t) is

the kernel of the relaxation operator; D is a positive constant and M(t, s) > 0 is
the relaxation module from the Bolzmann superposition principle for viscolelastic
materials. Finally, (· , ·) is the duality pairing between V and V ′ in the Hilbert triplet
V ⊂ L2(Ω) ⊂ V ′.
The kernel ψ(t, s) models a synchronous material with a fading memory, see e.g. [2].

We will specify it in Section 3.

The right-hand side of (1), i.e. the load, will be defined in the next section. In
Section 3, we consider (1) and suggest a representation of the solution. The numerical

solution will be discussed in Section 4. We do not provide a convergence analysis.

The contribution of the paper: We have applied a well known technique (see
e.g. [2]) to a solution of a particular technical problem. From this point of view,

Sections 2 and 3 represent the main result.

2. The load

The linear functional v �→
(
f(t), v

)
in (1) can be interpreted as a load. In our

model, f(t) will be a linear combination of temperature gradients and structural

strains. Let us elaborate.

In the model under consideration a 1-D temperature field (x, t) �→ ϑ(x, t) is defined
for −a � x � a, 0 � t � T . It satisfies a nonlinear heat convection equation

(2)
∂ϑ(x, t)
∂t

=
1
c�

∂

∂x

(
λ(ϑ)

∂ϑ(x, t)
∂x

)
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where λ(ϑ) = λ0 + pϑ(x, t) + q
(
ϑ(x, t)

)m
. Moreover, the Newton condition

(3)
∂ϑ(x, t)
∂x

= −ω
(
ϑ(x, t)− ϑe(t)

)

at x = ±a and the constant initial condition

(4) ϑ(x, 0) = ϑ0

at t = 0 are considered. The function ϑe(t) is the given cooling schedule. For the

particular values of the constants c, �, p, q and ω, see Section 4.

In classical thermoelasticity,

(5)
(
f(t), v

)
≡ −D

∫ a

−a

αg

(
ϑ(x, t)− ϑd

)∂v(x)
∂x

dx

for v ∈ V ; D, αg and ϑd are constants. As a consequence, f(t) is proportional to the

gradient ∂
∂xϑ(x, t).

Some authors claim, see e.g. [5], that we cannot get by with the classical ther-

moelasticity in the problems which concern annealing models. The error is claimed
to amount to thirty percents. One should take into account the structural relaxation.
It will result in a correction term in (5).

Following [5], the notion of the fictive temperature is introduced. The fictive
temperature ϑf (x, t) is defined at each fixed −a � x � a by means of an integral

average of the temperatute ϑ(x, ·) as

(6) ϑf (x, t) = ϑ(x, t) −
∫ t

0
ϕ
(
ξ(x, t) − ξ(x, s)

)∂ϑ(x, s)
∂s

ds

where

ϕ(y) = α1eβ1 y + α2eβ2 y.

Moreover, α1 + α2 = 1. The function ξ(x, s) is called the reduced time. It is defined
as

(7) ξ(x, t) =
∫ t

0
exp

{
B

(
2
ϑd
− 1
ϑ(x, s)

− 1
ϑf (x, s)

)}
ds.

The fictive temperature can be computed by complicated quadrature rules, see [3].

An alternative was pointed out: The evolution of ϑf (x, ·) is governed by a system of
two ordinary differential equations. Let us elaborate the idea:
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Differentiating (6) twice with respect to t yields after some manipulations the

following equivalent definition of ϑf = ϑf (x, t): Given a fixed −a � x � a, let us
solve on the interval 0 � t � T the system

(8)

(
ẏ1

ẏ2

)
=

(
y2

f(y1, y2, t)

)

with the initial condition

(9) y1(0) = ϑ0, y2(0) = 0.

Then the first component of the solution y1(t) is the fictive temperature ϑf (x, t).
Therefore, ϑf (x, t) = y1(t) for −a � x � a, 0 � t � T .

Definition of the right-hand side of (8), namely of f(y1, y2, t), is quite complicated:
Let us define an auxiliary function

η(y1, t) = exp

(
B

(
2
ϑd

− 1
ϑ(x, t)

− 1
y1

))
;

it is related to (7). Then

f(y1, y2, t) =

(
(β1 + β2)η(y1, t) +B

(
1

ϑ2(x, t)
∂ϑ(x, t)
∂t

+
y2
(y1)2

))
y2

+β1β2η2(y1, t)
(
ϑ(x, t)− y1

)
− (α1β1 + α2β2)η(y1, t)

∂ϑ(x, t)
∂t

;

B, αi and βi are constants, see Section 4.

The final modification of the load reads as follows:

(
f(t), v

)
≡ −D

∫ a

−a

(
αg

(
ϑ(x, t) − ϑd

)
(10)

+(αl − αg)
(
ϑf (x, t)− ϑd

))∂v(x)
∂x

dx

for each v ∈ V ; D, αg, αl and ϑd are positive constants. The gradient ∂
∂xϑf (x, t) is

called the structural strain.

Performing integration by parts in (10), we may conclude that the right-hand side

of (1) is a linear combination of the temperature gradient and the structural strain.
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3. Relaxation of stresses

We consider (1) under the assumption that the kernel ψ(t, s) represents a synchro-
nous material with fading memory, see e.g. [7]. We assume

(11) ψ(t, s) = Φ′(t− s)

where Φ = Φ(τ) is a positive, exponentially damped relaxation function, Φ(0) = 1.
In particular, we assume

(12) Φ′(t− s) =
k∑

j=1

Pj(t)Qj(s),

where
Pj(t) = e−λjt, Qj(s) = −cjeλjs, λj > 0, cj �= 0

for j = 1, . . . , k. We shall also assume the ordering 0 < λ1 < λ2 . . . < λk. The

resulting model of the relaxation function Φ,

Φ(τ) = c0 +
k∑

j=1

cjλ
−1
j e

−λjτ , c0 ≡ 1−
k∑

j=1

cjλ
−1
j ,

is called the discrete spectral model, see [1]. The reciprocal values of λj can be

interpreted as the decay times.
We solve (1) under the assumptions (11) and (12). Essentially, we will follow [2].

Let U = U(t), U ∈ L∞([0, T ],V), satisfy

(13) a
(
U(t), v

)
= (f(t), v)

for any test function v ∈ V and for almost any time t ∈ [0, T ]. Therefore, U(t) can
be interpreted as the elastic deformation which is due to the load f(t). We shall
consider the solution u(t) of (1) in the form

(14) u(t) = U(t) +
k∑

j=1

Pj(t)yj(t),

yj ∈ L∞([0, T ],V), where the functions yj will be specified in the sequel.

Let us note that

∫ t

0
ψ(t, s)a

(
u(s), v

)
ds =

k∑

i=1

Pi(t)
∫ t

0
Qi(s)a

(
U(s) +

k∑

j=1

Pj(s)yj(s), v

)
ds

= a

( k∑

i=1

Pi(t)
∫ t

0
Qi(s)

(
U(s) +

k∑

j=1

Pj(s)yj(s)

)
ds, v

)
.
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Now, we define yi ∈ L∞([0, T ],V) to satisfy

yi(t) = −
∫ t

0
Qi(s)

(
U(s) +

k∑

j=1

Pj(s)yj(s)

)
ds,

i = 1, . . . , k. In other words, yi(t), i = 1, . . . , k, are the solutions of the linear system

(15) ẏi(t) = −Qi(t)
k∑

j=1

Pj(t)yj(t)−Qi(t)U(t)

with the initial condition

(16) yi(0) = 0.

One should have in mind that the function value yi(t) is in V . Therefore, the sys-
tem (15), (16) describes an evolution at each fixed point x ∈ [−a, a].
Let us define u(t) by (14), where U(t) solves (13) and yi(t), i = 1, . . . , k, are the

solutions of the system (15), (16). We easily conclude that

∫ t

0
ψ(t, s)a

(
u(s), v

)
ds = a

( k∑

i=1

Pi(t)yi(t), v

)

= −a
(
u(t), v

)
+ a

(
U(t), v

)

= −a
(
u(t), v

)
+

(
f(t), v

)

for each v ∈ V . Therefore, u(t) solves (1).
Finally, let us define

(17) wi(t) = Pi(t)yi(t),

i = 1, . . . , k; we call them the creep modes. Due to (15), (16), the creep modes wi(t),
i = 1, . . . , k, satisfy

(18) ẇi(t) = −λiwi(t) + ci

k∑

j=1

wj(s)− ciU(t)

with the initial condition

(19) wi(0) = 0.
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Again, wi(t) are functions with values in V . Therefore, the system (18), (19) defines
evolution at each fixed x ∈ [−a, a]. The displacement u(t) comes out as the sum
u(t) = U(t) +

k∑
j=1

wj(t). Pointwise,

(20) u(x, t) = U(x, t) +
k∑

j=1

wj(x, t),

x ∈ [−a, a], 0 � t � T .

4. Numerical solution

The structure of the solver is as follows:

Step 1. Find the temperature field ϑ = ϑ(x, t) for x ∈ [−a, a], 0 � t � T solving (2)

with (3) and (4).

Step 2. Find the fictive temperature field ϑf = ϑf (x, t) for x ∈ [−a, a], 0 � t � T .
It consists in solving the ODE system (8), (9) at each fixed x ∈ [−a, a].

Step 3. Define the load-functional (10).
Step 4. Find the elastic displacements U(x, t) on x ∈ [−a, a] at each time level

0 � t � T . This represents solving the boundary value problem (13) for

each fixed time.

Step 5. Evaluate the creep modes wi(x, t), i = 1, . . . , k. We need to solve the

ODE system (18), (19) for 0 � t � T at each x ∈ [−a, a] fixed.
Step 6. The resulting displacement u(x, t) is just the superposition (20).

The solution steps can be performed canonically (no coupling). It is due to the fact
that the model is linear.

In order to approximate the fields ϑ, ϑf , U and wi, i = 1, . . . , k, we considered
an approximation on the same equidistant grid in the space variable x ∈ [−a, a]. In
particular, we used the method of lines to approximate ϑ in Step 1. The aim was to
use adaptive time-stepping. We have to use an A-stable solver (the resulting ODE’s

are very stiff). In Step 2, we need to solve a nonautonomous system of two ordinary
equations (the initial value problem) at each particular grid point. The system is

moderately stiff. The elastic displacements (at each fixed time) are approximated
by finite elements (piecewise linear test functions on the grid under consideration).

This verbal description represents Step 3 and Step 4 of the algorithm. In Step 5,
we considered k = 2, i.e. just two creep modes. Then this step just mimics Step 2.
In the numerical realization we used different time-steppings in Step 1, Step 2 and
Step 5. We need to communicate between different time-meshes. In our particular
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implementation, we used just a linear interpolation. For the details, see [3]. The

algorithm was coded in MATLAB version 5.3.

In the numerical experiments reported below, we used the following settings:

• geometry: a = 0.57× 10−2m
• discretisation: number of grid points = 241
• mesh size in space: h = 2.375× 10−5m
• ad Heat equation: c = 999.6J kg−1K−1, � = 2492kgm−3, λ0 = .903, p =
4.94× 10−4, q = 1.5861× 10−19, m = 3.486, ω = 39.9225

• ad Fictive temperature: ϑd = 756K, B = 2.7661 × 104K, α1 = 0.43, β1 =
−1.773× 10−3, α2 = 0.57, β2 = −3.307× 10−4

• ad Load: αg = 8.80× 10−6, αl = 6.16× 10−5
• ad Elastic deformation: D = E

1−µ , E = 72480MPa, µ = 0.218

• ad Stress relaxation function: c1 = .59, c2 = .41, λ1 = −1.280 × 10−3, λ2 =
−6.927× 10−3

4.1. Example 1.

In the first numerical experiment, we considered the cooling schedule depicted in
Fig. 1 (dashed line, ϑe). This figure shows also one computed temperature profile

of ϑ and ϑf at x = a. Let us note that for this particular ϑe there were some
experimental data available, see [5].
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Fig. 1. Cooling schedule ϑe(t), temperature
profiles ϑ(a, t), ϑf (a, t).

0 100 200 300 400 500 600
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5

t [s]

ϑf (0, t)− ϑf (a, t)

ϑ(0, t)− ϑ(a, t)

te
m
p
er
at
ur
e
[◦
C
]

Fig. 2. Temperature profile differences.

Fig. 2 shows the evolution of the differences ϑ(0, t)−ϑ(a, t) and ϑf (0, t)−ϑf (a, t).

In Fig. 3, we plot the evolution of U , w1 + w2 and u as x = a/2 is fixed.

Our model (1) was fomulated in displacements. Nevertheless, a crude computation
of stresses σ(x, t) is also possible: Let uxt and uxtt be the relevant partial derivatives
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of u. We fix x ∈ [−a, a] and consider the system
(
ẏ1(t)

ẏ2(t)

)
=

(
0 1

−λ1λ2 λ1 + λ2

) (
y1(t)

y2(t)

)
+

E

1− µ

(
0

f(x, t)

)

with the initial conditions y1(0) = y2(0) = 0. The function f is defined as

f(x, t) = (−λ1c2 − λ2c1)uxt(x, t) + uxtt(x, t).

The solution components y1(t) and y2(t) can be interpreted as

y1(t) = σ(x, t), y2(t) = σ̇(x, t).
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Fig. 3. Displacement evolution at x = a/2.
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Fig. 4. Stress-induced birefringence X(t),
cooling schedule ϑe(t), tempera-
ture profile ϑ(a, t).

Obviously, while constructing f , we have to get by with just an approximation

of the relevant partials of u. Such computation of σ is not very reliable. In [5] in
Fig. 2, a plot of stress-induced birefringence X(t) versus time t was shown. Note that

the cooling schedule was the same as was assumed in Example 1 (see Fig. 1). We
computed the stress-induced birefringence for the current example. The definition

of X(t) is as follows:

σ(t) = σ(a, t)− σ(0, t), X(t) = Bσ(t)

where B = 26.0 nmcm−1MPa−1 is the photoelastic constant. The plot of X is shown
in Fig. 4: The agreement with Fig. 2 in [5] is not quite convincing. The effects of
the structural relaxation seem to be delayed.

123



0 1000 2000 3000 4000 5000 6000 7000
t [s]

0

100

200

300

400

500

600
ϑf (a, t)

ϑ(a, t)

ϑe(t)

ϑd

te
m
p
er
at
ur
e
[C
◦ ]

Fig.5. Cooling schedule ϑ e(t), temperature
profiles ϑ(a, t), ϑf (a, t).
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Fig. 6. Temperature profile differences.

4.2. Example 2.
In this example we considered a cooling schedule in practical use, see Fig. 5.
Fig. 6 depicts the evolution of the differences ϑ(0, t)−ϑ(a, t) and ϑf (0, t)−ϑf (a, t).

Fig. 7 shows the plots of U(a/2, t), w1(a/2, t)+w2(a/2, t) and u(a/2, t) versus time t.
An attempt to compute σ failed.
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Fig. 7. Displacement evolution at x = a/2.
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