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Abstract. In this paper we prove existence of periodic solutions to a nonlinear evolution
system of second order partial differential equations involving the pseudo-Laplacian oper-
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1. Introduction

The motion of charged mesons in an electromagnetic field can be described by the
following system of nonlinear Klein-Gordon equations:

(∗) �u+ α2u+ av2u = 0, �v + β2v + bu2v = 0,

where � = ∂2/∂t2−∆, u and v are scalar fields of masses α and β, respectively, and
a, b are interaction constants. This model was proposed by I. Segal [7].

In 1987, Medeiros and Miranda [6] considered the following generalization of (∗):

(∗∗)
{

�u+ |v|�+2|u|�u = f

�v + |u|�+2|v|�v = g.
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Here � is a real number, � > −1, and f , g are given functions. The authors [6]

proved existence of solutions to (∗∗) with initial and homogeneous Dirichlet boundary
conditions for any dimension n and uniqueness for n � 3.
More recently, in 1997, N.N.O. Castro [2] studied the system

(∗∗∗)
{

u′′ +Au−∆u′ + |v|�+2|u|�u = f1

v′′ +Av −∆v′ + |u|�+2|v|�v = f2

where z′ = ∂z/∂t and A is the pseudo-Laplacian operator given by

Aw = −
n∑

i=1

∂

∂xi

(∣∣∣∣
∂w

∂xi

∣∣∣∣
p−2

∂w

∂xi

)

and p > 2.

This system can be viewed as a mathematical generalization of (∗∗). Castro [2]
obtained results on the existence of global solutions and their decay rates as t →∞
with a given initial condition and considering homogeneous Dirichlet boundary con-
ditions. For related problems see [4], [8]. The question of existence of periodic

solutions to system (∗∗∗) is a significant one and to the best of our knowledge it
has not yet been studied. So the purpose of this paper is to show that under some

conditions the answer to this question is affirmative.

The plan of the paper is as follows: in Section 2 we fix some notation and give
(without proofs) some results that will be used in the paper. References are given

at the end. In Section 3 we state the theorem on existence of periodic solutions to
system (∗∗∗) and in the remaining sections the proof is carried out.

2. Notation and auxiliary results

A. Let Ω be a bounded regular domain in �n . We will use the following notation
for Sobolev spaces and its norms:

‖ · ‖0—norm in W 1,p
0 (Ω);

‖ · ‖1,p = ‖ · ‖W 1,p(Ω)—denotes norm in W 1,p(Ω);

‖ · ‖, ((·))—is the norm and inner product in H10 (Ω), respectively;

| · |, (, )—is the norm and inner product in L2(Ω), respectively.

The absolute value of a real number is also denoted by | · | and it will be clear from
the context.

‖ · ‖m—denotes the Euclidean norm in �m ,

V ′ means the topological dual space of the linear space V , and p′ denotes the
conjugate number of p, that is 1/p+ 1/p′ = 1, p > 1.
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Ck
T (�) denotes the linear subspace of all periodic real functions with period T in

Ck(�), T > 0.
We represent by IT any real interval of the form [a, a + T ], a ∈ �. Integration

over IT will be denoted by
∫

T
.

Let X be a Banach space. Then Lp(T, X) will be the linear space of all T -periodic
functions u : � → X such that ‖u(t)‖X ∈ Lp(IT ), where ‖·‖X means the norm in X .

If 1 � p < ∞, then ‖u‖Lp(T,X) =
(∫

T ‖u(t)‖
p
X dt

)1/p
defines a norm in Lp(T, X)

in which it is a Banach space.

If p = ∞, L∞(T, X) is a Banach space with respect to the norm defined by
‖u‖L∞(T,X) = ess sup ‖u(t)‖X .

W2m = C1T (�) × . . . × C1T (�) denotes the Cartesian product of 2m copies of
C1T (�) and by K(W2m) we mean the linear space of all compact operators fromW2m

into W2m.

B. Now we list, without proofs, a result and a Lemma that will be used in the
sequel.
I. If u, v ∈ W 1,p

0 (Ω) then

(i) uv ∈ L�+2(Ω);
(ii) |u|�+2|v|�v, |v|�+2|u|�u ∈ Lθ(Ω) where θ is related to �, p and n.

II. Lemma. Suppose that s > n
(
1
2 − 1

p

)
+ 1, p > 2. Then Hs

0 (Ω) ↪→ W 1,p
0 (Ω) with

a continuous and dense injection.

The proof of I is straightforward and just makes use of some well known properties
of Lp spaces and of algebraic calculus. The proof of the Lemma is a consequence of

Sobolev embedding theorems and of a result of Browder & Bui An Ton [1].

3. Statement of the result

Now we consider system (∗ ∗ ∗) with periodic conditions (PS), that is, given func-
tions f1, f2 periodic with period T we look for functions u, v that are solutions, in

a weak sense, of the following problem:

(1) (PS)





u′′ +Au −∆u′ + |v|�+2|u|�u = f1 on Q = Ω× (0, T ),
v′′ +Av −∆v′ + |u|�+2|v|�v = f2 on Q = Ω× (0, T ),
u(x, 0) = u(x, T ); u′(x, 0) = u′(x, T ) on Ω,

v(x, 0) = v(x, T ); v′(x, 0) = v′(x, T ) on Ω,

u = 0; v = 0 on Σ = Γ× (0, T )

where Ω ⊂ �
n is a regular bounded set and Γ is its boundary. We assume that n > p

and 0 � � � 4(n− 1 + p)/
(
2(n− p− 1) + np

)
.
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We will prove the following result:

Theorem. Given fi ∈L2(T, L2(Ω)), i=1, 2 there exist u and v in L∞(T, W 1,p
0 (Ω))

and u′, v′ in L2(T, H10 (Ω)) such that

−
∫

T

(u′(t), w)ϕ′ dt+
∫

T

〈Au(t), w〉ϕdt+
∫

T

((u′(t), w))ϕdt(2)

+
∫

T

〈|v(t)|�+2|u(t)|�u(t), w〉ϕdt =
∫

T

(f1(t), w)ϕdt,

−
∫

T

(v′(t), w)ϕ′ dt+
∫

T

〈Av(t), w〉ϕdt+
∫

T

((v′(t), w))ϕdt(3)

+
∫

T

〈|u(t)|�+2|v(t)|�v(t), w〉ϕdt =
∫

T

(f2(t), w)ϕdt

∀w ∈ W 1,p
0 (Ω), ∀ϕ ∈ C1T (�).

The theorem will be proved by constructing an “approximated system” in a finite-

dimensional space with the Faedo-Galerkin method and then proving that this ap-
proximated problem has periodic solutions. The proof goes through several steps.

The scheme is the following:

First step: We show that there exists a sequence of approximate solutions
((un)n, (vn)n). We introduce a parameter µ, 0 � µ � 1, and consider an equivalent
µ-parametrized system. Making use of Green’s function properties and Leray-
Schauder theory we prove the existence of periodic approximate solutions to the

original system.

Second step: We look for and obtain estimates on the “approximate solutions”

sufficient to pass to the limit.

Third step: The passage to the limit is carried out using compactness arguments
and monotonicity properties of the operator A.

4. The approximated problem

So let {wj}j be a spectral basis ofHs
0 (Ω), s > n

(
1
2− 1p

)
+1 which is an orthonormal

complete system in L2(Ω). Let Vm = [w1, . . . , wm] be a finite-dimensional linear

subspace of Hs
0 (Ω) generated by the first m vectors {w1, . . . , wm} in {wj}j.

Then the approximated problem consists in finding um(t), vm(t) in Vm, solution
to the system:
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(4)





(u′′m(t), wj) + 〈Aum(t), wj〉+ ((u′m(t), wj))

+〈|vm(t)|�+2|um(t)|�um(t), wj〉 = (f1(t), wj),

(v′′m(t), wj) + 〈Avm(t), wj〉+ ((v′m(t), wj))

+〈|um(t)|�+2|vm(t)|�vm(t), wj〉 = (f2(t), wj),

um(t) = um(t+ T ); u′m(t) = u′m(t+ T ),

vm(t) = vm(t+ T ); v′m(t) = v′m(t+ T ).

We look for solutions um, vm in the form

(5) um(t) =
m∑

j=1

cjm(t)wj ; vm(t) =
m∑

j=1

djm(t)wj

where cjm(t) = cjm(t+ T ), c′jm(t) = c′jm(t+ T ), djm(t) = djm(t+ T ), and d′jm(t) =

d′jm(t+ T ).

We substitute um(t), vm(t) into (3.1) to get the ordinary differential system

(6)

{
Y ′′

m(t) + F (Ym(t)) +H(Ym(t), Y ′
m(t)) = P (t),

Ym(t) = Ym(t+ T ); Y ′
m(t) = Y ′

m(t+ T )

where Ym(t) = (c1m(t), . . . , cmm(t), d1m(t), . . . , dmm(t))∗,

F (Ym(t)) = (〈Aum(t), w1〉, . . . , 〈Aum(t), wm〉, 〈Avm(t), w1〉, . . . , 〈Avm(t), wm〉)∗,

H(Ym(t), Y ′
m(t)) = (〈|vm(t)|�+2|um(t)|�um(t), w1〉, . . . , 〈|vm(t)|�+2|um(t)|�um(t), wm〉,
〈|um(t)|�+2|vm(t)|�vm(t), w1〉, . . . , 〈|um(t)|�+2|vm(t)|�vm(t), wm〉)∗

+
(
((u′m(t), w1)), . . . , ((u

′
m(t), wm)), ((v′m(t), w1)), . . . , ((v

′
m(t), wm))

)∗

and

P (t) =
(
(f1(t), w1), . . . , (f1(t), wm), (f2(t), w1), . . . , (f2(t), wm)

)∗

and the symbol ∗ denotes the transpose of a vector in �2m .

Now let β, δ be positive real numbers such that the homogeneous system

(7)

{
Y ′′

m(t) + δY ′
m(t) + βYm(t) = 0

Ym(0) = Ym(T ); Y ′
m(0) = Y ′

m(T )

has a unique solution Ym(t).
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If we consider the Green function Gm(t, s) associated with (7) (see [9]) then

Ym(t) =
∫ T

0 Gm(t, s)P (s) ds will be the unique solution of the non-homogeneous
system

(8)

{
Y ′′

m(t) + δY ′
m(t) + βYm(t) = P (t)

Ym(0) = Ym(T ); Y ′
m(0) = Y ′

m(T ).

Of course we can extend the solution Ym(t) of (8) by T-periodicity to the whole set
of real numbers.

Next we consider the µ-parametrized system, µ ∈ [0, 1],

Y ′′
m(t) + δY ′

m(t) + βYm(t) + µ
[
F (Ym(t)) +H

(
Ym(t), (Y ′

m(t))
)

(9)

− δY ′
m(t)− βYm(t)

]
= P (t),

Ym(t) = Ym(t+ T ); Y ′
m(t) = Y ′

m(t+ T ).

In a similar way it follows that

Tm(µ)Ym(t) =
∫ T

0
µ[−F (Ym(s))−H(Ym(s), Y ′

m(s))]Gm(t, s) ds(10)

+
∫ T

0
µ[δY ′

m(s) + βYm(s)]Gm(t, s) ds

+
∫ T

0
P (s)Gm(t, s) ds

is the solution of (9) that satisfies the periodic conditions

Tm(µ)Ym(0) = Tm(µ)Ym(T ); (Tm(µ)Ym)
′(0) = (Tm(µ)Ym)

′(T ).

Note that if µ = 0 then Tm(0)Ym(t) is the unique solution of (8) and Tm(0)Ym(t) =

Ym(t). So Tm(0) has a fixed point.

What we have in mind now is to show that the operator Tm(1) has a fixed point
in some Banach space so we could apply this result to demonstrate that system (6),

which is equivalent to system (4), has a solution.

We will use the following well known results given in the four lemmas below.

Lemma 1. Let µ ∈ [0, 1], Ym ∈ W2m and Tm(µ)Ym be as given in (10). Then

Tm(µ)Ym ∈ W2m.

Lemma 2. The operator Tm(µ) : W2m → W2m, is a continuous operator.
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Lemma 3. The continuous operator Tm(µ) : W2m → W2m is a compact opera-

tor.

Lemma 4. Let B = {Ym ∈ W2m ; ‖Ym‖ � 1}. Then ‖Tm(µ)Ym − Tm(λ)Ym‖ �
C|µ− λ| ∀Ym ∈ B.

The proofs of these lemmas are straightforward computations using Green function
properties.

As a consequence of these lemmas the operator Tm : [0, 1]→ K(W2m), µ 
→ Tm(µ),
where Tm(µ) is defined by (10) is a compact operator and it is known that the Leray-

Schauder degree of Tm(0) is equal to one and we claim that the Leray-Schauder degree
of the application Tm(1) is also equal to one. So we will also make use of the following

result:

Theorem 5. Let Tm : [0, 1] → K(W2m) be a compact homotopy operator.

Suppose that there exist M > 0 independent of µ such that ‖Ym‖ � M whenever

(I − Tm(µ))Ym = 0, for all µ ∈ [0, 1]. Let B = {Y ∈ W2m ; ‖Y ‖ � rM, r > 1}.
Then d(I − Tm(µ), B, 0) is well defined and has the same value for any µ ∈ [0, 1].
See [3], [10] for a proof and meaning of the terms involved.

Suppose that there exists a function Ym ∈ W2m that depends on µ, µ ∈ [0, 1], such
that (I − Tm(µ))Ym = 0. Of course Ym is a µ-dependent solution to the system (9).

Let us multiply (9)1 by Y ′
m(t) to obtain

(
Y ′′

m(t), Y
′
m(t)

)
+ δ

(
Y ′

m(t), Y
′
m(t)

)
+ β

(
Ym(t), Y ′

m(t)
)
+ µ

(
F (Ym(t), Y ′

m(t)
)

(11)

+
(
H(Ym(t), Y ′

m(t)), Y
′

m(t)
)
− µδ

(
Y ′

m(t), Y
′
m(t)

)

− µβ
(
Ym(t), Y

′
m(t)

)
=

(
P (t), Y ′

m(t)
)
.

However,
(
F (Ym(t)), Y ′

m(t)
)
= 1

p
d
dt‖vm(t)‖p

0 +
1
p
d
dt‖um(t)‖p

0 and

(
H(Ym(t), Y

′
m(t)), Y

′
m(t)

)
= 1/(�+ 2)

d
dt
‖um(t)vm(t)‖�+2

L�+2(Ω)

+ ‖u′m(t)‖2 + ‖v′m(t)‖2.

So (11) becomes

1
2
d
dt
‖Y ′

m(t)‖22m + δ‖Y ′
m(t)‖22m +

β

2
d
dt
‖Ym(t)‖22m +

µ

p

d
dt
‖um(t)‖p

0(12)

+
µ

p

d
dt
‖vm(t)‖p

0 +
µ

�+ 2
d
dt
‖um(t)vm(t)‖�+2

L�+2(Ω)

+ µ‖u′m(t)‖2 + µ‖v′m(t)‖2

� µδ‖Y ′
m(t)‖22m +

µ

β

d
dt
‖Ym(t)‖ + ‖P (t)‖2m‖Y ′

m(t)‖2m.
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Integrating this last inequality over any IT -interval and using the periodic condition

we obtain

δ

∫

T

‖Y ′
m(t)‖22m dt+ µ

∫

T

(‖u′m(t)‖2 + ‖v′m(t)‖2) dt(13)

� µδ

∫

T

‖Y ′
m(t)‖22m dt+

∫

T

‖P (t)‖2m‖Y ′
m(t)‖2m dt.

Taking into account that H10(Ω) ↪→ L2(Ω) we obtain from (13) that

δ

∫

T

‖Y ′
m(t)‖22m dt+

µ

δ20

∫

T

(|u′m(t)|2 + |v′m(t)|2) dt

� µδ

∫

T

‖Y ′
m(t)‖22m dt+

∫

T

‖P (t)‖2m‖Y ′
m(t)‖2m dt

where | · | � δ0‖ · ‖.
So we have

δ

∫

T

‖Y ′
m(t)‖22m dt+

µ

δ20

∫

T

(|u′m(t)|2 + |v′m(t)|2) dt

� µδ

∫

T

‖Y ′
m(t)‖22m dt+

∫

T

‖P (t)‖2m‖Y ′
m(t)‖2m dt.

Choosing δ such that 0 < δ < 1
δ20
, it follows from the last inequality that

δ

∫

T

‖Y ′
m(t)‖22m dt �

∫

T

‖P (t)‖2m‖Y ′
m(t)‖2m dt

and so

δ2
∫

T

‖Y ′
m(t)‖22m dt � C(14)

where C is a constant that does not depend on µ ∈ [0, 1].
Now let us return to the system (9). We take µ = 1 and then multiply by Ym(t)

to obtain

d
dt

(
Y ′

m(t), Ym(t)
)
− ‖Y ′

m(t)‖22m + ‖um(t)‖p
0 + ‖vm(t)‖p

0(15)

+ 2
∫

Ω
|vm(t)um(t)|�+2 dx+

1
2
d
dt
‖um(t)‖2 +

1
2
d
dt
‖vm(t)‖2

=
(
P (t), Ym(t)).

Integrating over an IT -interval and using periodic conditions we obtain from (15)

−
∫

T

‖Y ′
m(t)‖22m dt+

∫

T

(‖um(t)‖p
0 + ‖vm(t)‖p

0) dt+ 2
∫

T

‖um(t)vm(t)‖�+2
L�+2(Ω)

=
∫

T

(P (t), Ym(t)) dt.
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But (P (t), Ym(t)) = (f1(t), um(t))+(f2(t), vm(t)) and asW
1,p
0 (Ω) ↪→ L2(Ω) it follows

that

(16)
∫

T

‖Ym(t)‖22m dt � C

where once again C is a positive constant that does not depend on µ ∈ [0, 1].
Now let us take s, t ∈ IT , s < t, and integrate (12) from s to t, to obtain

1
2
‖Y ′

m(t)‖22m +
µ

p
(‖um(t)‖p

0 + ‖vm(t)‖p
0) +

µ

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω)(17)

� 1
2
‖Y ′

m(s)‖22m +
β

2
‖Ym(s)‖22m − µβ

2
‖Ym(s)‖22m +

µ

p
(‖um(s)‖p

0

+ ‖vm(s)‖p
0) +

∫ t

s

‖P (σ)‖2m‖Y ′
m(σ)‖2m dσ

+
µ

�+ 2
‖um(s)vm(s)‖�+2

L�+2(Ω).

From (17) it follows that

1
2
‖Y ′

m(t)‖22m +
µ

p
(‖um(t)‖p

0 + ‖vm(t)‖p
0) +

µ

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω)(18)

� 1
2
‖Y ′

m(s)‖22m +
1
p
(‖um(s)‖p

0 + ‖vm(s)‖p
0)

+
1

�+ 2
‖um(s)vm(s)‖�+2

L�+2(Ω) + β‖Ym(s)‖22m + C

where C is a positive constant independent of µ.

If we integrate (18) with respect to s on IT we have

1
2
‖Y ′

m(t)‖22m +
µ

p
(‖um(t)‖p

0 + ‖vm(t)‖p
0)

µ

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω)(19)

� 1
T

{
1
2

∫

T

‖Y ′
m(s)‖22m ds+

1
p

∫

T

(‖um(s)‖p
0 + ‖vm(s)‖p

0) ds

}

+
1
T

{
1

�+ 2

∫

T

‖um(s)vm(s)‖�+2
L�+2(Ω) ds

}

+
β

T

∫

T

‖Ym(s)‖22m ds+ C.

Inserting (14) and (16) into (19) we get

(20)
1
2
‖Y ′

m(t)‖22m +
µ

p
(‖um(t)‖p

0 + ‖vm(t)‖p
0) +

µ

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω) � C
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where C is again a positive constant that does not depend on µ. Hence (20) implies

that {
‖Y ′

m(t)‖2m � C

‖um(t)‖0, ‖vm(t)‖0 � C.

Since ‖Ym(t)‖22m = |um(t)|2 + |vm(t)|2 and W1,p0 (Ω) ↪→ L2(Ω) we have

(21) ‖Ym(t)‖2m � C

where C does not depend on µ.
Now consider the set ω2m = {Ym ∈ W2m ; ‖Ym‖ � rC, r > 1}. Then d(I−Tm(µ),

ω2m, 0) does exist and has the same value for all µ ∈ [0, 1]. But we know that
d(I − Tm(0)) = 1 and this means that the system (4) has a solution as we have

claimed.

5. Estimates of the approximated solutions

The next step is to obtain estimates of the approximate solution sufficient to pass

to the limit.

Estimate I.
We replace wj by u′m(t) and wj by v′m(t) in the equations (4)1 and (4)2 respectively

so that we have

1
2
d
dt
|u′m(t)|2 +

1
p

d
dt
‖um(t)‖p

0 + ‖u′m(t)‖2(22)

+
1

�+ 2

∫

Ω
|vm(t)|�+2

d
dt
|um(t)|�+2 dx = (f1(t), u′m(t))

and

1
2
d
dt
|v′m(t)|2 +

1
p

d
dt
‖vm(t)‖p

0 + ‖v′m(t)‖2(23)

+
1

�+ 2

∫

Ω
|um(t)|�+2

d
dt
|vm(t)|�+2 dx = (f2(t), v′m(t)).

Integrating equations (23) on IT , taking into account the periodic conditions and

Gronwall’s inequality we obtain by direct calculation that

(24)
∫

T

(‖u′m(t)‖2 + ‖v′m(t)‖2) dt � C

and as before the constant C does not depend on µ.
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From the last inequality we deduce that

(25)

{
(u′m)m is bounded in L2(T, H10 (Ω))

(v′m)m is bounded in L2(T, H10 (Ω)).

Estimate II.

Setting wj = um(t) and wj = vm(t) in equations (4)1 and (4)2, respectively, we
have

(u′′m(t), um(t)) + ‖um(t)‖p
0 + ((u

′
m(t), um(t))) + ‖um(t)vm(t)‖�+2

L�+2(Ω)

= (f1(t), um(t)),

(v′′m(t), vm(t)) + ‖vm(t)‖p
0 + ((v

′
m(t), vm(t))) + ‖um(t)vm(t)‖�+2

L�+2(Ω)

= (f2(t), vm(t)).

From the above we obtain

(26)





d
dt
(u′m(t), um(t))− |u′m(t)|2 + ‖um(t)‖p

0 +
1
2
d
dt
‖um(t)‖2

+‖um(t)vm(t)‖�+2
L�+2(Ω) = (f1(t), um(t)),

d
dt
(v′m(t), vm(t)) − |v′m(t)|2 + ‖vm(t)‖p

0 +
1
2
d
dt
‖vm(t)‖2

+‖um(t)vm(t)‖�+2
L�+2(Ω) = (f2(t), vm(t)).

From the first equation in (26), integrating and taking into account the periodic

conditions we conclude that

∫

T

‖um(t)‖p
0 dt+

∫

T

‖um(t)vm(t)‖�+2
L�+2(Ω) dt

�
∫

T

|u′m(t)|2 dt+ C

∫

T

|f1(t)| ‖um(t)‖0 dt,

which in turn yields

∫

T

‖um(t)‖p
0 dt+

∫

T

‖um(t)vm(t)‖�+2
L�+2(Ω) dt

� C

∫

T

‖u′m(t)‖2 dt+ C

∫

T

|f1(t)|p
′
dt

+
1
p

∫

T

‖um(t)‖p
0 dt.
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Recalling that L2(Ω) ↪→ Lp′(Ω) with continuous injection and f1 ∈ L2(T, L2(Ω)) we

get

(27)
∫

T

‖um(t)‖p
0 dt+ p′

∫

T

‖um(t)vm(t)‖�+2
L�+2(Ω) dt � C

where C is independent of µ.

In the same way we obtain from the second equation in (26) that

(28)
∫

T

‖vm(t)‖p
0 dt+ p′

∫

T

‖um(t)vm(t)‖�+2
L�+2(Ω) dt � C

where C does not depend on µ.

From (27) and (28) we conclude that

(um)m, (vm)m are bounded sequences in Lp(T, W 1,p
0 (Ω)),(29)

(umvm)m is a bounded sequence in L�+2(T, L�+2(Ω)).(30)

Estimate III.

Now summing the equations in (22) and (23) we get

d
dt

{
1
2
|u′m(t)|2 + |v′m(t)|2

}
+
d
dt

{
1
p
‖um(t)‖p

0 +
1
p
‖vm(t)‖p

0

}

+
1

�+ 2
d
dt
‖um(t)vm(t)‖�+2

L�+2(Ω) + ‖u′m(t)‖2 + ‖v′m(t)‖2

= (f1(t), u
′
m(t)) + (f2(t), v

′
m(t))

� C2

2
|f1(t)|2 +

1
2
‖u′m(t)‖2 +

C2

2
|f2(t)|2 +

1
2
‖v′m(t)‖2.

Therefore we have

d
dt

{
1
2
|u′m(t)|2 +

1
2
|v′m(t)|2

}
+
d
dt

{
1
p
‖um(t)‖p

0 +
1
p
‖vm(t)‖p

0

}

+
d
dt

1
�+ 2

‖um(t)vm(t)‖�+2
L�+2(Ω) +

1
2
(‖u′m(t)‖2 + ‖v′m(t)‖2)

� C2

2
|f1(t)|2 +

C2

2
|f2(t)|2.
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Let s, t ∈ IT , s < t. Integrate from s to t to obtain

1
2
|u′m(t)|2 +

1
2
|v′m(t)|2 +

1
p
‖um(t)‖p

0 +
1
p
‖vm(t)‖p

0(31)

+
1

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω) +
1
2

∫ t

s

(‖u′m(σ)‖2 + ‖v′m(σ)‖2) dσ

� C2

2

∫ t

s

(|f1(σ)|2 + |f2(σ)|2) dσ +
1
2
|u′m(s)|2 +

1
2
|v′m(s)|2

+
1
p
‖um(s)‖p

0 +
1
p
‖vm(s)‖p

0 +
1

�+ 2
‖um(s)vm(s)‖�+2

L�+2(Ω)

� 1
2
|u′m(s)|2 +

1
2
|v′m(s)|2 +

1
p
‖um(s)‖p

0 +
1
p
‖vm(s)‖p

0

+
1

�+ 2
‖um(s)vm(s)‖�+2

L�+2(Ω) � C.

Taking into account estimates I–II and integrating with respect to s the last in-

equality changes to

1
2
|u′m(t)|2 +

1
2
|v′m(t)|2 +

1
p
‖um(t)‖p

0 +
1
p
‖vm(t)‖p

0(32)

+
1

�+ 2
‖um(t)vm(t)‖�+2

L�+2(Ω) � C

where as before the constant C does not depend on µ.
From (32) we have

(um), (vm) are bounded sequences in L∞(T, W 1,p
0 (Ω)),(33)

(u′m), (v
′
m) are bounded sequences in L∞(T, L2(Ω)),

(umvm) is a bounded sequence in L∞(T, L�+2(Ω)).

Moreover, A takes bounded sets in L∞(T, W 1,p
0 (Ω)) into bounded sets in L∞(T,

W−1,p′(Ω)). So we have

(Aum)m, (Avm)m are bounded sequences in L∞(T, W−1,p′(Ω)),(34) {
(|um|�+2|vm|�vm)m is a bounded sequence in L∞(T, Lθ(Ω))

(|vm|�+2|um|�um)m is a bounded sequence in L∞(T, Lθ(Ω)).
(35)

This result is a consequence of the fact that W1,p0 (Ω) ↪→ Lγ(Ω) where 1γ +
1
θ = 1.

Estimate IV.
Now we make use of the projection method to obtain an estimate for (u′′m)m and

(v′′m)m. This follows in a standard and straightforward way. See [2] or [5]. One
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obtains that

(36) (u′′m)m and (v
′′
m)m are bounded sequences in L2(T, H−s(Ω)).

6. Passage to the limit

From estimates I–IV one can extract subsequences (uν)ν and (vν)ν of (um)m and

(vm)m, respectively, such that

uν → u, vν → v weak star in L∞(T, W 1,p
0 (Ω)),(37)

u′ν → u′, v′ν → v weak star in L∞(T, L2(Ω)),

u′ν → u′, v′ν → v′ weak in L2(T, H10 (Ω)),

uνvν → ζ weak star in L∞(T, L�+2(Ω)),

Auν → χ, Avν → η weak star in L∞(T, W−1,p′
0 ),

|uν |�+2|vν |�vν → ϑ, |vν |�+2|uν |�uν → λ weak star in L∞(T, Lθ(Ω)).

By the well known Lions-Aubin compactness theorem [5] there exists another subse-

quence, still denoted by (uν)ν , such that

uν → u, vν → v strong in L2(IT × Ω),(38)

uν → u, vν → v a.e. in IT × Ω,

u′ν → u′, v′ν → v′ strong in L2(IT × Ω).

We easily deduce from (35) that

‖ |uν|�+2|vν |�vν‖Lθ(IT×Ω) � C, ∀ν ∈ N,(39)

‖ |vν |�+2|uν |�uν‖Lθ(IT×Ω) � C, ∀ν ∈ N.

By (37), (38), (39) and a Lemma of Lions (see [5], Lemma 1.3) we get that

(40)

{
|uν |�+2|vν |�vν → |u|�+2|v|�v weak in Lθ(IT × Ω)
|vν |�+2|uν |�uν → |v|�+2|u|�u weak in Lθ(IT × Ω).

We are now in a position to pass to the limit as ν → ∞. So let us consider the
equation (4)1 of the approximated problem in the form

(u′′ν(t), w)〈Auν (t), w〉 + ((u′ν(t), w)) + 〈|vν(t)|�+2|uν(t)|�uν(t), w〉(41)

= (f1(t), w), ν > m, w ∈ Vm.
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Multiplying (41) by ϕ ∈ C1T (�), integrating on IT and passing to the limit as ν →∞,
m < ν, we deduce from convergences in (37)–(40) that

−
∫

T

(u′(t), w)ϕ′ dt+
∫

T

〈χ(t), w〉ϕdt+
∫

T

((u′(t), w))ϕdt

+
∫

T

〈|v(t)|�+2|u(t)|�u(t), w〉ϕdt

=
∫

T

(f1(t), w)ϕdt, ∀w ∈ Vm, ∀ϕ ∈ C1T (�).

By density arguments it follows from this last equation that

−
∫

T

(u′(t), w)ϕ′ dt+
∫

T

〈χ(t), w〉ϕdt+
∫

T

((u′(t), w))ϕdt(42)

+
∫

T

〈|v(t)|�+2|u(t)|�u(t), w〉ϕdt

=
∫

T

(f1(t), w)ϕdt, ∀w ∈ W 1,p
0 (Ω), ∀ϕ ∈ C1T (�).

In a similar way we have

−
∫

T

(v′(t), w)ϕ′ dt+
∫

T

〈η(t), w〉ϕdt+
∫

T

((u′(t), w))ϕdt(43)

+
∫

T

〈|u(t)|�+2|v(t)|�v(t), w〉ϕdt

=
∫

T

(f1(t), w)ϕdt, ∀w ∈ W 1,p
0 (Ω), ∀ϕ ∈ C1T (�).

It remains to prove that u, v satisfy the periodic conditions and that χ(t) = Au(t),

η(t) = Av(t).
That u, v (u′, v′) are periodic, with period T , is a consequence of the fact that

the “approximate solution” um, vm (u′m, v′m) is periodic with period T and of the
convergences in (5.1).

Now recalling that A is a hemicontinuous and monotone operator and taking
into account the estimates (36) for (u′′m)m, (v

′′
m)m it is not difficult to show that

χ(t) = Au(t), η(t) = Av(t). This is carried out in a standard way so we omit the
details (see [2], [5]). The theorem is proved.

������. We have assumed that n > p and

0 � � � 4(1− n− p)
2(n− p− 1) + np

.

In the case n � p it is sufficient to take � � 0. The proof is similar.
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