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1. Introduction

Many experiments in agriculture, geography, physics, etc. must be modelled by

a linear regression model with inaccurate variance components ϑ, because their true

values are not known, must be estimated or are known only approximately. In

such cases it is of some interest to know whether and how much the uncertainty

in ϑ influences estimators of unknown parameters, the shape and the position of

confidence ellipsoids, the level of statistical tests and their power function.

These problems have been studied in [2], [3], [5], [7] in the case of regularity of the

model. In [4] the problem connected with estimators in the universal model with or

without constraints is solved.

The aim of this paper is to determine the set of all admissible differences δϑ of

the parameter ϑ, which guarantee that the power of a test on the boundary of the

threshold ellipsoid decreases not more than a chosen value ε. Such a set is called the

nonsensitiveness region for the threshold ellipsoid.

*This work was supported by the Council of the Czech Government J14/98:153100011.
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2. Definitions and auxiliary statements

Let

(2.1) Y ∼ Nn(Xβ,Σ(ϑ)), β ∈ �k , ϑ ∈ ϑ = {ϑ : ϑ ∈ �p , ϑ1 > 0, . . . , ϑp > 0},

where Y is an n-dimensional random vector (observation vector), Xn×k a known

matrix (design matrix), β an unknown vector (parameter of the first order), Σ(ϑ) =
p∑

i=1
ϑiVi a covariance matrix, where ϑ is an unknown vector (parameter of the second

order) and Vi, i = 1, . . . , p, are known positively semidefinite matrices of the type

n× n.

In the sequel, the mixed linear model (2.1) will be supposed to be regular, i.e. the

rank of the matrix X is r(X) = k < n and Σ(ϑ) is positively definite for all ϑ ∈ ϑ.

The notation

CH = (H(X ′Σ−1(ϑ∗)X)−1H ′)−1

will be used. Let ϑ∗ be the true value of the parameter ϑ. Let the null hypothesis

concerning the parameter β be

(2.2) H0 : Hβ + h = 0,

where Hq×k is a known matrix with rank r(H) = q < k and h is a known

q-dimensional vector. Let the alternative hypothesis be

(2.3) Ha : Hβ + h = ξ �= 0.

Lemma 2.1. Let us consider the regular mixed linear model (2.1) under the

hypotheses (2.2) and (2.3).

(i) If H0 is true, then the statistic

TH(Y , ϑ∗) = (Hβ̂(Y , ϑ∗) + h)′[H(X ′Σ−1(ϑ∗)X)−1H ′]−1(2.4)

× (Hβ̂(Y , ϑ∗) + h),

where

β̂(Y , ϑ∗) = (X ′Σ−1(ϑ∗)X)−1X ′Σ−1(ϑ∗)Y

has the central chi-square distribution with q degrees of freedom (TH(Y , ϑ∗) ∼
χ2q(0)).
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(ii) If H0 is not true, then TH(Y , ϑ∗) has the noncentral chi-square distribution

with q degrees of freedom (TH(Y , ϑ∗) ∼ χ2q(δ)) and the parameter of its non-

centrality is

δ = (Hβ + h)′[H(X ′Σ−1(ϑ∗)X)−1H ′]−1(Hβ + h).

�����. Both statements follow from the second fundamental theorem of the

least squares theory given in [8], p. 155. �

Let χ2q(0, 1− α) denote the (1− α)-quantile of the central chi-square distribution

with q degrees of freedom. The statistic TH(Y , ϑ∗) has been used for testing the

hypothesis H0 against Ha. If TH(y, ϑ∗) � χ2q(0, 1− α), where y means a realization

of Y , then H0 is rejected with the risk α. The power function of this test is

(2.5) β(ξ) = P{χ2q(ξ′CHξ) � χ2q(0, 1− α)}, ξ =Hβ + h.

3. Threshold ellipsoids

A threshold ellipsoid is defined in the space of an unknown parameter β. This

region makes it possible to decide which values ξ of an alternative hypothesis are

distinguishable from the null hypothesis, i.e. from the value 0, with sufficient high
chosen power κt. The values β that cannot be distinguished from a null hypothesis

with the chosen probability κt on the basis of measurement are inside this region

while those distinguishable from a null hypothesis are outside. For details see [6].

Definition 3.1. Let us consider the model (2.1). Let β0 be the value of an

unknown parameter β assumed by the null hypothesis H0 : β = β0 tested against

the alternative Ha : β �= β0 under the risk α. Then the (κt, α)-threshold ellipsoid

for β is

(3.1) Tκt,α(β) = {β : β ∈ �k , (β − β0)′T (β − β0) � c2}, c ∈ �1 ,

where T is a k × k symmetric matrix and c is a real number, c > 0 such that the

value of the power function of the used test must be exactly κt for the true value β∗

on the boundary of Tκt,α.

Lemma 3.2. Let us consider the regular mixed linear model (2.1) under the

hypotheses (2.2) and (2.3). Then the (κt, α)-threshold ellipsoid is

Tκt,α(β) = {β : β ∈ �k , (Hβ + h)′[H(X ′Σ−1(ϑ∗)X)−1H ′]−1(3.2)

× (Hβ + h) � δkrit},
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where δkrit is the value of the noncentrality parameter of the noncentral chi-square

distribution with q degrees of freedom defined by the relation

P{χ2q(δkrit) � χ2q(0, 1− α)} = κt.

�����. The statement follows from Section 4b.2 in [8]. �

4. Nonsensitiveness regions for the power of the test

Let ϑ∗ be changed into ϑ∗ + δϑ. We will study how the change δϑ influences the

power of the test. That is why in the following we will suppose Ha to be true.

Lemma 4.1. Let the regular mixed linear model (2.1) and hypotheses (2.2),

(2.3) be under consideration. Let

δTH = δϑ′ ∂TH(Y , ϑ)
∂ϑ

∣∣∣∣
ϑ=ϑ∗

.

Then

δTH = − 2[Hβ̂(Y , ϑ∗) + h]′CHFHΣ(δϑ)Σ−1(ϑ∗)(Y −Xβ̂(Y , ϑ∗))(4.1)

− [Hβ̂(Y , ϑ∗) + h]′CHFHΣ(δϑ)F ′
HCH [Hβ̂(Y , ϑ∗) + h],

where

FH =H(X ′Σ−1(ϑ∗)X)−1X ′Σ−1(ϑ∗).

The mean value of δTH is

E(δTH |β, ϑ∗) = − δϑ′[Tr(UHV1), . . . ,Tr(UHVp)]′(4.2)

− δϑ′[ξ′Z1ξ, . . . , ξ′Zpξ]
′,

where UH = F ′
HCHFH and Zi = CHFHViF

′
HCH , i = 1, . . . , p. Here Tr(UH) means

the trace of the matrix UH .

The variance of δTH is

var(δTH |β, ϑ∗) = 4Tr{UHΣ(δϑ)[MXΣ(ϑ∗)MX ]+Σ(δϑ)}(4.3)

+ 2Tr{UHΣ(δϑ)UHΣ(δϑ)}
+ 4ξ′CHFHΣ(δϑ)[MXΣ(ϑ∗)MX ]

+Σ(δϑ)F ′
HCHξ,

where

[MXΣ(ϑ∗)MX ]+ = Σ−1(ϑ∗)−Σ−1(ϑ∗)X[X ′Σ−1(ϑ∗)X]−1X ′Σ−1(ϑ∗).

�����. Proof can be found in [3]. �
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We can use a linear approximation of the statistic TH

TH(Y , ϑ∗ + δϑ) ≈ TH(Y , ϑ∗) + δTH ,

where a random variable δTH characterizes the change of TH caused by the shift δϑ

of the parameter ϑ∗. It is necessary to realize that “the dangerous movement” of

the test statistic TH is to the left, which makes its power decrease. The movement

of TH to the right is not interesting since the power of the test increases. Under H0,

however, the movement to the right might change the significance level of the test

(for this problem see e.g. [3], [5], [7]).

The mean valueE(δTH) depends on δϑ linearly and the term t
√
var(δTH) depends

linearly on the norm ‖δϑ‖ =
√
(δϑ)′(δϑ). Let a function Φξ(δϑ), δϑ ∈ �p , be defined

as

(4.4) Φξ(δϑ) = −δϑ′aξ − t
√

δϑ′Aξδϑ,

where for i, j = 1, . . . , p

aξ = [Tr(UHV1), . . . ,Tr(UHVp)]
′ + [ξ′Z1ξ, . . . , ξ′Zpξ]

′,(4.5)

{Aξ}i,j = 2Tr(UHViUHVj) + 4Tr(UHVi[MXΣ(ϑ∗)MX ]+Vj)(4.6)

+ 4ξ′CHFHVi[MXΣ(ϑ∗)MX ]+VjF
′
HCHξ.

Definition 4.2. Let

(4.7) Hε,ξ = {δϑ : δϑ ∈ Rp, Φξ(δϑ) � −δε,ξ},

where δε,ξ is given by the relation

P{χ2q(ξ′CHξ) � χ2q(0, 1− α) + δε,ξ} = β(ξ)− ε.

The set Hε,ξ is called the nonsensitiveness region for the power of the test at the

point ξ.

Lemma 4.3. Let the regular mixed linear model (2.1) and the hypothesis (2.3)
be under consideration. Let Ha be true and let aξ and Aξ be given by (4.5) and

(4.6), respectively. The boundary of the set Hε,ξ is

(4.8) Hε,ξ =

{
δϑ : δϑ ∈ �p , (δϑ+x0)′(t2Aξ − aξa

′
ξ)(δϑ+ x0) =

δ2ε,ξt
2

t2 − a′ξA
−
ξ aξ

}
,

where x0 =
δε,ξ

t2−a′ξA−
ξ aξ

A−
ξ aξ, δε,ξ = χ2q(ξ

′CHξ, 1 − κt + ε) − χ2q(0, 1 − α) and ε, t

are chosen positive numbers. Here A−
ξ means g-inverse of the matrix Aξ.

�����. It follows from the solution of the equation Φξ(δϑ) = −δε,ξ from

Definition 4.2 of the nonsensitiveness region. For details see [3]. �
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Lemma 4.4. Let the regular mixed linear model (2.1) and the hypothesis (2.3)
be under consideration. Let Ha be true. Then

(4.9) δϑ ∈ Hε,ξ ⇒ P{TH(Y , ϑ∗ + δϑ) � χ2q(0, 1− α)} � β(ξ)− ε.

�����. Proof can be found in [3]. �

5. Nonsensitiveness regions for threshold ellipsoids

From Definition 3.1 we can see that the problem of a nonsensitiveness region for

the threshold ellipsoid is closely connected with a nonsensitiveness region for the

power of the test. In the case of the power, we are seeking for the region of δϑ

such that the power β(ξ) decreases by not more than the chosen value ε at the fixed

point ξ. In the case of the threshold ellipsoid, we are seeking for the region of δϑ such

that the power β(ξ) = κt decreases by not more than ε at all points ξ, ξ′CHξ = δkrit.

Thus, if we find the nonsensitiveness region for the power of the test independent

of ξ, it will be also the nonsensitiveness region for the threshold ellipsoid.

At first, let us suppose r(H) = 1. Then r(CH) = 1 and the equation CHξ2 = δkrit

has exactly two solutions ξ0 = ±
√

δkrit
CH
. Thus the solution ξkrit = |ξ0| is unique, since

the mean value and the variance of δTH are functions of ξ2. Hence, by Lemma 4.4,

Hε,ξkrit is the nonsensitiveness region for the threshold region. More precisely, the

power of the test β(ξkrit) = κt decreases by not more than ε at all points β0 ∈ T κt,α,

i.e. at all β0, Hβ0 + h = ξkrit.

Let r(H) � 2. In this case, the set of all solutions ξkrit of the equation ξ′CHξ =

δkrit is uncountable and for a different ξkrit we have a different region Hε,ξkrit . One

possible approach for determining a joint region Hε,δkrit for all ξ, ξ
′CHξ = δkrit is to

eliminate the dependence of the mean value and the variance of δTH on ξ. According

to the previous section, the problem is to determine the upper bound of the variance

and the lower bound of the mean value of the random variable δTH independent of ξ.

Definition 5.1. Let ξ′CHξ = δkrit and

(5.1) Hε,δkrit = {δϑ : δϑ ∈ �p , Φξ(δϑ) � −δε},

where δε is given by the relationship

P{χ2q(δkrit) � χ2q(0, 1− α) + δε} = κt − ε.

The setHε,δkrit is called the nonsensitiveness region for the (κt, α)-threshold ellipsoid.
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Lemma 5.2. Let Eij , i, j = 1, . . . , p, be the p × p matrix with the (i, j)-th

entry equal to 1 and with the other entries equal to 0. Then in the regular mixed

model (2.1) we have

(5.2) varξ(δTH |β, ϑ∗) � δϑ′(A+Dδkrit)δϑ ∀ξ′CHξ = δkrit,

where

{A}i,j = 2Tr(UHViUHVj) + 4Tr(UHVi[MXΣ(ϑ∗)MX ]+Vj),

Kij = 4CHFHVi[MXΣ(ϑ∗)MX ]+VjF
′
HCH , i, j = 1, . . . , p,

Dδkrit =
s∑

r=1

δkritγrGrCHG′
r,

Gr =




g′r,1
...

g′r,p


 , r = 1, . . . , s,

p∑

i=1

p∑

j=1

(Eij ⊗Kij) =
s∑

r=1

γrgrg
′
r (the spectral decomposition),

where r

(
p∑

i=1

p∑
j=1
(Eij ⊗Kij)

)
= s � pq, gr ∈ �pq , g′rgs =

{
1 if r = s,

0 otherwise,
gr,i ∈ �q ,

gr = (g′r,1, . . . , g
′
r,p)

′, i = 1, . . . , p and r = 1, . . . , s. Here⊗means Kronecker product.
�����. We will use a procedure analogous to that in [4]. It is true that

4ξ′CHFHΣ(δϑ)[MXΣ(ϑ∗)MX ]+Σ(δϑ)F ′
HCHξ

= δϑ′




ξ′K11ξ, . . . , ξ′K1pξ

. . .

ξ′Kp1ξ, . . . , ξ′Kppξ


 δϑ

= (δϑ′ ⊗ ξ′)
p∑

i=1

p∑

j=1

(Eij ⊗Kij)(δϑ ⊗ ξ),

since

(δϑ′ ⊗ ξ′)
p∑

i=1

p∑

j=1

(Eij ⊗Kij)(δϑ⊗ ξ) =
p∑

i=1

p∑

j=1

(δϑ′Eij ⊗ ξ′Kij)(δϑ⊗ ξ)]

=
p∑

i=1

p∑

j=1

(δϑ′Eijδϑ⊗ ξ′Kijξ)

=
p∑

i=1

p∑

j=1

(δϑiδϑjξ
′Kijξ).
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Let
s∑

r=1
γrgrg

′
r be the spectral decomposition of

p∑
i=1

p∑
j=1
(Eij ⊗ Kij), where gr ∈

�
pq , g′rgs =

{
1 if r = s,

0 otherwise.
Thus we can divide the vector gr into p subvectors of

dimension q, i.e. gr = (g′r,1, . . . , g
′
r,p)

′, gr,i ∈ �
q , i = 1, . . . , p and r = 1, . . . , s. Let

us denote

Gr =




g′r,1
...

g′r,p


 .

Then using the Schwarz inequality with the seminorm ‖x‖CH =
√

x′CHx we get

(δϑ′ ⊗ ξ′)
p∑

i=1

p∑

j=1

(Eij ⊗Kij)(δϑ⊗ ξ)

= (δϑ′ ⊗ ξ′)
s∑

r=1

γrgrg
′
r(δϑ⊗ ξ)

=
s∑

r=1

γr(δϑ′Grξ)2

�
s∑

r=1

γr

(√
ξ′CHξ

√
δϑ′GrCHG′

rδϑ
)2

= δϑ′
( s∑

r=1

δkritγrGrCHG′
r

)
δϑ

≡ δϑ′Dδkritδϑ

and the proof is complete. �

Lemma 5.3. In the regular mixed model (2.1) we have

(5.3) Eξ(δTH |β, ϑ∗) � −δϑ′



Tr(UHV1) + k1δkrit

...

Tr(UHVp) + kpδkrit


 , ∀ξ′CHξ = δkrit,

where

ki = max

{
λj : C

− 1
2

H ZiC
− 12
H =

r(Zi)∑

j=1

λjfjf
′
j

}
, i = 1, . . . , p.

�����. The problem is to minimize Eξ(δTH), i.e. to maximize [ξ′Z1ξ, . . . ,

ξ′Zpξ]′ subject to the condition ξ′CHξ = δkrit. Using the method of Lagrangian
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multipliers, we get for i = 1, . . . , p

Φ(ξ) = ξ′Ziξ − λ(ξ′CHξ − δkrit),

∂Φ(ξ)
∂ξ

= 2Ziξ − 2λCHξ.

Thus

0 = det(Zi − λCH) = det(C
− 1
2

H ZiC
− 1
2

H − λI).

Let λ1 � . . . � λr(Zi) � 0 be eigenvalues of the matrix C
− 1
2

H ZiC
− 12
H . Then for all ξ,

ξ′CHξ = δkrit we have

ξ′Ziξ � kiδkrit

and the proof is complete. �

Theorem 5.4. Let the regular mixed linear model (2.1) and hypotheses (2.2),
(2.3) be under consideration. Let matrices A andDδkrit be defined as in Lemma 5.2.

Let

(5.4) [k1, . . . , kp]
′ ∈M(A+Dδkrit),

whereM(A+Dδkrit) = {u : u ∈ �p , ∃x ∈ �p , (A+Dδkrit)x = u}. The boundary
of the nonsensitiveness region Hε,δkrit for the threshold ellipsoid Tκt,α(β) is

(5.5) Hε,δkrit =

{
δϑ : (δϑ+ x1)

′(t2Aδkrit − aa′)(δϑ + x1) =
δ2εt2

t2 − a′A−
δkrit

a

}
,

where δε is given by the relation

P{χ2q(δkrit) � χ2q(0, 1− α) + δε} = κt − ε

and

Aδkrit = A+Dδkrit ,

a = [Tr(UHV1), . . . ,Tr(UHVp)]
′ + [k1, . . . , kp]

′δkrit,

x1 =
δε

t2 − a′A−
δkrit

a
A−

δkrit
a.

�����. The proof follows from Lemma 4.3, Lemma 5.2 and Lemma 5.3. �
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������ 5.5. The presumption (5.4) in Theorem 5.4 cannot be omitted. The

boundary of the nonsensitiveness region Hε,δkrit is derived from the boundary of the

nonsensitiveness region Hε,ξ for the power of the test (cf. Lemma 4.3). In the case of

the power, the presumption aξ ∈ M(Aξ) is always fulfilled. Hence, if the presump-

tion (5.4) is not fulfilled, then we cannot apply the expression from Lemma 4.3 and

the boundary of the nonsensitiveness region Hε,δkrit is given by the general quadratic

form

Hε,δkrit =

{
δϑ : (δϑ0 + x2)′(t2Aδkrit − c0c

′
0)(δϑ0 + x2)

− δϑ′
1c1c

′
1δϑ1 + 2δϑ

′
1c1δε =

δ2εt2

t2 − c′0A
−
δkrit

c0

}
,

where

x2 =
δε

t2 − c′0A
−
δkrit

c0
A−

δkrit
c0,

a = c0 + c1, c0 ∈M(Aδkrit), c0⊥c1, (c0, c1 are orthogonal),

δϑ = δϑ0 + δϑ1, δϑ0 ∈M(Aδkrit), δϑ0⊥δϑ1.

Theorem 5.6. Let the regular mixed linear model (2.1) and hypothesis (2.3)
be under consideration. Let Ha be true. Let ξ′CHξ = δkrit, where Hβ + h = ξ. If

δϑ ∈ Hε,δkrit , then

P{TH(Y , ϑ∗ + δϑ) � χ2q(0, 1− α)|ξ} � κt − ε.

�����. It is an obvious consequence of Lemma 4.4. �

������ 5.7. With respect to the Chebyshev inequality it seems that the proper

value of the parameter t lies in the interval [3,5], since

t = 5 : P
{
|δTH − E(δTH)| � 5

√
var(δTH)

}
� 0.04.

If δTH is approximately normally distributed, then

t = 3 : P
{
|δTH − E(δTH)| � 3

√
var(δTH)

}
≈ 0.003.

In the case that we want to find the optimum value of the parameter t, we must

determine the distribution of δTH . The optimum value t∗ which maximizes the size

of the nonsensitiveness region is t∗ = max{tδϑ : ‖δϑ‖ = 1} subject to the condition

E(δTH |δϑ) + tδϑ

√
var(δTH |δϑ) = q(1 − α),

where q(1 − α) is the (1 − α)-quantile of the distribution of δTH with sufficiently

small α. It was found out that in some cases the sufficiently large value of t can be

smaller than 3; for details cf. [7].
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������ 5.8. If sets Hε,ξ and Hε,δkrit are surfaces of ellipsoids, then nonsensi-

tiveness regions Hε,ξ and Hε,δkrit are unions of Hε,ξ and Hε,δkrit and their interiors,

respectively. If Hε,ξ or Hε,δkrit is not characterized as an ellipsoid, the change of ϑ
∗

can be arbitrarily large in some direction.

In practice, if right-hand sides in the expressions of Hε,ξ (cf. (4.8)) and Hε,δkrit

(cf. (5.5)) are positive, we get ellipsoids by replacing the negative eigenvalues of

matrices t2Aξ − aξa
′
ξ and t2Aδkrit − aa′ by their absolute values.

If the right-hand side is negative, it is necessary to find a suitable subset of Hε,ξ,

Hε,δkrit including the point δϑ = 0 (e.g. an ellipsoid, a sphere, a cube).

������ 5.9. The boundaryHε,δkrit of the nonsensitiveness region for the thresh-

old ellipsoid in Theorem 5.4 is determined for the worst situation, since we consider

the maximum possible variance and the minimum possible mean value of the cor-

rection term δTH . This can make the region Hε,δkrit in some situation so small that

any permitted differences from the true value ϑ∗ are negligible and thus values of

the parameter ϑ must be known more precisely.

6. Numerical demonstration

	
����� 6.1. Let a straight line be given in the plane. We have four mea-

surements at points x = 1, 2, 3, 4. The accuracy of measurement is characterized by

the standard deviation σ∗1 = 0.004 (at points x = 1, 2 and x = 2, 3 in an experi-

ment I and II, respectively) and σ∗2 = 0.001 (at points x = 3, 4 and x = 1, 4 in an

experiment I and II, respectively). Let the null hypothesis be “the coefficients of the

straight line are equal to one” and the alternative hypothesis be “the coefficients of

the straight line are not equal to one”.

Let two different designs of an experiment be under consideration. The process

of measurement if the error vector is assumed to be normally distributed can be

modelled by

Y ∼ N4[Xβ,Σi(ϑ∗)], i = I, II,

where

X =




1, 1

1, 2
1, 3

1, 4


 , β =

(
β1
β2

)
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and

ΣI(ϑ∗) =




16 · 10−6, 0, 0, 0
0, 16 · 10−6, 0, 0

0, 0, 1 · 10−6, 0
0, 0, 0, 1 · 10−6


 ,

ΣII(ϑ∗) =




1 · 10−6, 0, 0, 0

0, 16 · 10−6, 0, 0
0, 0, 16 · 10−6, 0

0, 0, 0, 1 · 10−6


 .

The null hypothesis is

H0 :

(
β1
β2

)
−

(
1
1

)
= 0

and the alternative hypothesis is

Ha :

(
β1
β2

)
−

(
1
1

)
= ξ �= 0.

It is obvious that under H0

TH(Y , ϑ∗) ∼ χ22(0).

Let the risk of the test be α = 0.05. For the given power κt = 0.99 we determine the

critical value of the noncentrality parameter δkrit by solving the equation

P{χ22(δkrit) � χ22(0, 0.95)} = 0.99.

Using the approximation of the noncentral chi-square distribution by the central

distribution (cf. [1], p. 27)

χ2q(δ) ≈
q + 2δ
q + δ

χ2(q+δ)2

q+2δ

(0)

we get δkrit
.
= 19.31. Hence

T0.99,0.05(β) =
{

β : β ∈ �2 ,
[
β −

(
1
1

)]′
CH

[
β −

(
1
1

)]
� 19.31

}
,

where CH =X ′Σi(ϑ∗)X, i = I, II.

Let ϑ∗ be changed into ϑ∗+δϑ. Let us look at the nonsensitiveness regionHε,ξ for

the power of the test and Hε,δkrit for the threshold ellipsoid in more detail. We will

concentrate on their behavior, properties and correlations. In the case of the power,
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we restrict to β(ξ) = κt, i.e. to directions ξ subject to the condition ξ′CHξ = δkrit,

which we will denote by ξkrit. Then

δε,ξkrit = δε = χ22(δkrit, 1− κt + ε)− χ22(0, 1− α).

Hence δ0.05 = χ22(19.31, 0.06)− χ22(0, 0.95) = 3.23.

In what follows, only the boundary of each nonsensitiveness region will be shown,

since we are in the situation with a negative right-hand side (cf. Remark 5.8). In our

case boundaries are characterized as hyperbolas.

First, we will engage in a power. Let CH = λ1f1f
′
1 + λ2f2f

′
2 be the spectral

decomposition. Hence, some interesting directions ξkrit are for example

ξ1 = f1

√
δkrit
λ1

,

ξ2 = f2

√
δkrit
λ2

,

ξ3 =

(
f1√
λ1
+

f2√
λ2

)√
δkrit
2

,

ξ4 =

(
f1√
λ1
− f2√

λ2

)√
δkrit
2

,

ξ5 =
f1√
λ1
+

f2√
λ2

(√
δkrit − 1

)
,

ξ6 =
f2√
λ2
+

f1√
λ1

(√
δkrit − 1

)

(the boundary of the threshold ellipse).

The dependence of Hε,ξkrit on the chosen direction ξkrit is given for ε = 0.05 in

Figs. 6.1, 6.2. Designs with covariance matrices ΣI and ΣII are used in Figs. 6.2

and 6.1, respectively. Each nonsensitiveness region is the set around the origin of

the coordinate system bounded by the branches of the proper hyperbola. As we can

see, the design of the experiment plays an important role for the behavior of these

regions (for details see [5]). From Fig. 6.1, when we have a more precise measurement

at outer points of the straight line (at points x = 1, 4), it follows that δϑ1 can be

arbitrarily large, i.e. it depends only on the instrument with σ∗2 . On the other hand,

from Fig. 6.2 we see that both instruments should have the true value of the standard

deviation approximately equal to σ∗1 , σ
∗
2 . For instance, let us consider direction ξ6. In

the case ΣI (Fig. 6.2) shifts δϑ1 are admissible in the interval (−1.6 ·10−5, 0.3 ·10−5)
(the lower bound follows from the assumption ϑ1 > 0) if δϑ2 = 0. Shifts δϑ2 are

admissible in the interval (−0.5·10−6, 0.2·10−6) if δϑ1 = 0. If δϑ1 > 0, the interval of

admissible shifts δϑ2 is smaller and vice versa. In the case ΣII (Fig. 6.1) shifts of δϑ1
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Figure 6.1. The boundary Hε,ξkrit for ΣII , κt = 0.99, α = 0.05, ε = 0.05, t = 4.
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Figure 6.2. The boundary Hε,ξkrit for ΣI , κt = 0.99, α = 0.05, ε = 0.05, t = 4.
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Figure 6.3. Asymptotes for Hε,δkrit for ΣI , κt = 0.99, α = 0.05, ε = 0.05, t = 4.
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Figure 6.4. The boundary Hε,δkrit for ΣII , κt = 0.99, α = 0.05, ε = 0.05, t = 4.
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can be arbitrarily large. Shifts δϑ2 are admissible in the interval (−10−6, 1.4 ·10−7) if
δϑ1 = 1.6 ·10−6. If δϑ1 is greater or lower, the maximum tolerable shift δϑ2 is lower.

The joint nonsensitiveness region for all directions ξ′CHξ = δkrit, i.e. nonsensi-

tiveness regions for the threshold ellipsoid, are given in Figs. 6.3 and 6.4. Figs. 6.3

and 6.4 correspond to the covariance matrices ΣI and ΣII , respectively.

As it was said, the nonsensitiveness region is a set around the origin of coordinate

system bounded by the branches of the hyperbola. Hence, in the case ΣII (Fig. 6.4),

δϑ1 can be arbitrarily large. However, a shift in the direction of δϑ2 must be very

small (it is to be remembered that ϑ1 > 0, ϑ2 > 0).

In the case ΣI (Fig. 6.3), from graphical purposes asymptotes of the hyperbola

Hε,δkrit are given only. Points of intersection of axes and asymptotes are as follows:

P1 = [−6.36 · 10−13; 0]′, P2 = [5.29 · 10−13; 0]′ and P3 = [0.99 · 10−13; 6.11 · 10−15]′.
For graphical reasons, a part of the nonsensitiveness region for δϑ2 � 0 is shown
only. Under this assumption, the nonsensitiveness region is approximately equal to

the triangle given by points P1, P2, P3. It is obvious how the remaining part of

the nonsensitiveness region for δϑ2 < 0 will look like. Hence, the movement in both

directions δϑi, i = 1, 2 must be very small.

Till now no experience is available on the nonsensitiveness region for the threshold

ellipsoid. In our example regions for a fixed ξ can be used in practice only, since the

region Hε,δkrit is very small.

An investigation of the region Hε,δkrit is the aim of a further research.
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