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Abstract. New properties for some sequences of functions defined by multiple integrals
associated with the Hermite-Hadamard integral inequality for convex functions and some
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1. INTRODUCTION

The integral inequality

b
(1.1) 1(557) < s [ ra < L2EI0,
which holds for any convex function f: [a,b] — R, is well known in literature as the
Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result
which has many applications in the theory of special means and in information theory
for divergence measures, from which we would like to refer the reader to [1]-[54].

The main aim of this paper is to consider some natural sequences of functions
defined by multiple integrals and study their properties in relation to the Hermite-
Hadamard inequality.
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2. PROPERTIES OF THE SEQUENCE OF MAPPINGS H,

Let I C R — R be an interval of real numbers and a,b € I with a < b, and let
f: I = R be a mapping which is integrable on [a,b]. Then we can define a sequence
of mappings H,: [0,1] = R by

Ha(t) := / / ‘”‘+ +””"+(1~t)‘“’b)da,,-1...dac,,

forn>1andt€[0,1].
Some properties of this sequence of mappings are embodied in the following the-
orem.

Theorem 1. Let f: I C R be a convex mapping on I and let a,b € I witha < b.
Then
(i) H, are convex on [0,1] for all n > 1;
(ii) the following inequalities hold:

@) f(3) <H.0 < (b—l)—+

/ / Zl ks T - t)xn+1) dzy ... dzpq

and

a+b)

(22) Ha(t) <tg— a)n// u)dxl dzn + (1= )1 (

(b a)"/ / zl+ +x")d ...dz,

for all t € [0,1];
(iii) the mapping H., is monotonic nondecreasing on [0,1] for alln > 1 and one has

the bounds
a+b
; = — H,(0) foralln>1
(2.3) Jmin Ho (0 f( > ) H,(0) forall n
and
1:1 +...+ T,
(24)  max Ha(t) = / / )d 21...dzn

= Hn(l) for n > 1.
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Proof. (i) Follows by the convexity of f.
(ii) Applying Jensen’s integral inequality, we obtain

1 b T+ ...+ Ty
b— a/a‘ f(t—n— + (1 - t).’lJ,H.l) d.’l:n+1

1 bz +...4+zp
> f[b—a/a (2" —t)xn+1)dx,.+1]

(a:1+...+z,, a+b)
n 2

= f(t +(1-1)

for all z;,...,z, € [a,b] and t € [0, 1].
Taking an integral mean over [a, b]" we deduce the second inequality in (2.1).
By Jensen’s integral inequality for multiple integrals we have

—(b—_%/f../bf tfi-'#—ﬂ+(l—t)a;b)dx1...d:c"
,f[(b Az / / ““* (l—t)a+b)dx1...da:,.]
_f(a+b)

and the inequality (2.1) is completely proved.
By the convexity of f on [a,b], we can write

f(tz1+.T.L.+x,, +(1—t)a+b) stf(rrl+.1.l.+av:,,) +(1—t)f(a;b)

for all z;,...,z, € [a,b] and t € [0,1]. Taking an integral mean over [a,b]", we

deduce

Hn(t)Stﬁ;/‘;../;b]‘(?l_f;r’l‘_ﬂvﬁ)dx dz"+(1_t)f(a+b),

and the first inequality in (2.2) is proved.
As we know (see for example [26]) that

f(a+b < / /‘ zl+ +:Ac,.)d$l dz,,

we obtain the last part of (2.2).

(iii) Let 0 < t; < t2 < 1. By the convexity of H,, which follows by (i) now proved,

we have that
Hp(to) — Ha(t) | Ha(t) — Ha(0)

to — 1 2 t1
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but Hy,(t1) > Hn(0) (see the first inequality in (2.1)) and hence we get that H,(t2) —
H,(t;) > 0forall 0 < ¢; < t; <1, which shows that the mapping H,(-) is monotonic
nondecreasing on [0,1]. The bounds (2.3) and (2.4) follow by the inequalities (2.1)
and (2.2). We omit the details. O

We now give another result on monotonicity which, in a sense, completes the above
theorem.

Theorem 2. Let f: I C R — R be a convex mapping on I and let a,b € I with
a <b. Then

(2.5) F(352) < Hua) < Halt) < .. < Ha(t) = H(),

where

H(t) := ﬁ/ﬂbf(tz+(l—t)a—;—b) dz

foralln > 1 and t € [0,1]. That is, the sequence of mappings (H,)n>1 is monotoni-
cally nonincreasing.

Proof. Let us define real numbers belonging to [a, b]:

- b
u :=tu+(1_t)a; :
To+z3+...+2x a+b
y2:=t2 3 n+l+(1_t) :
n 2
. +z e T a+b
Ynpy =ttt T OLT nly -2l
n 2
where z;,...,Zn41 € [a,b)].

Using Jensen’s discrete inequality, we may state that

1 T +...+ 2z, a+b
1-—
n+1[f(t n -9 2 )

+f +(1-1)

(ta:2+...+z,,+1 a+b)+m
n

+£( +(1-1)

n 2

L1+ ...+ Tpy a+b)
—_ T 4+ (1t
n+1 +( ) 2

tfb'n+1 +x14+ ...+ Tp a+b)]

> f(t

for all t € [0,1] and z,...,Zn41 € [a,B].
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Taking an integral mean over [a, b]"*!, we deduce

1 :v+ .+ Tn a+b
n+1[ _ n+1/ / 1 (l—t) )dzl...dzn+1

Tnt1+Z1+ ...+ Tp
e ... t
* +(b—a>"+1fa /af n

2 )dxl d:z:nH]

.'z:+ +a:,. a+b

However, it is easy to see that

+Z +. a+b
= a)n+1/ / SR (1) )da:l...dxn_,_l

<b-a>n/ /

and thus, by the above inequality, we conclude

)dxl...dx,,

H,(t) > Hoa(t) forall t€[0,1] and n > 1
The proof is thus completed. O

It is natural to ask what happens with the difference H,(t) — f(1(a + b)) which
is clearly non-negative for all ¢ € [0, 1].
The following theorem contains an upper bound for this difference.

Theorem 3. Let f: I C R — R be a convex mapping and f), its right derivative
which exists on I and is monotonic nondecreasing on I. If a,b € I with a < b, then
the inequalities

(2.6) < Ho(t) - (“ + b)

SB- a)"/ /f+ (= (l‘t)a+b)

e (zl - %b) dzy...dz,

< v [(b a)ﬂ/ /[f+ (B

+(1—-t)a+b)] dzl...dzn]%

hold for allm > 1 and t € [0,1].
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Proof. As fis convex on I, we can write

f(@) - fy) > fiy)(z —y) forall z,yel.

Choosing in this inequality

_a+b o, nt...+ T, a+b
= 2 and y——t—n—‘—'i'(l—t) 5

we deduce the inequality

f(a—zi-b) _f(t$1+.r.l.+xn +(1_t)a;b)

Sufy (Bt ity (erh_mtboto)

Taking an integral mean over [a, b]™, we derive that

en (%) -Ho

2

1 b rPa+b,, T +... 42
> [

+(1—t)a+b)dx1...dzn

x+ a+b

(b—a)n/ /f+ S -05)
+... 4z,

x(x1 ” z)dzl...dzn],

from where we deduce the second part of (2.6).
Now, let us observe that the right hand side in the inequality (2.7) is the integral

= (b—a)n/ /f+ :1;1+ (1—t)a+b)

(z1+n In a;b)dxl...dxn.

By the well-known Cauchy-Buniakowsky-Schwartz integral inequality for multiple
integrals, we deduce the last part of the inequality (2.6).
The proof of the theorem is thus completed. O
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Corollary 1. Let f: I C R — R be a convex mapping and a,b € I with a < b.

Put M := sup |f'(z)| < oo. Then we have the inequality
z€[a,b]

a+b)<t(b—a)M

(2.8) 0 < Ha(t) - £(%5 i/

for allt € [0,1] and n > 1.
In particular, we have

lim Ha(t) = f(‘” b

) uniformly on [0,1].
n—o0
The following result also holds:

Theorem 4. Under the assumptions as in Theorem 3, we have

(2‘9) 0< tHn(]-) + (1 - t)Hn(O) - Hn(t)

I A = T L) PR
— —a 3
< t(lz\;:)}(\l;ﬁ )[(b_la)n /;“/ub[f;(ﬂ-*-—nj-ﬁ)rdzl...dzn]

foralln > 1 and t € [0,1].

Proof. By the convexity of f we can write

(2.10) f(tw +Q _t)a;b) _f(:cl +.1.l.+zn)
> (-0 (2 +'1‘1'+’”n)(a;b _ zl+.7.l.+z,,)

for all t € [0,1] and z4,...,Zn € [a,b].
Similarly, we have

) ()
(S (- 2t

for all t € [0,1] and z4,...,Z, € [a,b].
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If we multiply the inequality (2.10) by ¢ and (2.11) by (1 —¢) and add the obtained
inequalities, we deduce

(B ) (2 ) o gr(F)

> t(1—t)[f;(£r;-_+"’n) f+(a+b)] (a;rb o +.7.l.+z,,)_

That is,

tf($1+.1.l.+x,,) +(1——t)f(a+b) f(t$1+.T.L.+$n +(1_t)a-2+-b)

<t(1 —t)[f;(ﬂ‘;ﬁ) f+(a+b)] (xl +.7.l.+x,, B a-2}-b)

for all t € [0,1] and z4,...,z, € [a,b].
Taking an integral mean over [a, b]", we have

< tH,(1) + (1 = t)Hn(0) — H,(2)
t(l t)[(b / /f+ $1+ +In)$1 d(L‘l d

a+b 1 , z1+...+zn
_T(b_a)n./a...l f+ _n—)dxl...dmn],

because a simple calculation shows us that

o [ [ () (B g

n
1 b b , (T1+ ...+ Ty
_(b—ra)—"/,,/; f_,,(T)xldxl...dx

and

1 b bz1+...+wn a+b
Wl.../q szl...dzn— ) .

Thus, the second inequality in (2.9) is proved.
Now, applying the Cauchy-Buniakowsky-Schwartz integral inequality, we deduce
the last part of the theorem. We omit the deatils. O
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Corollary 2. Under the assumptions as in Theorem 3 and provided M :=
sup |f'(z)| < oo, we have the inequality

z€[a,b

t(1—t)
(2.12) 0 < tH,(1) + (1 — t)HA(0) — H,(t) < 2\/gﬁM

foralln > 1 and t € [0,1].
In particular,

nli_)n;o[tHn(l) + (1 - t)H,(0) — H.(t)] =0
uniformly on [0, 1].

The following corollary is interesting as well.

Corollary 3. Under the assumptions as in Theorem 3 and provided there exists
a constant K > 0 such that

Ifi(@) - FLW)l < Klz —y| for all z,y € [a,b],

we have the inequality

K-8, o

(2.13) 0 < tHA(1) + (1~ ) Ha(0) ~ Hat) < ~o

for allt € [0,1) and n > 1.

In addition, it is natural to ask for an upper bound for the difference H,(1)—H,(t),
n > 1forallte[0,1].

Theorem 5. Let f: I C R — R be a convex mapping on the interval I and let
a,b € I with a < b. Then we have the inequalities

(2.14) (—bjla—)—n-/b/bf(f””—n—ﬁ)dzl dz, — Ha(t)
<-tgags [ [ BB -

— - b b n 2 %
<SR (ot L [ (o s

for allt € [0,1] and n > 1.
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Proof. By the convexity of f, we have that

f(tml+.T.L.+:tn +(1_t)a+b) _f(x1+...+zn)

2 n
1+ ...+ zZp\[a+b T1+...+ 7T,
> gy (B e nt oo
n 2 n
for all z1,...,2, € [a,b] and t € [0,1].
Now, the argument proceeds as above and we omit the details. 0O

Corollary 4. Under the assumptions as in Theorem 3 and provided M :=
sup |f'(z)| < oo, we have the inequality

z€[a,b

1-t)(b—a)M
(2.15) 0 < Ha(1) — Ha(t) < W

In particular,

lim [H,,(1) — Ha()] = 0

uniformly on [0, 1].

Corollary 5. Under the assumptions as in Theorem 3 and provided there exists
a constant K > 0 such that

Ifi(z) - fLW)| < K|z —y| forall z,y € [a,B],

we have the inequality

K(1—t)(b—a)?

(2'16) 0< Hn(l) - Hn(t) < 12n

foralln > 1 andt € [0,1].

Now we establish an upper bound for the difference H,(t) — Hn+1(t), n > 1 which
is non-negative for all ¢ € [0, 1] (cf. Theorem 2):
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Theorem 6. Let f: I C R — R be a convex function on the interval I and let
a,be I with a < b. Then the inequality

(2.17) < Ha(t) — Hnta(2)

\n+1[(b—a)"_/ /f+ x1+n +( b)

(zl—a;b)dxl...dzn]

<2~/ffbf_(:+1 [(b—a / /f+ (=

+(1—t)“;b)] dzl...dxn]

1
2

holds for all t € [0,1] and n > 1

Proof. By the convexity of f, we have that

L1+ -+ Tnp B a+b _ 1+ ...+ Ty _ a+b

f(t—-——n+1 +(1-8= ) f(t_—_n +1-1) )
t T+ ...+, a+b

> ' —p=—= - 4z,

> s + (1= 9222 ) nns — @1+ +22)]

for all z1,...,Zn41 € [a,b] and t € [0,1].

Taking an integral mean on [a, b]"*!, we derive

< Ho(t) — Hota(2)

n+1[(b—a)"/ /f+ $1+ n +( )Ildﬂfl---dzn
_a;b(b_la)n/ /f+ $1+ +(1—t)a+b)dz1 dzn],

and the second inequality in (2.17) is proved.
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Now, let us observe that

G-ar / /f+ e )

(o - BE0

= [ [ B a0

y (z1+...+zn a+b

a+b
2

n

<(G%BZA{”LWﬁ(ﬁLt?iﬁi+u_0“;bnambn
2
) dz; ...

8 1 /"’ /"(a:1+...+zn_a+b
b-aJo o n 2

and thus the last inequality is also proved.

2

) dz; ... dz,
) dz;...dz,
%

Corollary 6. Under the assumptions as in Theorem 3, given

sup |f'(z)| < oo, we have
z€|[a,b)

(2.18) 0 < Halt) - Hun(t) < %

forallt € [0,1] andn > 1
In particular,
hm [Hn(t) — Hpa(t)] =

uniformly on [0, 1].

The following theorem also holds.

Theorem 7. Under the assumptions as in Theorem 3, we also have the bound

(219) 0 S Hn(t) - Hn+1(t)
t(b—a) zl +.
<2\/—\/_(n+1)[(b—a)"/ /[f+ n

-1 (%

forallt € [0,1] andn > 1

a+b

=+ (

dzn)
1
2
dzn> ,

that M

=)
] dxl...dzn]

Nl

a

Proof. The proof is similar to the one of Theorem 6 and we omit the details.
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Corollary 7. Under the assumptions as in Theorem 3, given that there exists a
K > 0 such that

Ifi(@) - fiW)| < K|z —y| forall z,y € [a,],
we have the inequality

2 27572
(220) Halt) ~ Hoa () < S0

forallt € [0,1] andn > 1

Finally, note that, by a similar argument to that in the proof of Theorem 6, we
can give the following result which completes, in a sense, the estimate in Theorem 3.

Theorem 8. Under the above assumptions the inequality

(2.21) 0< Hat) — f(a;b)

<vslo=ar /.,?"/.,b[ﬁ(‘W“““GZ )

_f (a + b)] dzy ..

L——l
N=

holds for all t € [0,1] andn > 1

Corollary 8. Under the above assumptions, given that there exists a K > 0 such
that

1f+(@) — f1W)| < K|z —y| forall z,y € [a,B],

we have the inequality

a+b t2(b— a)’K?
< — <
0< Ha(t) f( 2 ) = 12n

for allt € [0,1] andn > 1
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3. APPLICATIONS TO SPECIAL MEANS

Let 0 < a < bandp € (—o0,0)U[1,00)\ {—1}. Let us define sequence of mappings

hp,n(t) := = a)"/ / zl+ +(1——t)a+b) dz; ... dz,,

wheren > 1,n €N, and ¢ € [0,1].
By virtue of the above results, we can establish the following properties:

(i) hp,n(t) are convex and monotonic nondecreasing on [0, 1};
(ii) hpn(t) 2 hpnt1(t) for alln > 1 and t € [0,1];

(iii) the inequalities

(ERALEL

b b
I +...+.’En P
< (b—a)"+1 /G/G (t_—n—+(1_t)xn+l) dzr;...dza4

and

1 b b 1+ ...+ Ty \P
hp,n(t)gt(—bta—)n-‘/‘;.../; (—T—) dxl...d:z:n

+ (1 - )[A(a,0)]
sﬁ//(_i;f_)dd

hold for all n > 1 and ¢ € [0, 1], where A(a,b) :=
(iv) If p > 1, then the inequalities

t(b— a)pbP~!
2V3y/n

x +. +:cn
(b_a)n/ / ! ) day ... Az, — hpn(t)
<(1—t(b—apb” 1

h 2v3y/n

0 < hpn(t) — [A(a, D)) <

and

hold for all n > 1 and ¢t € [0, 1].

136



(v) If p > 1, the inequalities

0 < thyyu(1) + (1 — )y n(0) — hpa(t) < L—OPP

2v/3/n
and

t(b — a)pb?~1
2v/3y/n(n +1)

0< hp,n(t) - hp,n+1 (t) <

hold for alln > 1 and ¢ € [0, 1].
(vi) If p > 2, then the inequalities

£2(5 — a)2p(p — )b~

0 < hp,n(t) — [A(a, D)) <

12n
and
£2(b — a)?p(p — 1)b7~2
0 < hp,n(t) - hp7n+1 (t) s lzn(n + l)
and
0 < thp,n(1) + (1 = )hp,n(0) — hp,n(t)
< t(1 —t)(b—a)?p(p— 1)bP2
= 12n
and

(1=t)(b—a)’p(p—1)b"2
12n

0 < hp,n(1) = hpn(t) <
hold for all » > 1 and t € [0, 1].
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Abstract. New properties for some sequences of functions defined by multiple integrals
associated with the Hermite-Hadamard integral inequality for convex functions and some
applications are given.
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1. INTRODUCTION

The integral inequality

b
(1.1) f(“;b) < bia/a Ft)dt < M

which holds for any convex function f: [a,b] — R, is well known in literature as the
Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result
which has many applications in the theory of special means and in information theory
for divergence measures, from which we would like to refer the reader to [1]-[54].

The main aim of this paper is to consider some natural sequences of functions
defined by multiple integrals and study their properties in relation to the Hermite-

Hadamard inequality.
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2. PROPERTIES OF THE SEQUENCE OF MAPPINGS H,

Let I € R — R be an interval of real numbers and a,b € I with a < b, and let
f+ I — R be a mapping which is integrable on [a,b]. Then we can define a sequence
of mappings H,,: [0,1] — R by

ZC1+ .t a+b
H,(t) := p— / / =+ (1-1) 5 )dxl...dxn

forn > 1 and t € [0, 1].
Some properties of this sequence of mappings are embodied in the following the-

orem.

Theorem 1. Let f: I C R be a convex mapping on I and let a,b € I with a < b.
Then
(i) H, are convex on [0,1] for all n > 1;
(ii) the following inequalities hold:

a+b
2

1
(b—a)"+t

+...+tx
/ / :El + (1 — t)$n+1) dxq ... d.%'n+1

(2.1) f( ) < Ho(t) <

and
(2.2) Hnu)<tﬁ/j../abf(w)dm...dw(l_t)f(a;b)

1 b b 1 +...+x,
<— .. AT ..
S (bfa)"/a / PP e day

for all t € [0, 1];
(iii) the mapping H,, is monotonic nondecreasing on [0,1] for all n > 1 and one has
the bounds

(2.3) min H,(t) = f

<a+b
te0,1]

5 ) =H,(0) foralln>1

2.4 H,
(2.4) Jnax, (t)

// $1+ +$")d dz
— . dw,

~b—ar
=H,(1) for n>1.
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Proof. (i) Follows by the convexity of f.
(ii) Applying Jensen’s integral inequality, we obtain

1 b T+ ... +x,
/f(t - " +(1_t)33n+1) dzn41

b—a
> f 1 /b<t7xl+”'+$n+(1—t)x )dx
= b—a . n n+1 n+1
T+ ...+ x, a+b
= flt—— 1—-1t )
JE 105
for all z1,...,2, € [a,b] and t € [0,1].

Taking an integral mean over [a, b]™ we deduce the second inequality in (2.1).
By Jensen’s integral inequality for multiple integrals we have

:E1+ a+b
b—a / / +(1-1) 5 )dxl...dxn

[ // L +(1—t)a;—b>dx1...dxn]
_f<a+b>

and the inequality (2.1) is completely proved.

By the convexity of f on [a,b], we can write

f(tler'ﬁ'Jrz"Jr(l—t)a;Lb) gtf(x1+'7'l'+xn>+(1—t)f<a;rb>

for all zy,...,z, € [a,b] and ¢ € [0,1]. Taking an integral mean over [a,b]”, we
deduce

H"(t)gtﬁ/a{)”/abf(W)dm...d:z:nJr(lt)f(a;_b>’

and the first inequality in (2.2) is proved.

As we know (see for example [26]) that

f(a;b> < (b_la)n /b/bf<w> or dim,

we obtain the last part of (2.2).
(iii) Let 0 < #; < t2 < 1. By the convexity of H,,, which follows by (i) now proved,

we have that
H,(t2) — Hu(t1) S H,(t1) — H,(0)

to —tg - tq

)
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but H,(t1) > H,(0) (see the first inequality in (2.1)) and hence we get that H, (t2) —
H,(t1) =2 0for all 0 < t; < ta < 1, which shows that the mapping H,,(-) is monotonic
nondecreasing on [0,1]. The bounds (2.3) and (2.4) follow by the inequalities (2.1)
and (2.2). We omit the details. O

We now give another result on monotonicity which, in a sense, completes the above
theorem.

Theorem 2. Let f: I C R — R be a convex mapping on I and let a,b € I with
a < b. Then

(2.5) F(%50) < Huon(t) < Halt)

N
N
=
=

where

b
H(t) = ﬁ f(tx +(1- t)“TH’) da

for alln > 1 and ¢ € [0,1]. That is, the sequence of mappings (Hy,)n>1 is monotoni-
cally nonincreasing.

Proof. Let us define real numbers belonging to [a, b]:

T1+ ...+ T, a—+b
=t 1-—t ;
Y1 n +< ) 2 )
To+ T3+ ...+ T, a+b
Yo 1=t 3 +1—|—(1—t) ;
n 2
.xn +x1+ ..+ T a+b
iy =t (L )5

where z1,...,2p41 € [a,b].

Using Jensen’s discrete inequality, we may state that

1 T1+ ...+ T, a—+b
1—
n+1{f<t n +( t) 2 )

To+ ...+ Ty
—|—f<t 2 - +1

+(1—t)“;rb)+...

txn+1+x1+...+:17n,1 a+b>]

+£( +(1-1)

n 2

1+ .o+ Tyt a+b>
_ 1—1¢
n+1 + ) 2

>t
for allt € [0,1] and 21, ...,Zp41 € [a,b].
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Taking an integral mean over [a, b]"*!, we deduce

1 / / I1+
n+1 —a"‘“

W// (0

/ / 961+
_an+1

However, it is easy to see that

I1+
e R

:...:W/Q.../aft

and thus, by the above inequality, we conclude

H,(t) > Hpy41(t) forall ¢t €[0,1] and n > 1.

The proof is thus completed.

It is natural to ask what happens with the difference H,(t) — f(4(a+ b)) which

is clearly non-negative for all ¢ € [0, 1].

The following theorem contains an upper bound for this difference.

Theorem 3. Let f: I C R — R be a convex mapping and f!_its right derivative
which exists on I and is monotonic nondecreasing on I. If a,b € I with a < b, then

the inequalities

(2.6) 0< Hy(t) — (a + b)

H//“

hold for alln > 1 and t € [0, 1].

1+. a-l-b)

n b
i (170&;‘ )dxl...dxn+1
Tpt1 21+ ...+ Tp-1
n
b
+(1—t)a+ )dwl...dan]
o Tt a+b
+1 Lo T ondl (17t)T>dx1dxn+1
b
(170&;‘ )dl’l dxn+1
n b
(RIS INRLE L) P
n



Proof. As f isconvex on I, we can write

F@) = f) > fL )@ —y) forall z,yel.
Choosing in this inequality

b coF o, b
x:a;r and y:tqu(lft)ajL

we deduce the inequality

() st gt

ity b b ity
L )
n

Taking an integral mean over [a, b]", we derive that

en (50 -

1 b ba—i—b x4+ ...+x
>tl— [ ... (¢
[(baw/a A G

a+b
+ - )dar .. da,

B T / /f+ :cl—l—n—i-xn (17t)a+b>

(gcl—f—...—i—xn)
X _—

n

deq ... dxn],

from where we deduce the second part of (2.6).

Now, let us observe that the right hand side in the inequality (2.7) is the integral

e R RGeS

Tn b
(I1+ F T _at )d:rl...dxn
n 2

By the well-known Cauchy-Buniakowsky-Schwartz integral inequality for multiple
integrals, we deduce the last part of the inequality (2.6).
The proof of the theorem is thus completed. g
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Corollary 1. Let f: I C R — R be a convex mapping and a,b € I with a < b.

Put M := sup |f'(x)] < co. Then we have the inequality
z€Ja,b]

a+b) < t(b—a)M

(2.8) O<Hn(t)—f( . NN

for allt € [0,1] and n > 1

In particular, we have

lim H,(t) = f(a * b) uniformly on [0, 1].

n—oo 2

The following result also holds:

Theorem 4. Under the assumptions as in Theorem 3, we have

(2.9) 0 <tHn(1) + (1= t)Hy(0) — Hn(t)

< 1—t /b /bf+ u)(xl—a+b)d$1 e,

<t(12—\/ﬁ%(b\/ﬁ—a)[ba / /f+ :cl—i—n-i-xn)} do . .dxn}

for allm > 1 and t € [0,1].

W=

Proof. By the convexity of f we can write

(2.10) f(tw_i_(l_t)a—zi—b) _f<w1+.7.1.+xn>
> (- g (Dt (et _n b
> . : .

for all t € [0,1] and z1,..., 2y, € [a,b].

Similarly, we have

(2.11) f(tWﬂJr(lit)a;b)if(a;b)
e
for allt € [0,1] and z1,...,2, € [a,b].
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If we multiply the inequality (2.10) by ¢t and (2.11) by (1 —¢) and add the obtained
inequalities, we deduce

f(tx1+'7'l'+x"+(1—t)a;rb> ftf<xl+"'+$") 7(17t)f(a+b>

n 2

>t(1t){f4(%) f+(a+b>](a;rbx1+.ﬁ.+:rn>.

That is,

tf(m—i—.T.L.—i—xn)+(1_t)f<a+b>_f(txl—i-.T.L.—i—xn_’_(l_t)a—Qi—b)

(x1+...+:cn> 2f+(a+b>] (x1+.7.l.+:cn 7a42rb>

n

<ti-o)|f,

for all t € [0,1] and z1,..., 2, € [a,b].

Taking an integral mean over [a, b]", we have

0<tHn()+(1—t Hy(t)

éﬂlt{ t/ / ﬁ () e dan
n

a+b 1 s (1.t
- S —————d oda, |,
Q(hwWL Lﬁ* n )xl w}

because a simple calculation shows us that

e / JRIC I
= b / /f+ $1+n+xn>x1dx1 . dx,

b b
#// mdxl...dxn:aer.
(b_a)n a a n 2

Thus, the second inequality in (2.9) is proved.

and

Now, applying the Cauchy-Buniakowsky-Schwartz integral inequality, we deduce
the last part of the theorem. We omit the deatils. O
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Corollary 2. Under the assumptions as in Theorem 3 and provided M :=

sup |f'(z)| < oo, we have the inequality
z€Ja,b]

t(1—t)
(2.12) 0 <tHn(1) + (1 = t)Hn(0) — Hu(t) < N

for allm > 1 and t € [0,1].
In particular,
lim [tH,(1)+ (1 —¢)H,(0) — H,(t)] =0

n—oo

uniformly on [0, 1].

The following corollary is interesting as well.

Corollary 3. Under the assumptions as in Theorem 3 and provided there exists
a constant K > 0 such that

[fi(@) = L)l < Klz —y| forall z,y € [a,b],
we have the inequality
(2.13) 0 < tHn(1) + (1 = t)Hy(0) — Hn(t) <

for allt € [0,1] and n > 1.

In addition, it is natural to ask for an upper bound for the difference H,(1)— H,(¢),
n > 1 forall t € [0,1].

Theorem 5. Let f: I C R — R be a convex mapping on the interval I and let
a,be I with a < b. Then we have the inequalities

(2.14) ﬁ/ﬂb/abf<w> day ... deg — Ha(t)
é(lt)ﬁ/alfu/;ﬂ«W)(ma;rb>dx1...d:z:n

S o (e [ T P o)

for allt € [0,1] and n > 1.
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Proof. By the convexity of f, we have that

1+ ...+ x, a+b T+ ...+ T,
f(til -0 - (2 )

n 2 n
T1+...+T\N[a+b T1+...+xp
> (=01 )= - )

(1 —=t)fy - 5 -

for all z1,...,2, € [a,b] and t € [0,1].
Now, the argument proceeds as above and we omit the details. O

Corollary 4. Under the assumptions as in Theorem 3 and provided M :=

sup |f'(z)] < oo, we have the inequality
z€Ja,b]

(2.15) 0< Hp(1) — Hu(t) <

In particular,

uniformly on [0, 1].

Corollary 5. Under the assumptions as in Theorem 3 and provided there exists
a constant K > 0 such that

|fi(@) = L)l < K|z —y| for all =,y € [a,],
we have the inequality

for allm > 1 and t € [0,1].

Now we establish an upper bound for the difference H,,(t) — H,,41(t), n > 1 which
is non-negative for all ¢ € [0,1] (cf. Theorem 2):
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Theorem 6. Let f: I C R — R be a convex function on the interval I and let

a,be I with a < b. Then the inequality

(217) 0 < Hu(t) — Hyyo(t)

t 1 boopb r1+... .+ a+b
< — | ... [ S e Ry
nJrl{(ba)"/a /a f+(t n +1-1) 2 )

X <x1a3b>dx1...dxn}

vy e [ I e

+(1—t)a;rb>]2dx1... dxn]

1
2

holds for all t € [0,1] and n > 1.

Proof. By the convexity of f, we have that

T1+ ...+ Tyt a+b (:El—i-...—l—xn a+b
DT Thntl o I R L L
f<t n+1 + 2 2 ) U\ n + 2 2 )
t T+ ...+ x, a+b
> n(n+1)f’+<t (-1 )[nxn+1—(x1+...+zn)]
for all z1,...,Zp41 € [a,b] and t € [0,1].

Taking an integral mean on [a, b]" !, we derive

0

N

Hn(t) - Hn-i-l(t)

t 1 b b T1+...+x a+b
< ——|— /... /<t7n 1—t ) dzy ... dz,
n—i—l[(b—a)”/a /af+ " + ( ) 5 )Trdn x

a+b 1 b b, T+ ...+ T, a+b
- | ... _ 1-—
5 (bfa)”/a /Qf+(t - +(1-1t) 5 )dxl dz, |,

and the second inequality in (2.17) is proved.
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Now, let us observe that

7(()—1@)" /;n/abf;(t—ler'ﬁ'Jrzn Jr(lft)a;Lb)

ﬁ/{;"/ﬂbﬂ%(thr(lt)a;b)

X<$1+---+$n a+b
n 2

< (ﬁ/@b.../j[ﬁ(walt)“;b)rdxl...dxn)

1 b b 1+ ...+x, a-+Db\2 3
X(WAA( o — B ) dl'ldmn) s

and thus the last inequality is also proved.

)dxl...dxn

1
2

O

Corollary 6. Under the assumptions as in Theorem 3, given that M :=

sup |f'(z)|] < oo, we have
z€la,b]

Mt(b—a)
(2.18) 0< Ho(t) — Hupr(t) < NN CE]

for allt € [0,1] and n > 1.

In particular,
lim [H,(t) — Hpy1(t)] =0

uniformly on [0, 1].

The following theorem also holds.

Theorem 7. Under the assumptions as in Theorem 3, we also have the bound

(2'19) Oan(t)anH(t)
< t(b—a) {(b_la)n/al"”/ab{fjr<tx1+.7.l.+:cnJr(lt)a;rb>

2v/3y/n(n +1)
ffL(a;b)rdxl... d:z:n]

=

for allt € [0,1] and n > 1.

Proof. The proof is similar to the one of Theorem 6 and we omit the details.
O
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Corollary 7. Under the assumptions as in Theorem 3, given that there exists a
K > 0 such that

|fi(2) = ()l < K|z —y| for all =,y € [a,b],
we have the inequality

£2(b — a)2K?

(2.20) 0 < Hn(t) — Hyya(t) < Tt 1)

for allt € [0,1] and n > 1.

Finally, note that, by a similar argument to that in the proof of Theorem 6, we
can give the following result which completes, in a sense, the estimate in Theorem 3.

Theorem 8. Under the above assumptions the inequality

(2.21) oan(t)—f(“;b>

< t2(\b/§\/av_”)t[(b—1a)” /;"/ab[f/+<tW+(1t)“;b>

() )

2

holds for all t € [0,1] and n > 1.

Corollary 8. Under the above assumptions, given that there exists a K > 0 such
that

[fi(@) = Fr ()l < K|z —y| forall 2,y € a,b],

we have the inequality

for allt € [0,1] and n > 1.
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3. APPLICATIONS TO SPECIAL MEANS

Let 0 <a<bandp € (—o0,0)U[1,00)\ {—1}. Let us define sequence of mappings

+. +byp
honlt) = = / / “””1 +(1—t)a2 )dwl...dxn,

wheren > 1, n € N, and ¢ € [0,1].
By virtue of the above results, we can establish the following properties:
(i) hp,n(t) are convex and monotonic nondecreasing on [0, 1];
(i) hpn(t) = hpnt1(t) for all n > 1 and t € [0, 1];

(iii) the inequalities

[A(a, b)]” < hy (
b—a (b — g)n+t / / xl = (1*t)93n+1>pd:171... dzp41

hpn(t) bia / / it —HC")d . day,

(1—t
b / / x *- +xn> dzy ... dz,
—a)”

hold for all n > 1 and ¢ € [0, 1], where A(a,b) := 252
(iv) If p > 1, then the inequalities

and

0 < () = Ao, < L
and
LL’1+ +$n
b_a / / ) doy ... dz, — hy(t)
o (L=0)(b—a)pb?~ !
2\/_\/_

hold for all n > 1 and ¢ € [0, 1].
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(v) If p > 1, the inequalities

t(1 —t)pbP~t
0 < thpn(1) + (L= t)hpn(0) — hpn(t) < VN

and

t(b — a)pbP~—1
0 < hpont) — hpsa (1) < 2L DP

T 2V3yn(n+1)

hold for all n > 1 and ¢ € [0, 1].
(vi) If p > 2, then the inequalities

0 < hyn(t) —[Ala,b)]P < t2(b — a)?p(p — 1)bP—2

12n
and
t2(b—a)*p(p — 1)bP~2
< — <
0 A hP’ﬂ(t) hPﬂH‘l(t) X 12n(n ¥ 1)
and
0 < thpn(1) + (1 =) hpn(0) — hpp(?)
o =t —a)?plp— DP—2
= 12n
and

hold for all n > 1 and ¢ € [0, 1].

Acknowledgement. The author would like to thank the anonymous referee for
many valuable comments and remarks that have been incorporated in the final ver-
sion of the paper.

References

[1] G. Allasia, C. Giordano, J. Pecarié: Hadamard-type inequalities for (2r)-convex func-
tions with applications. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 138 (1999),
187-200.

[2] H. Alzer: A note on Hadamard’s inequalities. C. R. Math. Rep. Acad. Sci. Canada 11
(1989), 255-258.

[3] H. Alzer: On an integral inequality. Anal. Numér. Théor. Approx. 18 (1989), 101-103.

137



[4]

[10]
(11]
[12]
[13]
[14]
[15]
[16]
[17]
18]
19]
[20]

21]

22]
23]
24]
[25]
[26]

27]

138

A. G. Azpeitia: Convex functions and the Hadamard inequality. Rev. Colombiana Mat.
28 (1994), 7-12.

D. Barbu, S.S. Dragomir and C. Buge: A probabilistic argument for the convergence of
some sequences associated to Hadamard’s inequality. Studia Univ. Babeg-Bolyai Math.
38 (1993), 29-33.

C. Busge, S.S. Dragomir and D. Barbu: The convergence of some sequences connected
to Hadamard’s inequality. Demostratio Math. 29 (1996), 53-59.

S.S. Dragomir: A mapping in connection to Hadamard’s inequalities. Anz. Osterreich.
Akad. Wiss. Math.-Natur. K1. 728 (1991), 17-20.

S.S. Dragomir: A refinement of Hadamard’s inequality for isotonic linear functionals.
Tamkang J. Math. 24 (1993), 101-106.

S. S. Dragomir: On Hadamard’s inequalities for convex functions. Mat. Balkanica (N. S.)
6 (1992), 215-222.

S. S. Dragomir: On Hadamard’s inequality for the convex mappings defined on a ball in
the space and applications. Math. Inequal. Appl. & (2000), 177-187.

S.S. Dragomir: On Hadamard’s inequality on a disk. JIPAM. J. Inequal. Pure Appl.
Math. 7 (2000), http://jipam.vu.edu.au/. Electronic.

S. S. Dragomir: Some integral inequalities for differentiable convex functions. Makedon.
Akad. Nauk Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 18 (1992), 13-17.

S. S. Dragomir: Some remarks on Hadamard’s inequalities for convex functions. Extracta
Math. 9 (1994), 88-94.

S.S. Dragomir: Two mappings in connection to Hadamard’s inequalities. J. Math. Anal.
Appl. 167 (1992), 49-56.

S.S. Dragomir, R. P. Agarwal: Two new mappings associated with Hadamard’s inequal-
ities for convex functions. Appl. Math. Lett. 11 (1998), 33-38.

S.S. Dragomir, C. Buse: Refinements of Hadamard’s inequality for multiple integrals.
Utilitas Math. 47 (1995), 193-198.

S.S. Dragomir, Y.J. Cho and S.S. Kim: Inequalities of Hadamard’s type for Lip-
schitzian mappings and their applications. J. Math. Anal. Appl. 245 (2000), 489-501.
S.S. Dragomir, S. Fitzpatrick: Hadamard inequality for s-convex functions in the first
sense and applications. Demonstratio Math. 31 (1998), 633-642.

S.S. Dragomir, S. Fitzpatrick: The Hadamard’s inequality for s-convex functions in the
second sense. Demonstratio Math. 32 (1999), 687—-696.

S.S. Dragomir, N. M. Ionescu: On some inequalities for convex-dominated functions.
Anal. Numér. Théor. Approx. 19 (1990), 21-27.

S.S. Dragomir, D.S. MiloSevié¢ and J. Sdndor: On some refinements of Hadamard’s
inequalities and applications. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 4 (1993),
3-10.

S. S. Dragomir, B. Mond: On Hadamard’s inequality for a class of functions of Godunova
and Levin. Indian J. Math. 39 (1997), 1-9.

S.S. Dragomir, C.E. M. Pearce: Quasi-convex functions and Hadamard’s inequality.
Bull. Austral. Math. Soc. 57 (1998), 377-385.

S.S. Dragomir, C. E. M. Pearce, and J. E. Pecari¢: On Jessen’s related inequalities for
isotonic sublinear functionals. Acta Sci. Math. 61 (1995), 373-382.

S.S. Dragomir, J. E. Pecarié, and L. E. Persson: Some inequalities of Hadamard type.
Soochow J. Math. 21 (1995), 335-341.

S.S. Dragomir, J. E. Pecarié, and J. Sandor: A note on the Jensen-Hadamard inequal-
ity. Anal. Numér. Théor. Approx. 19 (1990), 29-34.

S.S. Dragomir, G. H. Toader: Some inequalities for m-convex functions. Studia Univ.
Babes-Bolyai Math. 38 (1993), 21-28.



28]
29]
(30]

[31]

32]
33]
34]
35]
36]
37]
38]
30]
140}
ja1]
j42]
43]
ja4]
j45]
6]
j47]
48]
9]
50]

[51]

A.M. Fink: A best possible Hadamard inequality. Math. Inequal. Appl. 1 (1998),
223-230.

A. M. Fink: Toward a theory of best possible inequalities. Nieuw Arch. Wisk. 12 (1994),
19-29.

A. M. Fink: Two inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 6 (1995),
48-49.

B. Gavrea: On Hadamard’s inequality for the convex mappings defined on a con-
vex domain in the space. JIPAM. J. Inequal. Pure Appl. Math. 1 (2000), Article 9,
http://jipam.vu.edu.au/. Electronic.

P.M. Gill, C. E. M. Pearce and J. Pecari¢: Hadamard’s inequality for r-convex func-
tions. J. Math. Anal. Appl. 215 (1997), 461-470.

G. H. Hardy, J. E. Littlewood, and G. Polya: Inequalities. 2nd ed. Cambridge University
Press, 1952.

K.-C. Lee, K.-L. T'seng: On weighted generalization of Hadamard’s inequality for g func-
tions. Tamsui Oxf. J. Math. Sci. 16 (2000), 91-104.

A. Lupas: The Jensen-Hadamard inequality for convex functions of higher order. Octo-
gon Math. Mag. 5 (1997), 8-9.

A. Lupas: A generalization of Hadamard’s inequality for convex functions. Univ.
Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 115-121.

D. M. Maksimovié: A short proof of generalized Hadamard’s inequalities. Univ.
Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 63/—677 (1979), 126-128.

D. S. Mitrinovié, I. Lackovié: Hermite and convexity. Aequationes Math. 28 (1985),
229-232.

D. S. Mitrinovié, J. E. Pec¢arié, and A. M. Fink: Classical and New Inequalities in Analy-
sis. Kluwer Academic Publishers, Dordrecht, 1993.

E. Neuman: Inequalities involving generalized symmetric means. J. Math. Anal. Appl.
120 (1986), 315-320.

E. Neuman, J. E. Pecarié: Inequalities involving multivariate convex functions. J. Math.
Anal. Appl. 137 (1989), 514-549.

E. Neuman: Inequalities involving multivariate convex functions. II. Proc. Amer. Math.
Soc. 109 (1990), 965-974.

C. P. Niculescu: A note on the dual Hermite-Hadamard inequality. The Math. Gazette
(July 2000).

C. P. Niculescu: Convexity according to the geometric mean. Math. Inequal. Appl. &
(2000), 155-167.

C.E. M. Pearce, J. Pecarié, and V. Simié: Stolarsky means and Hadamard’s inequality.
J. Math. Anal. Appl. 220 (1998), 99-109.

C.E. M. Pearce, A. M. Rubinov: P-functions, quasi-convex functions and Hadamard-
type inequalities. J. Math. Anal. Appl. 240 (1999), 92-104.

J. E. Pecari¢: Remarks on two interpolations of Hadamard’s inequalities. Makedon.
Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 18 (1992), 9-12.

J. Pecarié, S. S. Dragomir: A generalization of Hadamard’s inequality for isotonic linear
functionals. Rad. Mat. 7 (1991), 103-107.

J. Pecari¢, F. Proschan, and Y.L. Tong: Convex Functions, Partial Orderings and
Statistical Applications. Academic Press, Boston, 1992.

J. Sdndor: An application of the Jensen-Hadamard inequality. Nieuw Arch. Wisk. 8
(1990), 63-66.

J. Sandor: On the Jensen-Hadamard inequality. Studia Univ. Babes-Bolyai, Math. 36
(1991), 9-15.

139



[62] P.M. Vasié, 1. B. Lackovié, and D.M. Maksimovié: Note on convex functions. IV.
On Hadamard’s inequality for weighted arithmetic means. Univ. Beograd. Publ. Elek-
trotehn. Fak. Ser. Mat. Fiz. 678-715 (1980), 199-205.

[63] G.S Yang, M. C. Hong: A note on Hadamard’s inequality. Tamkang J. Math. 28 (1997),
33-37.

[54] G.S. Yang, K. L. Tseng: On certain integral inequalities related to Hermite-Hadamard
inequalities. J. Math. Anal. Appl. 239 (1999), 180-187.

Author’s address: S.S. Dragomir, School of Computer Science & Mathematics, Vic-
toria University, P.O. Box 14428, Melbourne City, MC 8001, Australia, e-mail: sever
@matilda.vu.edu.au.

140



		webmaster@dml.cz
	2020-07-02T10:57:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




