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ON SOLUTION TO AN OPTIMAL SHAPE DESIGN PROBLEM 

IN 3-DIMENSIONAL LINEAR MAGNETOSTATICS* 

DALIBOR LUKÁŠ, Ostrava 

(Received September 9, 2002, in revised version January 15, 2004) 

Abstract. In this paper we present theoretical, computational, and practical aspects con
cerning 3-dimensional shape optimization governed by linear magnetostatics. The state 
solution is approximated by the finite element method using Nedelec elements on tetra-
hedra. Concerning optimization, the shape controls the interface between the air and the 
ferromagnetic parts while the whole domain is fixed. We prove the existence of an optimal 
shape. Then we state a finite element approximation to the optimization problem and prove 
the convergence of the approximated solutions. In the end, we solve the problem for the 
optimal shape of an electromagnet that arises in the research on magnetooptic effects and 
that was manufactured afterwards. 
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1. INTRODUCTION 

In the paper we present 3-dimensional (3d) shape optimization of an electromagnet 

arising in the research on magnetooptic effects. A useful framework for the existence 

and convergence proofs is given by an abstract theory in [11] together with applica

tions mostly in mechanics. Our theory differs mainly by the fact that the optimized 

shape controls the interface between the air and the ferromagnetic parts, rather than 

the whole domain boundary, as it is usual in mechanics. The domain is fixed in our 

* This research has been supported by the Austrian Science Fund FWF within the SFB 
"Numerical and Symbolic Scientific Computing" under grant SFB F013, by the Czech 
Ministry of Education under research project CEZ: J17/98:272400019, and by the Grant 
Agency of the Czech Republic under grant 105/99/1698. 
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case. Variational formulations of the magnetostatic problem and their finite element 
discretizations are given in [2], [14], [30] using the space H(curl) that was well de
scribed in [7], [22]. Some shape optimization problems governed by 2-dimensional 
(2d) nonlinear magnetostatics are treated in [23], [29]. 

The paper is organized as follows. In Section 2 we introduce a weak formulation of 
linear magnetostatics in H 0 (curl) / K e r 0 (curl) and prove the existence and unique
ness of the solution. Further, we regularize the bilinear form due to its nonellipticity 
and prove the convergence of the regularized solutions. Finally, we discretize the 
problem by the finite element method using the first-order Nedelec tetrahedral ele
ments and prove the convergence. In Section 3 we introduce a shape optimization 
problem. We prove the compactness of the set of admissible shapes and the continu
ity of the cost functional. We regularize the bilinear form, employ the finite element 
discretization, and prove the convergence of the optimized discretized shapes. Fi
nally, we make notes on the first-order sensitivity analysis. In Section 4 the theory 
is applied to optimal shape design of an electromagnet. We give a 3d optimized 
shape as well as a 2d one which resulted from a dimensionally reduced formulation. 
According to the 2d optimized shape, pole heads of the electromagnet were manu
factured and we discuss the improvements in terms of physical measurements of the 
magnetic field before and after optimization. 

2 . THREE-DIMENSIONAL LINEAR MAGNETOSTATICS 

Assumption 1. In all what follows let 11 C H3 be a nonempty bounded convex 

domain with a polyhedral boundary. 

2.1. Linear magnetostatics 
Let B and J denote the magnetic field and the current density, respectively. We 

introduce the magnetic vector potential u by 

curl(u) = B . 

We consider the following magnetostatic boundary value problem: 

{ curlf — curl(u)) = J in 1) 

n x u = 0 on 9(] 

We suppose that only the air and the ferromagnetics occupy Q, i.e., there exists a 
decomposition of Q into subdomains QQ and Qi such that 

ll = fioUfii, -10 fl Q\ = 0, and meas(no),nieas(!ffci) / 0, 
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where meas stands for the Lebesgue measure and we suppose that there exist con

stants //o, /ii such that 

(1) 0 < LA0 < Mi, A*|n0 = Mo, and fi\Ql = lxi. 

2.2. The space H(curl) 

We will extend the differential operator curl to a subspace of [L2(H)]3. A function 
z G [L2(Q)]3 is called the generalized rotation of u G [L2(H)]3 if 

VvG[C0°°(Q)]3: f u c u r l ( v ) d x = / z - v d x 
JQ Jo. 

and we denote the generalized rotation by curl(u) := z. We define the space 

H(curl;ft) := {u G [L2(fl)]3 | 3z G [L2(ft)}3: z = curl(u)} 

which together with the scalar product 

(u,v)curi,r2 := / u -vdx - i - / curl(u) • curl(v) dx 
JQ Jn 

forms a Hilbert space. We introduce the induced norm and seminorm by 

||u||curi,c2 := y (u, u)curi,c2 and |u|curl,f2 :=- J / || curl(u)| |2 dx, 

where || • || denotes the Euclidean norm. 
Due to [7, p. 34], the operator n x U\QQ can be extended by continuity onto the 

space H(curl;ffc). Thus, the following spaces are well-defined: 

H0(curl ; ft) := {u G H(curl; ft) | n x u = 0 on 8ft}, 

Ker0(curl;ft) := {u G H0(curl;ft) | curl(u) = 0 in ft}. 

The quotient space H0(curl ; I^)/Ker0(curl ; ft) will be used as the test space for a 

weak formulation of (S). By [12, p. 94-95] it is isomorphically isometric to 

H0)_L(curl;ft) := I u G H0(curl;ft) | VpGHo(ft): / u • grad(p) dx = o l . 

Moreover, we have the orthogonal decomposition 

H0(curl ; ft) = H 0 j_(curl; ft) 0 Ker 0 (cur l ; ft). 

The following densities hold in the norm || • ||Curi,ft-

(2) H(curl; 0) = [C°°(ft)}3 and H0(curl ; ft) = [C$°(ft)]3. 

Finally, we will make use of a Friedrichs'-like inequality: 
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Lemma 1. There exists a positive constant C\ such that 

Vv E H0,j_(curl;ft): ||v||curl,c_ ^ Ci|v|curl>Q. 

P r o o f . See [12, p. 96]. D 

2.3. Weak formulation 
We introduce a bilinear form a and a linear functional / , both related to (S), by 

a(v,u) := / —curl(v) • curl(u) dx + / —curl(v) • curl(u) dx, 
JQ0 MO JQ1 MI 

/ (v ) := / J • v dx, u, v G H(curl; fi)', 
Jn 

where the current density J € [Z/2(0)]3 satisfies the compatibility condition 

(3) V w <E Ker0(curl; fi): / (w) = 0, i.e., Vp G H%(il): / J • grad(p) dx = 0. 
Jn 

Then, the weak formulation of (S) reads as follows: 

f Find u G H 0 ± ( c u r l ; n ) : 
(W) { ' 

\ a ( v , u ) = / (v) Vv€H 0 > ±(curl;n) . 

Lemma 2. There exists a unique solution u £ H0,j_(curl; Q) to (W). 

P r o o f . It is easy to see that the space Ho,j_(curl; _1) equipped with the scalar 
product (-,*)curi,n forms a Hilbert space and that the linear functional / and the 
bilinear form a are bounded. The ellipticity of a on H0,j_(curl; Q.) follows from 

(4) a(v, v) £ — / || curl(v)||2 dx = -^|v|2
u r l ,Q ^ - ^ | | v | | 2

u r l j Q , 
Mi JQ Mi Mi^i 

where we have used (1) and Lemma 1. The statement now follows directly from the 

Lax-Milgram lemma, cf. [14, p. 14]. • 

2.4. Regularization of the bilinear form 
The problem (W) is equivalent to a mixed variational formulation. We will rather 

introduce a non-mixed formulation in Ho (curl; ft) while we regularize the nonellip-
ticity of a. The solutions will then tend towards the solution of (W). 
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Let e > 0 be a regularization parameter by which we regularize a: 

a e ( v , u ) : = o ( v , u ) + e / v - u d x , u , v G H ( c u r l ; f i ) . 
JQ 

The regularized weak formulation then reads 

(W£) { Find ue G H0(curl;ft): 

ae(v, ue) = / (v ) Vv G H0(curl; ft), 

where we still assume that (3) holds. 

For each e > 0 we can easily prove the existence of a unique solution u e to (We). 

The following lemma gives a convergence property: 

Lemma 3. The following convergence holds: 

ue —> u in H0(curl; ft) as e —> 0+, 

where ue are the solutions to (W£) and u is the solution to (W). 

P r o o f . See [27, Lemma 2.1]. D 

2.5. Finite element approximation 
We denote by Th := {Kei \ i = 1 , . . . ,nn} a face-to-face discretization of ft into 

tetrahedra. Let he denote the length of the shortest edge of a tetrahedron Ke. We 
denote by h := min he the discretization parameter. Clearly, there exists h > 0 

K e e T h ^ 

being the maximal size in the geometry such that h ^ h. 

2.5.1. Discretization of the test space using Nedelec elements 

X\ "X\ 

Figuгe 1. A tгansfoгmation from the гefeгence Nédélec tetгahedгon. 
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The linear Nedelec element is a triple E := (A" e ,P e ,E e), where A'e C (R3 is a 

tetrahedral domain, 

P e :={p(x) : = a e x x + b e | a e , b e E K3, x := (xux2,x3) e K^}, 

and Ee := {<7e,..., r/g}, where the degree of freedom is defined by 

<T?(V):= f v t j d s , * = 1 6, 

where c\ stand for oriented edges, see Fig. 1, and t\ are the related unit tangential 
vectors. By [22, Th. 1], this element is H(curl;Ke)-conforming. 

By £f, • •., £1; G P e we denote the shape functions related to the element K€. In a 
standard way we introduce the global shape functions £h,..., £h: Q, i-> IR3, where n 

is the number of edges (degrees of freedom) in the discretization Th. We introduce 
a conforming approximation of Ho (curl; Q) by 

H0(curl; Q)h := j V = ] T vffi | vh € R | . 

It can be easily seen that H0(curl;n) / l C H0(curl;0), see [17], 
The linear transformation 7£e(x) := R e • x + re in Fig. 1 is determined by 

R e := 

where xe := (x\ x, x\ 2, x\ 3 ) , i = 1 , . . . , 4, are the corners of the tetrahedron Ke which 

correspond to the corners of Kr: 

i f := (0,0,0), x | : = (1,0,0), x | : = (0,1,0), x£ := (0,0,1). 

The following Piola's transformation holds, see [26, Form. 3.17]: 

(5) curlx(v(x)) = ^ 7 y R e • curlx(v(x)), 

where v(x) and v(x) respectively stand for functions defined over Ke and Kr. The 

reference shape functions are: 

X 2 , l - * ï , l ж 3 , l 
- ж l , l x 4 , l -*í,Л ÍXЬ 

x 2 , 2 "" Xî,2 XЪ,2 — ^ 1 , 2 x 4 , 2 ~Xl,2 1 , r e : = 1 Xl,2 
X 2 , 3 - X l , 3 ^ 3 , 3 — X l , 3 X 4 , 3 "~ x i , з / v^í.з 

(6) £ [ ( x ) : = ( 0 , - l , l ) x ( x ) +(1,0 ,0) , £ ( x ) 

£ ( x ) : = ( - l , l , 0 ) x (x) +(0,0 ,1) , fj(x) 

£(x):=(l,0,0)x(x), tfSW 

where x := (xT,X2,X3) £ A r and Kr is the reference tetrahedron, see Fig. 1. 
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Now, we will state the element approximation property. To this end we introduce 
an interpolation operator 7re : [C°°(A'e)]3 i-> P e such that 

<Tf(7TC(v))=<7?(v), 1 = 1 , . . . , 6, 

holds for any v € [C°°(A'e)]3. Further, we introduce a global interpolation operator 

TT/I : [C°°(n)]3 i-> H(curl; ft) such that for any v G [C°°(ft)]3 we have 

*h(v)\K«:=*eMK«), KeeTh. 

The following definition and lemma are due to [22, p. 327]. 

Definition 1. A family T :— {Th | 0 < / i ^ / i } o f decompositions (discretiza

tions) of ft into tetrahedra is said to be regular if there exists a constant C2 > 0 such 

that for any Th G T and any Ke G Th we have 

he 

(7) 7 ^ C * ' 

where ge denotes the radius of the largest sphere inscribed in A'e. 

Lemma 4. Let T be a regular family of decompositions into tetrahedra in the 

sense of Definition 1. Then there exists a constant C3 > 0 such that for any Th G T 

we have 

VvG [C^f t ) ] 3 : | |v-7r f c(v) | | c u r i , n <C3A|v| [ i f2 ( n ) ]3. 

P r o o f . The assertion is a direct consequence of [22, Th. 2]. • 

Lemma 5. Let v G [Co°(ft)]3 and let T be a regular family of decompositions. 
Then there exists a positive constant C4 = C4(v) such that for any Th G T the 
following holds: 

VATe eThV* = TV (it) G ~K~e: | |curlx(7r e(v |^)) | | ^ C4. 

P r o o f . Let v G [Co°(ft)]3 be an arbitrary function, Th a regular discretization 
of ft, and Ke G Th an element domain. The rotations of the reference shape func
tions, see (6), are constant over ATr, e.g., curlx(£[(x)) = (0 , -2 ,2) . Let us denote 
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o\ := o\(v\-^) for i = 1,2,..., 6. Now, an application of the Stokes theorem yields 

c u r l x K ( v | ^ ( x ) ) ) = ^ E ^ ( v | ^ ) R - c u r l x ^ ( x ) ) = ^ | ^ 

/ K l - < 1 ) ( ^ 2 - ^ 3 + ^ I ) + ( < l - < l ) H - ^ + ^ ) + ( < l - ^ , i ) K - a | + a | ) ' 

X I (*2,2 - *!,2)(<72 ~ <>3 +<>%) + 0*3,2 ~ «1 ,2 )H ~ °l+°l) + (x%,2 ~ x\,2){<>\ ~ °2+<>%) 
\ (x | i 3 - xf >3)(<T| - erf + < T | ) + (x | i 3 - xf ) 3 ) (a | - erf + a | ) + (x|>3 - xf j3)(af - a\ +a%), 

/ / ^ c u r l x H ^ x J J . n K x J d S ' 

\ / curlx(v|^(x))-n|(x)dS> 
-'4 

where / ! , / ! , / | denote faces that are opposite to the nodes x_, xf,, x4 , respectively, 
and n_, n_, n | are the outward normal vectors. From the regularity condition (7) it 
is obvious that meas(/ire) ^ |Tt.(,oe)3 ^ |ir(/ie/C2)3- By estimating the integrals we 
arrive at 

II i / e( i ( WMI / 3maxx eQ||curlx(v(x)) | |(C2)3 

| |curlx(7re(v|^r(x)))| | ^ -!—^- ---—--- =: C4, 

where we have considered ||Re | | := max \x\j — xf -|. D 

2.5.2. Discretized problem 

Let QQ and ftf" approximate the subdomains fto and Hi so that 

VK€ ETh: Ke C $1% or Ke C ft? 

and let /-^(x) denote a discretization of the permeability function /x(x). The regu
larized bilinear form a£ is approximated as follows: 

a^(v, u) := / —curl(v) • curl(u) dx 
Jn_ Mo 

-f / —curl(v) • curl(u) dx -f e I v • udx , 
Jnf Mi JQ 

where v, u G H0(curl ; ft). The discretization of (We) reads as follows: 

( F i n d u j GH 0(curl ; f t ) / l : 
(Wh) I 

\ak(vh,uh) = f(vh) Vv^ e H 0 ( cu r l ; f t ) \ 

The existence of a unique solution can be proven similarly as in Lemma 2. 
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2.5.3. T h e convergence p roper ty 

Lemma 6. Let Assumption 1 hold and let us consider a regular family T of 

decompositions Th. Assume that 

(8) lA*h(x) - Mx)l -> 0 a.e. in n as ft -> 0+. 

Then for each e > 0 and ft > 0 we have 

uh -> ue in H 0 (curl; Q) as ft -•> 0+. 

P r o o f . Let e > 0 be arbitrary. The proof is based on the following first Strang's 

lemma, cf. [3]: There exists C(e) > 0 such that for each vh £ Ho (curl; Q,)h we have 

(9) | | u £ -u f c | | c u r i , f i 

<rf>./n.,fc vfcn i M v \ " h - v h ) - Q f c ( v \ « f c - v f c ) n 
< C(£)|||u£ - v ||curl,n + K - v ^ l U w , /• 

Now, the idea of the proof is like in [14, Th. 4.16], originally in [5]. Let r > 0 be 

arbitrary. By virtue of (2) there exists u£ e [Co°(-^)]3 such that 

(10) ||Ue-Ue||cupl,ll < 4^7") " 

In the estimate (9) we choose vh := ^^(ue) . 

The first term on the right-hand side of (9) can be estimated as follows: 

(11) 11lie- - V^Hcurl.Q = | | u e - U£ + U£ - Vfc||Curl,n 

^ 4 ~ ( ~ + " 5 e ~ 7 r / l(S^)ll c u r 1^ ^ ^ ~ ~ ) + C 3 / i l 5 e l [^ 2 (")] 3 ' 

where we have used the triangle inequality, (10), and Lemma 4. The numerator of 

the second term on the right-hand side of (9) is 

(12) | a £ (v \u f c - v
fc) - a f c (v\u f c - vfc)| 

= / curl(ufc - v f c)f- - -^-)curl(v f c)dx 
In V MfcI 

< Цufc - v f c | | c u r I t П d f\\ - i - | 2 | | c u r l ( v * ) | | - d x , 

where the Holder inequality has been used. Now, by Lemma 5 there exists C4 > 0 

such that for any ft, 0 < ft ^ ft, and for each x G Ke c ft we have 

1 
l/i(x) /x\x) 

| |curl(v f c(x))| | <(—- -)C4(Ue) 
\LLct Ил ' ЏO Џ\ 
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where we have also used (1). Then due to (8) and the Lebesgue dominated conver

gence theorem, cf. [21], 

(13) ( - - \ '*||curl(v'г)||2 dx -> 0 as h -> 0 + . 
Jӣ џ џh 

Finally, dividing the inequality (12) by ||u£ — v^Hcm-i^ and combining that with (9), 

(11), and (13) completes the proof. • 

3. OPTIMAL SHAPE DESIGN 

3.1. Admissible shapes 

Let a stand for a shape which is a continuous function over a rectangle w C i 2 . We 

assume that there exists a common Lipschitz constant C5 > 0 and box constraints 

a i , a u G R. Then the set of admissible shapes is 

W:= {aeC(uJ) I Vx,y G cJ: |a(x) - a(y)\ ^ C5||x - y|| and a\ ^ a(x) ^ a u } , 

equipped with the uniform convergence a n -» a in ZY, i.e., an =3 a as n --> 00. 

Lemma 7. i>/ is compact. 

P r o o f . It follows from Theorem of Ascoli and Arzela, cf. [11, p. 2]. • 

In Section 4 we will deal with an application where in the end we will be looking 

for smooth shapes, e.g., Bezier curves or patches, cf. [6], rather than for continuous 

ones. To this end, being inspired by [4], we introduce a parameterization, i.e., a 

nonempty compact set of design parameters T C (Rnr, ny € N, and a continuous 

nonsurjective mapping 

(14) F: T^U. 

Finally, without loss of generality we assume that the shape a controls the following 

decomposition of Q into the subdomains Q,0(a) and ft\(a): 

(15) fi = t( lo(a)un1(a) , Q0(a) n Hi (a) = 0 

such that graph(a) C dft0(a) ndtti(a) andmeas(^o(«)),meas(Oi(a)) > 0, 

an example of which is depicted in Fig. 2. Recall that the graph is defined by 

graph(a) := {(xi,x2,y) G IR3 | x := (xi,x2) G uJ and y = a(x)}. 
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Figure 2. Decomposition of Q. 

3.2. Multistate problem 

Only the piecewise constant permeability /x depends by (15) on a, thus, 

a a (v , u) := / —curl(v) • curl(u) dx-F / —curl(v) • curl(u) dx. 
J«0(a) VO Jni(o) Ml 

Moreover, we consider nv state problems that only differ by the current J v , 

T ( v ) : = f - T - v d x , t/ = l , . . . , n v , 
Jn 

so that (3) still holds. For any a G U and v £ 1 , . . . ,n v we consider the following 

state problem, which is uniquely solvable: 

(W(e*)) 
ҐFind u"(a) Є H0,x(curl;П): 

\a a (v,u» ( « ) ) = / » VvєH 0 ,x( (curl; ft) 

Lemma 8. For each v the mapping U V : ! / H H 0 ,±(curl;ft) is continuous. 

P r o o f . Let v = 1,... , n v be arbitrary and let {a n } c U be a sequence such 

that a n =4 a, where a e U. For simplicity, we set u := uv(a) and u n := uv(an). 

We observe that (4) holds independently of a. Thus, by (W v (a n )) and (W v(a)), 

(iб) llUn - uHcurl,í2 < / - lC?a 0 n ( l l „ - U, Un - u) 

= fjnCf(fv(un - u) - a a „(u n - u, u)) 

= /xiCi(oa(un - u , u ) - a a n ( u n - u , u ) ) . 

Further, we denote the characteristic functions of the sets Qo(a) and fti(<*) 

by xo( x , a ) and Xi(x , a) , respectively. Since a n 14 a, we have 

(17) xo(x,an) -> Xo(x,a) and x i ( x , a n ) -> Xi(x,a) a.e. in ft as n -> oo. 
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Now, using the Cauchy-Schwarz inequality in [L2(!vfc)]3 yields 

(18) | a a (u n - u , u ) - a t t n ( u n - u , u ) | 

= — {(Xo(x,a) - xo(x,an))curl(u)} . curl(un - u)dx 
Mo Jfi 

+ — / {(Xi(x,a) -x i (x^n) )cur l (u ) } curl(un - u ) d x 
Mi JQ 

< —(ll(Xo(x,a) -xo(x,an))curl(u) | | [ L2 ( Q ) ]3 
Mo 
+ ll(Xi(x,a) - Xi(x,an))curl(u)||[Zy2(c2)]3) • ||curl(un - u)|| [L2 (Q)]3. 

From (17), for i = 0,1, |xi(x;a) - x2(x;an) |2 | |curl(u(x)) | |2 -» 0 a.e. :ft as n -r oo. 

Now, by the Lebesgue dominated convergence theorem, cf. [21, p . 26], the right-hand 

side of (18) tends to zero. Together with (16) this completes the proof. • 

3.3. Shape optimization problem 
Let X: U x [H0(curl;fi)]nv 4 i be a continuous functional. Using (Wv(a)), 

we define the cost functional J: U i-> R by J (a) := X(a, u * ( a ) , . . . , u n v (a)) . The 
continuous optimization problem is then formulated as follows: 

f Find a* eU: 
(P) { 

\j(a*) ^J(a) VaeZY. 

Theorem 1. There exists a* eU which is a solution to (P). 

P r o o f . By Lemma 7, U is a compact subset of the normed linear space C(cJ). 
Using the continuity of X and Lemma 8 we obtain the continuity of J on U. Now 
the assertion follows from a classical theorem, cf. [11, Th. 1.3]. • 

Moreover, we use (14) to define the cost functional J: T i-> R by J(p) := 

J(F(p)). Then, by the compactness of T, the continuity of F on T, and Theo

rem 1, there exists a solution to the finite-dimensional optimization problem 

fFind p* G T : 
(P) { „ F _ 

\J(P*XJ(P) VpeT. 

3.4. Regularizat ion of the bilinear form 
Similarly to Section 2.4, the regularized weak formulation reads as follows: 

fFind u"(a) e H 0 (curl; ft): 
(W£(a)) { 

\ a e f a ( v , u j ( a ) ) = / " ( v ) V v € H o ( c u r l ; n ) , 
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where a,r)tt(v,u) := a a (v ,u ) + e fQ v • u d x . The corresponding shape optimization 

problem reads 

f Find a€* eU: 
(Pe) { 

{Je((*e*)<Je(a) VaEW, 

where Je(a) := T(a, u* (a ) , . . . , u™v(a)). The existence of an optimal solution to (P£) 

can be proven as in Theorem 1. 

Theorem 2. Let {en}n°:=1 C U be a sequence of positive regularization param

eters such that en -> 0+ as n -> oo, and let aE* be the corresponding solutions to 

(P£n). Then there exist a subsequence {enk }<jfL1 C {en}n°=1 and a shape a* eU such 

that 

aE * —> a* in U as k —•> oo 

holds and, moreover, a* is a solution to (P). 

P r o o f . Here we make use of Lemma 3, see [11] or [17, p. 73]. • 

3.5. Finite element approximation 
Let h > 0 be a discretization parameter as in Section 2.5. Referring to Fig. 3 we 

will introduce a finite-dimensional approximation of U. Let Th := {UJH, ... ,u>h
h }, 

where nh G N, be a triangulation of a rectangular domain LJ. Let Px(Th) denote the 

space of continuous functions that are linear over each uh. Then the discretized set 

of admissible shapes is 

Uh:={ahePl(Th)\V*,yeui: \ah(x) - ah(y)\ ^ C5||x - y|| and 

ax ^ ah(*x) ^ a u } . 

The set Uh is clearly finite-dimensional and closed, and thus, compact. Let 7rh:U*-> 
Pl(Th) interpolate shapes at the nodes of Th. Then, as in [1], 

(19) Va e U: nh(a) =4 a as h -> 0+. 

Again, given a discretized shape ah, we consider the decomposition of O into 
Qo(a/l) and fti(ah), an example of which is depicted in Fig. 3. We provide a dis
cretization Th(ah) := {Kei (ah),..., K€nn (ah)} of H such that 

VKei(ah) G Th(ah): Kei(ah) C n0(a
h) or Kei(ah) C -li(a / l). 
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U%(ah) 

f'X\ txi 
Figure 3. Decomposition of Q . 

Assumpt ion 2. We assume that for any h > 0 fixed (h ^ h) the connectiv
ity of the discretization grid Th(ah) is independent of ah, we further assume that 
the corners x ^ a * 1 ) , . . . ,yLe^(ah) of Kei(ah) form a tetrahedron and they depend 
continuously on ah. 

The regularized and discretized multistate problem is 

u u [ Find \ivMoLh) G H0(curl; ft; a / l) / l: 
(W^fa'1)) < 

e \ a C i a f c (v f c ,u^(a f c ) ) = /v(v l 1) V v ^ H o ( c u r l ; f l ; a Y . 

The existence of a unique solution to (Wv'h(ah)) is easy to prove. 

Lemma 9. For each v = l , . . . , n v , £ > 0 and h > 0 (h ^ h) the mapping uv,h: 
Uh i-> Ho (curl; fl) is continuous. 

P r o o f . Now we cannot use the same technique as in the proof of Lemma 8, 
since the settings (Wv'h(ah)) differ from ah G Uh. Therefore, the estimate (16) 
cannot be established. Instead, we have to exploit the algebraic structure of the 
mapping u*>h. The proof is given in [17, p . 77]. D 

Lemma 10. Let e > 0, {/in}£Li C R, 0 < hn < h, be such that hn —> 0+ as 
n —> oo, and let a G U, {a*1"}^ C W, ahn G Wh», be such that ahn -^ a inU as 
n —> oo. Then for each ?; — 1 , . . . , riv we have 

u2'*"(a*") -+ uv(a) in H0(curl;ft) as n -> oo, 

where u^»(a f c " ) is the solution to (Wv>hn(ahn)) and uv(a) solves (Wv(a)). 
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P r o o f . It is enough to prove that the assumption (8) is fulfilled and the rest 
follows from Lemma 6. We specify Lt(x) = Lta(-<) and fihn(x) = u.ah1t (x), where 

[Li0, x E fio(a), 
Ma(x) := < a G ^ . 

[Lii, x e f i i ( a ) , 

Let us take an arbitrary point x £ f-n(<*) U !Qi(a.). We suppose that x £ tQo(a), 
i.e., lia(x) = /io while the other case is an analogue. Since ahn =3 a for n —> oo, 
there exists ?io £ N such that x £ On (a'1") for all n ^ no, thus, /ia/,n (x) = Lt«(x) = Lto 
and the proof is complete. • 

The relevant setting of the shape optimization problem reads 

fFind ah* eUh: 

\jh(ah*)^Jh(ah) VaheUh, 

where Jh(ah) := l(ah,u\ih(ah),..., u™v>h(ah)). The existence theorem holds. 

Theorem 3. Let e > 0, let {ftn}£Li C R, 0 < hn ^ ft, be such that ftn -* 0+ 

as n -> oo, and iet ahn £ Z^" denote the corresponding solutions to (P^71)- Then 

there exist a subsequence {hUk}
(^L1 C {hn}n

<L1 and a shape a£* £ U such that 

hH * 
a£

Tlk —> ae
:* in U as k —> oo 

holds and, moreover, ae* is a solution to the problem (Pe). 

P r o o f . By Lemma 7, there exist a subsequence of optimized shapes {a£
1lk }<jf=1 

C {ahn*}n=1 and a shape a£* eU such that 

h * 

(20) a£
llk -^ a/ in U as k -> oo. 

Let a £ 1Y be an arbitrary shape. For any k £ N, by the definition of (Ps
Tlfc) and 

since 7raJ
Tlfc (a) £ W*1™* , we have 

(21) Je"k(aK) ^ J > (*-/>(a)). 

Using (19) or (20), Lemma (10), and the continuity of X, the right- or left-hand side 
of (21) respectively converges to Je(a) or Je(a£*) as k —> oo. • 
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Finally, we introduce the regularized and discretized cost functional Jh: T i-» 

by JE(V>) "•— ^ ( ^ ( - ^ ( P ) ) ) - The related optimization problem is 

fFind p f G T : 
(p?) 

. Je
ktâ*) š Jek(P) Vp 6 T. 

R e m a r k 1. In cases of complex geometries, as that in Section 4, Assumption 2 

is a serious bottleneck of this discretization approach. For small discretization pa

rameters and large changes in the design we cannot guarantee that the perturbed 

elements still satisfy the regularity condition. They might be even flipped. In this 

case, we have to re-mesh the geometry and solve the optimization problem again, 

but now on a grid of different topology. Then certainly the cost functional is not 

continuous any more and the just introduced convergence theory cannot be applied. 

Nevertheless, in literature this approach is still the most frequently used one as far 

as a finite element discretization is concerned. In practice, after we get an optimized 

shape we should compare the value of a very fine discretized cost functional for the 

optimized design with the value of the initial one. If we can see a progress then the 

optimization surely did a good job. Some solutions to this inconsistency between the 

theory and practice are discussed in Conclusions. 

3.6. Sensitivity analysis 
We will solve (Ph) by sequential quadratic programming with an updating formula 

of the Hessian matrix. To this end we have to provide the gradient of the cost 

functional Jh with respect to the design parameters p . Let us note that the gradient 

of the constraint functional vh: (RnT H-» Un^h, where nvh £ N, which is defined so 

that 

T = { p e (RnT | v f c ( p ) ^ 0 } 

can be easily calculated by hand. The evaluation of the cost functional proceeds as 

follows: 

.4? • < - = / • • <•" ľ ( ° 'x '"' ''Uc U Jє

h(p), 

where the shape-to-mesh mapping 

Kh'Axh{cth) = bh(cth) 

maps the shape nodal coordinates ah onto the remaining nodal coordinates x.h in 

the grid. It is based on solving an auxiliary discretized 3d linear elasticity problem 
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in terms of grid displacements Ax / l (a / l ) with a nonhomogeneous Dirichlet bound

ary condition that corresponds to the given shape displacements a*1, and with zero 

displacements on dQ, and on the boundaries of the subdomains with nonzero current 

density Jv. Here, Kh = KH(-KQ) is a nonsingular stiffness matrix assembled on the 

initial grid x§ and bh(oth) is the right-hand side vector linearly dependent on oth. 

The resulting mesh is then calculated by 

xh(ah) := x j + Ax / l(a / l) + Mh(oth), 

where Mh: (R3n«h i-> R3n^h identically maps the nodal coordinates of the shape ah 

onto the corresponding coordinates in the grid vector x.h. 

We can guarantee the smoothness of Jh via the smoothness of its individual 
submappings, see [17, p. 87]. Then we are justified to use a Newton-like algorithm. 

Concerning the gradient of the cost functional, we use the chain rule to differentiate 
the cost functional. Then, we apply the adjoint method which evaluates the resulting 
expression from right to left. Since there is no state dependent constraint, the adjoint 
method involves only nv additional solutions of the state systems A n with the right-
hand sides gradtA«,»(2'/l). Moreover, we have to assemble the derivatives of the 
element matrices with respect to the grid nodal displacements. They mainly involve 
derivatives of the matrix R e and of its determinant, see (5). The computational 
effort is comparable to the assembling of the system matrix. The multistate problem 
sensitivity is then aggregated for each state as follows: 

dAn
E ðДľ 

u" 
дK hh 

uc 
(A?)-1-gradt,ľ.»(Ifc). 

In [17], [19] we develop an efficient object-oriented implementation for shape sensi
tivity analysis governed by various linear elliptic 2nd-order partial differential equa
tions, where the only part which has always to be recoded by a user is the formula 
for J ' 1 . 

4 . A N APPLICATION 

4.1. Physical problem 
We consider an electromagnet of the Maltese Cross (MC) geometry, as depicted 

in Fig. 4. It consists of a ferromagnetic yoke and 4 poles completed with coils which 
are pumped with direct electric currents. 

The electromagnets are used for measurements of Kerr magnetooptic effects [31]. 
The latter are measured by a reflection of an optical beam on a sample located in the 
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Figure 4. The Maltese Cross electromagnet and its cross-section. 

magnetization area fim. Here the magnetic field is required to be as homogeneous, 

i.e., as constant as possible in a given normal direction. Due to the anisotropy the 

measurements should be done in more directions, see [13], [24], [25]. Therefore, 

the MC electromagnet is capable of generating magnetic fields homogeneous in up 

to 8 directions just by switching some currents in coils on or off, or by switching 

their senses. Our aim is to improve the current geometry of the pole heads of the 

MC electromagnet such that inhomogeneities of the magnetic field are minimized, 

but the field itself is still strong enough. 

4.2. M a t h e m a t i c a l sett ings 

4.2.1. Set of admissible shapes 

The geometry of the MC electromagnet is depicted in Fig. 4. The dimensions are 

in meters. The computational domain is Q, := (-0.2,0.2) x (-0.05,0.05) x (-0.2,0.2). 

We assume all the pole heads to be the same and symmetric. Then, it is enough 

to consider the shape a to be a quarter of the shape of the left pole head, while 

the symmetry with respect to the planes x\ = 0 and x<i = 0 will be involved in 

the parametrization F later on. The shape is a continuous function defined over 

u := (0, dpoie,i/2) x (0, c?poie,2/2), where dp oie,i := 0.045, dpoie,2 := 0.025. Further, we 

choose C5 := arctan(37r/8) and specify the box constraints by a\ := 0.012, au := 0.05. 

The pole heads cannot penetrate then. Now, the set of admissible shapes U is 

determined and Lemma 7 holds. 

Prom the practical point of view, we cannot manufacture any shape, so we con

sider a Bezier patch of a fixed number of design parameters nt := TIT.I • ^T,2» 

where nx,i := 4, nT,2 := 3. To this end, we decompose the shape domain LJ into 

(nr,i — 1) • (nT,2 — 1) regular rectangles whose nT,i • TIT,2 corners are x^^^ := 

((2-l)c? p o le, l/(nT,l-l),( j- l)^ p o le,2/(^T,2-l)) for i = 1, . . . , n T , l , j = 1, . • . , nT,2-
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Figure 5. Bezier design parameters and the corresponding shape. 

The set T is defined as 

T : = { p : = (pi.i, . . . ,PnTli.nT,a) ^ ^ I a l < Pij < a u } -

The mapping F: T »-> W, see also (14), is the following (tensor product) Bezier 

mapping that involves the symmetry assumed above: 

a ( x ь x 2 ) := [F(xi,x 2)](p) 
ПT,1 7ІT.2 

== EEЯІ 
i = l j = l 

o2nT,i- l /~2Xl + dpoleД \ ^2n , i- l /2Д?1 + rfpoleД \ 

* V 2cřPoie,i 7 г V 2dPoieД Л 

Г/ҙ2nт,a-l / ~2Ж2 + rfpole,2 \ д2n ,2-l /2-C2 + rfpole,2 \ 
L j \ 2dpoie,2 / j \ 2dpoie,2 ' 

wheгe (жi, rr2) Є õ; and where foг n Є ÍҸ, i Є N, ѓ ^ n, and ż Є [0,1] we have 

<-,,):_ _6 - i í L 4 І - 1 

(i - 1)! (n - i)! ( 1 - * ) " 

which is called the Bernstein polynomial. An example of the mapping F is depicted 

in Fig. 5. Concerning 15, we perform the mirroring of the shape a with respect 

to the planes x\ = 0 and x 2 = 0 and, moreover, copy this resulting shape to all 

the remaining pole heads. In this way the shape a controls the decomposition of fl 

into fio(a) that denotes the domain occupied by the coils or air and into Cl\(a) which 

is the domain occupied by the yoke or poles. It is easy to see that the mapping F is 

continuous on T. 

4.2.2. Multistate problem 

Concerning the bilinear form, /xo := 4 K 1 0 ~ 7 [Hm"1] is the air permeability and 

/xi := 5100/XQ [Hm - 1 ] is the permeability of the kind of steel used. We distinguish 
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two variations of J v , namely, we set v := 1 for a vertical variation for which only two 
opposite coils are pumped and v := 2 for a diagonal variation for which four coils 
are pumped as in Fig. 4. Each of the other 6 variations of the current excitation is 
given by a mirroring. We consider the static current I = 5 [A] and 600 turns on each 
coil. The compatibility condition (3) is obviously fulfilled. 

4 .2.3. Shape optimization problem 
We introduce the magnetization area ttm := (—0.005,0.005)3, see Fig. 4. The cost 

functional is 

i 2 

ZCu^a-xJ-u'tex)) := - • £ > * ( B > , x ) ) + e- 0 v (B>,x) ) ] , 
v=l 

where, for v = 1,2, B v (a , x) := curlx(uu(a, x)) is the magnetic field of the vth state 
problem, and where the particular contributions are defined by 

^ ( B » ( a , x ) ) := * 
meas(Om) • (BZl'l2 

x f | | B > , x ) - B a v ^ ( B » ( a , x ) ) - n m | | 2 d x , 
Jam 

0"(B»(a,x)) ~ (max{0, fl££" - B*v"-»(B"(a,x))})2, Q := 106, 

B a v ^ ( B v ( a , x ) ) := \ • / | |B»(a,x) • nm | | dx, 
meas(Om) JQiit 

where B™?'1 = B%%2 := 0.08[T], n m := (1,0,0), and n m := (1 /^2 ,0 ,1 / . /5 ) . It is 
obvious that J is continuous. Now the existence of solutions to both the problems (P) 
and (P) follows. 

Further, we choose e := 10 - 6 and h := 0.4. The triangulation T„ of the shape 
domain involves the nodes xW ) j j . The integrals involved in the cost functional are 
replaced by the corresponding sums over elements. 

4.3. Numerical results 
The problem is solved using scientific software tools [15], [19], [28]. They have been 

developed within SFB F013 at the University of Linz, Austria. The resulting linear 
systems are solved by a preconditioned conjugate gradient method. In case the num
ber of design variables is small, a direct solver is applied. Concerning optimization, 
we use the sequential quadratic programming (SQP) with an updating formulae of 
the Hessian matrix. The gradient is calculated by the adjoint method. Moreover, we 
have introduced and used a multilevel optimization approach the idea of which is to 
use the SQP within a hierarchy of discretizations of the optimization problem such 
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that a coarse optimized design is prolonged and used as the initial guess at the next 
finer level. In [20] we have shown that using the multilevel approach significantly 
reduces the computational time. 

The 3d optimized shape is described by 12 design variables and was solved 
in 93 SQP iterations which took almost 30 hours. The underlying discretized 
3d state problem has 29541 unknowns. The 2d and 3d resulting shapes are depicted 
in Fig. 6, where the reduced 2d problem has arisen by neglecting the dimension #2. 
The initial design is depicted in Fig. 4. Some 2d and preliminary 3d numerical 
results, as well as various details, are presented in [16], [18]. 

Figure 6. 2d and 3d optimized pole heads of the MC electromagnet. 

4.4. Manufacture and measurements 
After the 2d optimized shape, see Fig. 6, the pole heads were manufactured and 

the magnetic field was measured. In Fig. 7 the related distributions of the nor
mal component of the magnetic flux density are depicted. We can see a significant 
improvement of the homogeneity of the magnetic field. The cost functional calcu
lated from the measured data decreased 4.5-times. Nevertheless, the magnitude of 
the magnetic field decreased as well. Choosing a proper compromise between the 
homogeneity and the strength of the magnetic field is a difficult engineering task. 
Moreover, the relative differences between the measured and the calculated magnetic 
fields are about 30%, which might be caused by saturation of the magnetic field in 
the corners. Employing a nonlinear governing magnetostatic state problem should 
improve this mismatch. 

5. CONCLUSIONS 

This paper treated the shape optimization in three-dimensional linear magneto-
statics. We have met one serious obstacle, see Remark 1, that we can hardly find 
a continuous mapping between the shape design nodes and the remaining nodes in 
the discretization grid. For fine discretizations and large changes in the design shape 
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Figure 7. Magnetic field for the initial and the optimized design. 

some elements flip. One possible solution consists in the use of the multilevel opti

mization techniques, where on the fine grids the difference between the initial and 

optimized shapes is not tha t big. Another one might be when using composite fi

nite elements tha t were developed for the treatment with complicated geometries in 

the papers [8], [9]. It is also connected to fictitious domain methods, cf. [10]. We 

can also avoid this problem by using a boundary element discretization . However, 

construction of efficient multigrid solvers as well as using the method for nonlinear 

governing s ta te problems are still topics of the current research. 
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Abstract. In this paper we present theoretical, computational, and practical aspects con-
cerning 3-dimensional shape optimization governed by linear magnetostatics. The state
solution is approximated by the finite element method using Nédélec elements on tetra-
hedra. Concerning optimization, the shape controls the interface between the air and the
ferromagnetic parts while the whole domain is fixed. We prove the existence of an optimal
shape. Then we state a finite element approximation to the optimization problem and prove
the convergence of the approximated solutions. In the end, we solve the problem for the
optimal shape of an electromagnet that arises in the research on magnetooptic effects and
that was manufactured afterwards.

Keywords: optimal shape design, finite element method, magnetostatics, magnetooptics

MSC 2000 : 49J20, 65K10, 35J40, 65N30

1. Introduction

In the paper we present 3-dimensional (3d) shape optimization of an electromagnet

arising in the research on magnetooptic effects. A useful framework for the existence
and convergence proofs is given by an abstract theory in [11] together with applica-

tions mostly in mechanics. Our theory differs mainly by the fact that the optimized
shape controls the interface between the air and the ferromagnetic parts, rather than

the whole domain boundary, as it is usual in mechanics. The domain is fixed in our

*This research has been supported by the Austrian Science Fund FWF within the SFB
“Numerical and Symbolic Scientific Computing” under grant SFB F013, by the Czech
Ministry of Education under research project CEZ: J17/98:272400019, and by the Grant
Agency of the Czech Republic under grant 105/99/1698.
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case. Variational formulations of the magnetostatic problem and their finite element

discretizations are given in [2], [14], [30] using the space H(curl) that was well de-
scribed in [7], [22]. Some shape optimization problems governed by 2-dimensional
(2d) nonlinear magnetostatics are treated in [23], [29].

The paper is organized as follows. In Section 2 we introduce a weak formulation of
linear magnetostatics in H0(curl)/Ker0(curl) and prove the existence and unique-
ness of the solution. Further, we regularize the bilinear form due to its nonellipticity
and prove the convergence of the regularized solutions. Finally, we discretize the

problem by the finite element method using the first-order Nédélec tetrahedral ele-
ments and prove the convergence. In Section 3 we introduce a shape optimization

problem. We prove the compactness of the set of admissible shapes and the continu-
ity of the cost functional. We regularize the bilinear form, employ the finite element

discretization, and prove the convergence of the optimized discretized shapes. Fi-
nally, we make notes on the first-order sensitivity analysis. In Section 4 the theory

is applied to optimal shape design of an electromagnet. We give a 3d optimized
shape as well as a 2d one which resulted from a dimensionally reduced formulation.

According to the 2d optimized shape, pole heads of the electromagnet were manu-
factured and we discuss the improvements in terms of physical measurements of the

magnetic field before and after optimization.

2. Three-dimensional linear magnetostatics

Assumption 1. In all what follows let Ω ⊂ � 3 be a nonempty bounded convex

domain with a polyhedral boundary.

2.1. Linear magnetostatics
Let B and J denote the magnetic field and the current density, respectively. We

introduce the magnetic vector potential u by

curl(u) = B.

We consider the following magnetostatic boundary value problem:

(S)





curl
( 1

µ
curl(u)

)
= J in Ω

n× u = 0 on ∂Ω

We suppose that only the air and the ferromagnetics occupy Ω, i.e., there exists a
decomposition of Ω into subdomains Ω0 and Ω1 such that

Ω = Ω0 ∪ Ω1, Ω0 ∩ Ω1 = ∅, and meas(Ω0), meas(Ω1) 6= 0,
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where meas stands for the Lebesgue measure and we suppose that there exist con-
stants µ0, µ1 such that

(1) 0 < µ0 < µ1, µ|Ω0 = µ0, and µ|Ω1 = µ1.

2.2. The space H(curl)
We will extend the differential operator curl to a subspace of [L2(Ω)]3. A function

z ∈ [L2(Ω)]3 is called the generalized rotation of u ∈ [L2(Ω)]3 if

∀v ∈ [C∞
0 (Ω)]3 :

∫

Ω

u · curl(v) dx =
∫

Ω

z · v dx

and we denote the generalized rotation by curl(u) := z. We define the space

H(curl; Ω) := {u ∈ [L2(Ω)]3 | ∃ z ∈ [L2(Ω)]3 : z = curl(u)}

which together with the scalar product

(u,v)curl,Ω :=
∫

Ω

u · v dx +
∫

Ω

curl(u) · curl(v) dx

forms a Hilbert space. We introduce the induced norm and seminorm by

‖u‖curl,Ω :=
√

(u,u)curl,Ω and |u|curl,Ω :=

√∫

Ω

‖ curl(u)‖2 dx,

where ‖ · ‖ denotes the Euclidean norm.
Due to [7, p. 34], the operator n × u|∂Ω can be extended by continuity onto the

space H(curl; Ω). Thus, the following spaces are well-defined:

H0(curl; Ω) := {u ∈ H(curl; Ω) | n× u = 0 on ∂Ω},
Ker0(curl; Ω) := {u ∈ H0(curl; Ω) | curl(u) = 0 in Ω}.

The quotient space H0(curl; Ω)/Ker0(curl; Ω) will be used as the test space for a
weak formulation of (S). By [12, p. 94–95] it is isomorphically isometric to

H0,⊥(curl; Ω) :=
{
u ∈ H0(curl; Ω) | ∀ p ∈ H1

0 (Ω):
∫

Ω

u · grad(p) dx = 0
}

.

Moreover, we have the orthogonal decomposition

H0(curl; Ω) = H0,⊥(curl; Ω)⊕Ker0(curl; Ω).

The following densities hold in the norm ‖ · ‖curl,Ω:

(2) H(curl; Ω) = [C∞(Ω)]3 and H0(curl; Ω) = [C∞
0 (Ω)]3.

Finally, we will make use of a Friedrichs’-like inequality:
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Lemma 1. There exists a positive constant C1 such that

∀v ∈ H0,⊥(curl; Ω) : ‖v‖curl,Ω 6 C1|v|curl,Ω.

���������
. See [12, p. 96]. �

2.3. Weak formulation
We introduce a bilinear form a and a linear functional f , both related to (S), by

a(v,u) :=
∫

Ω0

1
µ0

curl(v) · curl(u) dx +
∫

Ω1

1
µ1

curl(v) · curl(u) dx,

f(v) :=
∫

Ω

J · v dx, u,v ∈ H(curl; Ω),

where the current density J ∈ [L2(Ω)]3 satisfies the compatibility condition

(3) ∀w ∈ Ker0(curl; Ω) : f(w) = 0, i.e., ∀ p ∈ H1
0 (Ω):

∫

Ω

J · grad(p) dx = 0.

Then, the weak formulation of (S) reads as follows:

(W)

{
Find u ∈ H0,⊥(curl; Ω) :

a(v,u) = f(v) ∀v ∈ H0,⊥(curl; Ω).

Lemma 2. There exists a unique solution u ∈ H0,⊥(curl; Ω) to (W).
���������

. It is easy to see that the space H0,⊥(curl; Ω) equipped with the scalar
product (·, ·)curl,Ω forms a Hilbert space and that the linear functional f and the
bilinear form a are bounded. The ellipticity of a on H0,⊥(curl; Ω) follows from

(4) a(v,v) > 1
µ1

∫

Ω

‖ curl(v)‖2 dx =
1
µ1
|v|2curl,Ω > 1

µ1C2
1

‖v‖2
curl,Ω,

where we have used (1) and Lemma 1. The statement now follows directly from the

Lax-Milgram lemma, cf. [14, p. 14]. �

2.4. Regularization of the bilinear form
The problem (W) is equivalent to a mixed variational formulation. We will rather

introduce a non-mixed formulation in H0(curl; Ω) while we regularize the nonellip-
ticity of a. The solutions will then tend towards the solution of (W).
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Let ε > 0 be a regularization parameter by which we regularize a:

aε(v,u) := a(v,u) + ε

∫

Ω

v · u dx, u,v ∈ H(curl; Ω).

The regularized weak formulation then reads

(Wε)

{
Find uε ∈ H0(curl; Ω) :

aε(v,uε) = f(v) ∀v ∈ H0(curl; Ω),

where we still assume that (3) holds.

For each ε > 0 we can easily prove the existence of a unique solution uε to (Wε).

The following lemma gives a convergence property:

Lemma 3. The following convergence holds:

uε → u in H0(curl; Ω) as ε → 0+,

where uε are the solutions to (Wε) and u is the solution to (W).
���������

. See [27, Lemma 2.1]. �

2.5. Finite element approximation
We denote by T h := {Kei | i = 1, . . . , nΩ} a face-to-face discretization of Ω into

tetrahedra. Let he denote the length of the shortest edge of a tetrahedron Ke. We
denote by h := min

Ke∈T h
he the discretization parameter. Clearly, there exists h > 0

being the maximal size in the geometry such that h 6 h.

2.5.1. Discretization of the test space using Nédélec elements

0
1

1

1

x̂1

x̂2

x̂3

ĉr
1

ĉr
2

ĉr
3

ĉr
4

ĉr
5

ĉr
6

Kr

Re

x1

x2

x3

ce
1

ce
2

ce
3

ce
4

ce
5

ce
6

Ke

Figure 1. A transformation from the reference Nédélec tetrahedron.
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The linear Nédélec element is a triple E := (Ke,Pe, Σe), where Ke ⊂ � 3 is a

tetrahedral domain,

Pe := {p(x) := ae × x + be | ae,be ∈ � 3 , x := (x1, x2, x3) ∈ Ke},

and Σe := {σe
1, . . . , σ

e
6}, where the degree of freedom is defined by

σe
i (v) :=

∫

ce
i

v · te
i ds, i = 1, . . . , 6,

where ce
i stand for oriented edges, see Fig. 1, and te

i are the related unit tangential
vectors. By [22, Th. 1], this element is H(curl; Ke)-conforming.
By ξe

1, . . . , ξ
e
6 ∈ Pe we denote the shape functions related to the element Ke. In a

standard way we introduce the global shape functions ξh
1 , . . . , ξh

n : Ω 7→ � 3 , where n

is the number of edges (degrees of freedom) in the discretization T h. We introduce

a conforming approximation of H0(curl; Ω) by

H0(curl; Ω)h :=
{
vh =

∑

n×ξh
i =0

vh
i ξh

i | vh
i ∈ �

}
.

It can be easily seen that H0(curl; Ω)h ⊂ H0(curl; Ω), see [17].
The linear transformation Re(x̂) := Re · x̂ + re in Fig. 1 is determined by

Re :=




xe
2,1 − xe

1,1 xe
3,1 − xe

1,1 xe
4,1 − xe

1,1

xe
2,2 − xe

1,2 xe
3,2 − xe

1,2 xe
4,2 − xe

1,2

xe
2,3 − xe

1,3 xe
3,3 − xe

1,3 xe
4,3 − xe

1,3


 , re :=




xe
1,1

xe
1,2

xe
1,3


 ,

where xe
i := (xe

i,1, x
e
i,2, x

e
i,3), i = 1, . . . , 4, are the corners of the tetrahedronKe which

correspond to the corners of Kr:

x̂r
1 := (0, 0, 0), x̂r

2 := (1, 0, 0), x̂r
3 := (0, 1, 0), x̂r

4 := (0, 0, 1).

The following Piola’s transformation holds, see [26, Form. 3.17]:

(5) curlx(v(x)) =
1

det(Re)
Re · curlx̂(v̂(x̂)),

where v(x) and v̂(x̂) respectively stand for functions defined over Ke and Kr. The

reference shape functions are:

ξ̂r
1(x̂) :=(0,−1, 1)× (x̂) + (1, 0, 0), ξ̂r

2(x̂) := (1, 0,−1)× (x̂) + (0, 1, 0),(6)

ξ̂r
3(x̂) :=(−1, 1, 0)× (x̂) + (0, 0, 1), ξ̂r

4(x̂) := (0, 0, 1)× (x̂),

ξ̂r
5(x̂) :=(1, 0, 0)× (x̂), ξ̂r

6(x̂) := (0, 1, 0)× (x̂),

where x̂ := (x̂1, x̂2, x̂3) ∈ Kr and Kr is the reference tetrahedron, see Fig. 1.
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Now, we will state the element approximation property. To this end we introduce

an interpolation operator πe : [C∞(Ke)]3 7→ Pe such that

σe
i (πe(v)) = σe

i (v), i = 1, . . . , 6,

holds for any v ∈ [C∞(Ke)]3. Further, we introduce a global interpolation operator
πh : [C∞(Ω)]3 7→ H(curl; Ω) such that for any v ∈ [C∞(Ω)]3 we have

πh(v)|Ke := πe(v|Ke), Ke ∈ T h.

The following definition and lemma are due to [22, p. 327].

Definition 1. A family F := {T h | 0 < h 6 h} of decompositions (discretiza-
tions) of Ω into tetrahedra is said to be regular if there exists a constant C2 > 0 such
that for any T h ∈ F and any Ke ∈ T h we have

(7)
he

%e
6 C2,

where %e denotes the radius of the largest sphere inscribed in Ke.

Lemma 4. Let F be a regular family of decompositions into tetrahedra in the
sense of Definition 1. Then there exists a constant C3 > 0 such that for any T h ∈ F
we have

∀v ∈ [C∞(Ω)]3 : ‖v − πh(v)‖curl,Ω 6 C3h|v|[H2(Ω)]3 .

���������
. The assertion is a direct consequence of [22, Th. 2]. �

Lemma 5. Let v ∈ [C∞
0 (Ω)]3 and let F be a regular family of decompositions.

Then there exists a positive constant C4 ≡ C4(v) such that for any T h ∈ F the
following holds:

∀Ke ∈ T h ∀x ≡ Re(x̂) ∈ Ke : ‖curlx(πe(v|Ke ))‖ 6 C4.

���������
. Let v ∈ [C∞

0 (Ω)]3 be an arbitrary function, T h a regular discretization

of Ω, and Ke ∈ T h an element domain. The rotations of the reference shape func-
tions, see (6), are constant over Kr, e.g., curlx̂(ξ̂r

1(x̂)) = (0,−2, 2). Let us denote
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σe
i := σe

i (v|Ke) for i = 1, 2, . . . , 6. Now, an application of the Stokes theorem yields

curlx(πe(v|Ke (x))) =
1

det(Re)

6∑

i=1

σe
i (v|Ke)Re · curlx̂(ξ̂r

i (x̂)) =
2

6 meas(Ke)

×



(xe
2,1−xe

1,1)(σ
e
2−σe

3+σe
5)+(x

e
3,1−xe

1,1)(σ
e
3−σe

1+σe
6)+(x

e
4,1−xe

1,1)(σ
e
1−σe

2+σe
4)

(xe
2,2−xe

1,2)(σ
e
2−σe

3+σe
5)+(x

e
3,2−xe

1,2)(σ
e
3−σe

1+σe
6)+(x

e
4,2−xe

1,2)(σ
e
1−σe

2+σe
4)

(xe
2,3−xe

1,3)(σ
e
2−σe

3+σe
5)+(x

e
3,3−xe

1,3)(σ
e
3−σe

1+σe
6)+(x

e
4,3−xe

1,3)(σ
e
1−σe

2+σe
4)




=
−1

3 meas(Ke)
Re ·




∫
fe
2
curlx(v|Ke(x)) · ne

2(x) dS∫
fe
3
curlx(v|Ke(x)) · ne

3(x) dS∫
fe
4
curlx(v|Ke(x)) · ne

4(x) dS


 ,

where fe
2 , f

e
3 , f

e
4 denote faces that are opposite to the nodes x

e
2, x

e
3, x

e
4, respectively,

and ne
2, n

e
3, n

e
4 are the outward normal vectors. From the regularity condition (7) it

is obvious that meas(Ke) > 4
3π(%e)3 > 4

3π(he/C2)3. By estimating the integrals we
arrive at

‖curlx(πe(v|Ke (x)))‖ 6 3 maxx∈Ω ‖curlx(v(x))‖(C2)3

8π
=: C4,

where we have considered ‖Re‖ := max
i,j

|xe
i,j − xe

1,j |. �

2.5.2. Discretized problem
Let Ωh

0 and Ωh
1 approximate the subdomains Ω0 and Ω1 so that

∀Ke ∈ T h : Ke ⊂ Ωh
0 or Ke ⊂ Ωh

1

and let µh(x) denote a discretization of the permeability function µ(x). The regu-
larized bilinear form aε is approximated as follows:

ah
ε (v,u) :=

∫

Ωh
0

1
µ0

curl(v) · curl(u) dx

+
∫

Ωh
1

1
µ1

curl(v) · curl(u) dx + ε

∫

Ω

v · u dx,

where v,u ∈ H0(curl; Ω). The discretization of (Wε) reads as follows:

(Wh
ε )

{
Find uh

ε ∈ H0(curl; Ω)h :

ah
ε (vh,uh

ε ) = f(vh) ∀vh ∈ H0(curl; Ω)h.

The existence of a unique solution can be proven similarly as in Lemma 2.
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2.5.3. The convergence property

Lemma 6. Let Assumption 1 hold and let us consider a regular family F of
decompositions T h. Assume that

(8) |µh(x)− µ(x)| → 0 a.e. in Ω as h → 0+.

Then for each ε > 0 and h > 0 we have

uh
ε → uε in H0(curl; Ω) as h → 0+.

���������
. Let ε > 0 be arbitrary. The proof is based on the following first Strang’s

lemma, cf. [3]: There exists C(ε) > 0 such that for each vh ∈ H0(curl; Ω)h we have

‖uε − uh
ε‖curl,Ω(9)

6 C(ε)
{
‖uh

ε − vh‖curl,Ω +
|aε(vh,uh

ε − vh)− ah
ε (vh,uh

ε − vh)|
‖uh

ε − vh‖curl,Ω

}
.

Now, the idea of the proof is like in [14, Th. 4.16], originally in [5]. Let τ > 0 be
arbitrary. By virtue of (2) there exists ũε ∈ [C∞

0 (Ω)]3 such that

(10) ‖uε − ũε‖curl,Ω 6 τ

4C(ε)
.

In the estimate (9) we choose vh := πh(ũε).
The first term on the right-hand side of (9) can be estimated as follows:

‖uε − vh‖curl,Ω = ‖uε − ũε + ũε − vh‖curl,Ω(11)

6 τ

4C(ε)
+ ‖ũε − πh(ũε)‖curl,Ω 6 τ

4C(ε)
+ C3h|ũε|[H2(Ω)]3 ,

where we have used the triangle inequality, (10), and Lemma 4. The numerator of
the second term on the right-hand side of (9) is

|aε(vh,uh
ε − vh)− ah

ε (vh,uh
ε − vh)|(12)

=
∣∣∣∣
∫

Ω

curl(uh
ε − vh)

( 1
µ
− 1

µh

)
curl(vh) dx

∣∣∣∣

6 ‖uh
ε − vh‖curl,Ω

√∫

Ω

∣∣∣ 1
µ
− 1

µh

∣∣∣
2

‖curl(vh)‖2 dx,

where the Hölder inequality has been used. Now, by Lemma 5 there exists C4 > 0
such that for any h, 0 < h 6 h, and for each x ∈ Ke ⊂ Ω we have

∣∣∣ 1
µ(x)

− 1
µh(x)

∣∣∣‖curl(vh(x))‖ 6
( 1

µ0
− 1

µ1

)
C4(ũε),
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where we have also used (1). Then due to (8) and the Lebesgue dominated conver-

gence theorem, cf. [21],

(13)
∫

Ω

∣∣∣ 1
µ
− 1

µh

∣∣∣
2

‖curl(vh)‖2 dx → 0 as h → 0+.

Finally, dividing the inequality (12) by ‖uh
ε −vh‖curl,Ω and combining that with (9),

(11), and (13) completes the proof. �

3. Optimal shape design

3.1. Admissible shapes
Let α stand for a shape which is a continuous function over a rectangle ω ⊂ � 2 . We

assume that there exists a common Lipschitz constant C5 > 0 and box constraints
αl, αu ∈ � . Then the set of admissible shapes is

U := {α ∈ C(ω) | ∀x,y ∈ ω : |α(x) − α(y)| 6 C5‖x− y‖ and αl 6 α(x) 6 αu},

equipped with the uniform convergence αn → α in U , i.e., αn ⇒ α as n →∞.

Lemma 7. U is compact.
���������

. It follows from Theorem of Ascoli and Arzelà, cf. [11, p. 2]. �

In Section 4 we will deal with an application where in the end we will be looking

for smooth shapes, e.g., Bézier curves or patches, cf. [6], rather than for continuous
ones. To this end, being inspired by [4], we introduce a parameterization, i.e., a

nonempty compact set of design parameters Υ ⊂ � nΥ , nΥ ∈ � , and a continuous
nonsurjective mapping

(14) F : Υ 7→ U .

Finally, without loss of generality we assume that the shape α controls the following

decomposition of Ω into the subdomains Ω0(α) and Ω1(α):

Ω = Ω0(α) ∪ Ω1(α), Ω0(α) ∩ Ω1(α) = ∅(15)

such that graph(α) ⊂ ∂Ω0(α) ∩ ∂Ω1(α) andmeas(Ω0(α)), meas(Ω1(α)) > 0,

an example of which is depicted in Fig. 2. Recall that the graph is defined by

graph(α) := {(x1, x2, y) ∈ � 3 | x := (x1, x2) ∈ ω and y = α(x)}.
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Ω0(α)

Ω1(α)

α

x1

x2

x3

ω

Figure 2. Decomposition of Ω.

3.2. Multistate problem
Only the piecewise constant permeability µ depends by (15) on α, thus,

aα(v,u) :=
∫

Ω0(α)

1
µ0

curl(v) · curl(u) dx +
∫

Ω1(α)

1
µ1

curl(v) · curl(u) dx.

Moreover, we consider nv state problems that only differ by the current Jv ,

fv(v) :=
∫

Ω

Jv · v dx, v = 1, . . . , nv,

so that (3) still holds. For any α ∈ U and v ∈ 1, . . . , nv we consider the following
state problem, which is uniquely solvable:

(Wv(α))

{
Find uv(α) ∈ H0,⊥(curl; Ω) :

aα(v,uv(α)) = fv(v) ∀v ∈ H0,⊥(curl; Ω)

Lemma 8. For each v the mapping uv : U 7→ H0,⊥(curl; Ω) is continuous.
���������

. Let v = 1, . . . , nv be arbitrary and let {αn} ⊂ U be a sequence such
that αn ⇒ α, where α ∈ U . For simplicity, we set u := uv(α) and un := uv(αn).
We observe that (4) holds independently of α. Thus, by (Wv(αn)) and (Wv(α)),

‖un − u‖2
curl,Ω 6 µ1C

2
1aαn(un − u,un − u)(16)

= µ1C
2
1 (fv(un − u)− aαn(un − u,u))

= µ1C
2
1 (aα(un − u,u)− aαn(un − u,u)).

Further, we denote the characteristic functions of the sets Ω0(α) and Ω1(α)
by χ0(x, α) and χ1(x, α), respectively. Since αn ⇒ α, we have

(17) χ0(x, αn) → χ0(x, α) and χ1(x, αn) → χ1(x, α) a.e. in Ω as n →∞.

451



Now, using the Cauchy-Schwarz inequality in [L2(Ω)]3 yields

|aα(un − u,u)− aαn(un − u,u)|(18)

=
1
µ0

∫

Ω

{(χ0(x, α) − χ0(x, αn))curl(u)} · curl(un − u) dx

+
1
µ1

∫

Ω

{(χ1(x, α) − χ1(x, αn))curl(u)} · curl(un − u) dx

6 1
µ0

(‖(χ0(x, α)− χ0(x, αn))curl(u)‖[L2(Ω)]3

+ ‖(χ1(x, α)− χ1(x, αn))curl(u)‖[L2(Ω)]3) · ‖curl(un − u)‖[L2(Ω)]3 .

From (17), for i = 0, 1, |χi(x; α) − χi(x; αn)|2‖curl(u(x))‖2 → 0 a.e. Ω as n → ∞.
Now, by the Lebesgue dominated convergence theorem, cf. [21, p. 26], the right-hand

side of (18) tends to zero. Together with (16) this completes the proof. �

3.3. Shape optimization problem
Let I : U × [H0(curl; Ω)]nv 7→ � be a continuous functional. Using (Wv(α)),

we define the cost functional J : U 7→ � by J (α) := I(α,u1(α), . . . ,unv(α)). The
continuous optimization problem is then formulated as follows:

(P)

{
Find α∗ ∈ U :

J (α∗) 6 J (α) ∀α ∈ U .

Theorem 1. There exists α∗ ∈ U which is a solution to (P).
���������

. By Lemma 7, U is a compact subset of the normed linear space C(ω).
Using the continuity of I and Lemma 8 we obtain the continuity of J on U . Now
the assertion follows from a classical theorem, cf. [11, Th. 1.3]. �

Moreover, we use (14) to define the cost functional J̃ : Υ 7→ � by J̃ (p) :=
J (F (p)). Then, by the compactness of Υ, the continuity of F on Υ, and Theo-
rem 1, there exists a solution to the finite-dimensional optimization problem

(P̃)

{
Find p∗ ∈ Υ:

J̃ (p∗) 6 J̃ (p) ∀p ∈ Υ.

3.4. Regularization of the bilinear form
Similarly to Section 2.4, the regularized weak formulation reads as follows:

(Wv
ε (α))

{
Find uv

ε(α) ∈ H0(curl; Ω) :

aε,α(v,uv
ε(α)) = fv(v) ∀v ∈ H0(curl; Ω),
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where aε,α(v,u) := aα(v,u) + ε
∫
Ω

v · u dx. The corresponding shape optimization
problem reads

(Pε)

{
Find αε

∗ ∈ U :

Jε(αε
∗) 6 Jε(α) ∀α ∈ U ,

where Jε(α) := I(α,u1
ε(α), . . . ,unv

ε (α)). The existence of an optimal solution to (Pε)
can be proven as in Theorem 1.

Theorem 2. Let {εn}∞n=1 ⊂ � be a sequence of positive regularization param-
eters such that εn → 0+ as n → ∞, and let αεn

∗ be the corresponding solutions to

(Pεn). Then there exist a subsequence {εnk
}∞k=1 ⊂ {εn}∞n=1 and a shape α∗ ∈ U such

that

αεnk

∗ → α∗ in U as k →∞

holds and, moreover, α∗ is a solution to (P).
���������

. Here we make use of Lemma 3, see [11] or [17, p. 73]. �

3.5. Finite element approximation
Let h > 0 be a discretization parameter as in Section 2.5. Referring to Fig. 3 we

will introduce a finite-dimensional approximation of U . Let T h
ω := {ωh

1 , . . . , ωh
nh

ω
},

where nh
ω ∈ � , be a triangulation of a rectangular domain ω. Let P 1(T h

ω ) denote the
space of continuous functions that are linear over each ωh

i . Then the discretized set
of admissible shapes is

Uh := {αh ∈ P 1(T h
ω ) | ∀x,y ∈ ω : |αh(x)− αh(y)| 6 C5‖x− y‖ and

αl 6 αh(x) 6 αu}.

The set Uh is clearly finite-dimensional and closed, and thus, compact. Let πh
ω : U 7→

P 1(T h
ω ) interpolate shapes at the nodes of T h

ω . Then, as in [1],

(19) ∀α ∈ U : πh
ω(α) ⇒ α as h → 0+.

Again, given a discretized shape αh, we consider the decomposition of Ω into
Ω0(αh) and Ω1(αh), an example of which is depicted in Fig. 3. We provide a dis-
cretization T h(αh) := {Ke1(αh), . . . , KenΩ (αh)} of Ω such that

∀Kei(αh) ∈ T h(αh) : Kei(αh) ⊂ Ω0(αh) or Kei(αh) ⊂ Ω1(αh).

453



Ωh
0 (αh)

Ωh
1 (αh)

αh

x1

x2

x3

ω

Ωh
0 (αh)

Ωh
1 (αh)

αh

x1

x2

x3

ωh
1

ωh
2

ωh
3

ωh
4 ωh

5

ωh
6

ωh
7

ωh
8 ωh

9
ωh

10 ωh
11 ωh

12

Figure 3. Decomposition of Ωh.

Assumption 2. We assume that for any h > 0 fixed (h 6 h) the connectiv-

ity of the discretization grid T h(αh) is independent of αh, we further assume that
the corners xei

1 (αh), . . . ,xei

4 (αh) of Kei(αh) form a tetrahedron and they depend
continuously on αh.

The regularized and discretized multistate problem is

(Wv,h
ε (αh))

{
Find uv,h

ε (αh) ∈ H0(curl; Ω; αh)h :

aε,αh(vh,uv,h
ε (αh)) = fv(vh) ∀vh ∈ H0(curl; Ω; αh)h.

The existence of a unique solution to (Wv,h
ε (αh)) is easy to prove.

Lemma 9. For each v = 1, . . . , nv, ε > 0 and h > 0 (h 6 h) the mapping uv,h
ε :

Uh 7→ H0(curl; Ω) is continuous.
���������

. Now we cannot use the same technique as in the proof of Lemma 8,

since the settings (Wv,h
ε (αh)) differ from αh ∈ Uh. Therefore, the estimate (16)

cannot be established. Instead, we have to exploit the algebraic structure of the

mapping uv,h
ε . The proof is given in [17, p. 77]. �

Lemma 10. Let ε > 0, {hn}∞n=1 ⊂ � , 0 < hn 6 h, be such that hn → 0+ as

n → ∞, and let α ∈ U , {αhn}∞n=1 ⊂ U , αhn ∈ Uhn , be such that αhn → α in U as
n →∞. Then for each v = 1, . . . , nv we have

uv,hn
ε (αhn) → uv

ε(α) in H0(curl; Ω) as n →∞,

where uv,hn
ε (αhn) is the solution to (Wv,hn

ε (αhn)) and uv
ε(α) solves (Wv

ε (α)).
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���������
. It is enough to prove that the assumption (8) is fulfilled and the rest

follows from Lemma 6. We specify µ(x) ≡ µα(x) and µhn(x) ≡ µαhn (x), where

µα(x) :=

{
µ0, x ∈ Ω0(α),

µ1, x ∈ Ω1(α),
α ∈ U .

Let us take an arbitrary point x ∈ Ω0(α) ∪ Ω1(α). We suppose that x ∈ Ω0(α),
i.e., µα(x) = µ0 while the other case is an analogue. Since αhn ⇒ α for n → ∞,
there exists n0 ∈ � such that x ∈ Ω0(αhn) for all n > n0, thus, µαhn (x) = µα(x) = µ0

and the proof is complete. �

The relevant setting of the shape optimization problem reads

(Ph
ε )

{
Find αh

ε
∗ ∈ Uh :

J h
ε (αh

ε
∗) 6 J h

ε (αh) ∀αh ∈ Uh,

where J h
ε (αh) := I(αh,u1,h

ε (αh), . . . ,unv,h
ε (αh)). The existence theorem holds.

Theorem 3. Let ε > 0, let {hn}∞n=1 ⊂ � , 0 < hn 6 h, be such that hn → 0+

as n → ∞, and let αhn
ε
∗ ∈ Uhn denote the corresponding solutions to (Phn

ε ). Then
there exist a subsequence {hnk

}∞k=1 ⊂ {hn}∞n=1 and a shape αε
∗ ∈ U such that

α
hnk
ε

∗
→ αε

∗ in U as k →∞

holds and, moreover, αε
∗ is a solution to the problem (Pε).

���������
. By Lemma 7, there exist a subsequence of optimized shapes {αhnk

ε

∗
}∞k=1

⊂ {αhn
ε
∗}∞n=1 and a shape αε

∗ ∈ U such that

(20) α
hnk
ε

∗
→ αε

∗ in U as k →∞.

Let α ∈ U be an arbitrary shape. For any k ∈ � , by the definition of (P
hnk
ε ) and

since π
hnk
ω (α) ∈ Uhnk , we have

(21) J hnk
ε (α

hnk
ε

∗
) 6 J hnk

ε (π
hnk
ω (α)).

Using (19) or (20), Lemma (10), and the continuity of I, the right- or left-hand side
of (21) respectively converges to Jε(α) or Jε(αε

∗) as k →∞. �
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Finally, we introduce the regularized and discretized cost functional J̃ h
ε : Υ 7→ �

by J̃ h
ε (p) := J h

ε (πh
ω(F (p))). The related optimization problem is

(P̃h
ε )

{
Find ph

ε
∗ ∈ Υ:

J̃ h
ε (ph

ε
∗) 6 J̃ h

ε (p) ∀p ∈ Υ.

�����! "��#
1. In cases of complex geometries, as that in Section 4, Assumption 2

is a serious bottleneck of this discretization approach. For small discretization pa-
rameters and large changes in the design we cannot guarantee that the perturbed

elements still satisfy the regularity condition. They might be even flipped. In this
case, we have to re-mesh the geometry and solve the optimization problem again,

but now on a grid of different topology. Then certainly the cost functional is not
continuous any more and the just introduced convergence theory cannot be applied.

Nevertheless, in literature this approach is still the most frequently used one as far
as a finite element discretization is concerned. In practice, after we get an optimized

shape we should compare the value of a very fine discretized cost functional for the
optimized design with the value of the initial one. If we can see a progress then the

optimization surely did a good job. Some solutions to this inconsistency between the
theory and practice are discussed in Conclusions.

3.6. Sensitivity analysis
We will solve (P̃h

ε ) by sequential quadratic programming with an updating formula
of the Hessian matrix. To this end we have to provide the gradient of the cost
functional J̃ h

ε with respect to the design parameters p. Let us note that the gradient
of the constraint functional υh : � nΥ 7→ � n $ h , where nυh ∈ � , which is defined so
that

Υ = {p ∈ � nΥ | υh(p) 6 0}

can be easily calculated by hand. The evaluation of the cost functional proceeds as
follows:

p
πh

ω◦F−−−−−→ αh Kh·4xh=bh(αh)−−−−−−−−−−−−−→ xh FEM−−−−−→ An
ε , fv,n An

ε ·uv,n
ε =fv,n

−−−−−−−−−−−→
An

ε ·uv,n
ε =fv,n

−−−−−−−−−−−→ uv,n
ε

Ih(αh,xh,u
1,nΩ
ε ,...,u

nv,nΩ
ε )−−−−−−−−−−−−−−−−−−−−→ J̃ h

ε (p),

where the shape-to-mesh mapping

Kh · 4xh(αh) = bh(αh)

maps the shape nodal coordinates αh onto the remaining nodal coordinates xh in
the grid. It is based on solving an auxiliary discretized 3d linear elasticity problem
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in terms of grid displacements 4xh(αh) with a nonhomogeneous Dirichlet bound-
ary condition that corresponds to the given shape displacements αh, and with zero
displacements on ∂Ω and on the boundaries of the subdomains with nonzero current
density Jv . Here, Kh ≡ Kh(xh

0 ) is a nonsingular stiffness matrix assembled on the
initial grid xh

0 and bh(αh) is the right-hand side vector linearly dependent on αh.
The resulting mesh is then calculated by

xh(αh) := xh
0 +4xh(αh) + Mh(αh),

whereMh : � 3n % h 7→ � 3n
xh identically maps the nodal coordinates of the shape αh

onto the corresponding coordinates in the grid vector xh.

We can guarantee the smoothness of J̃ h
ε via the smoothness of its individual

submappings, see [17, p. 87]. Then we are justified to use a Newton-like algorithm.

Concerning the gradient of the cost functional, we use the chain rule to differentiate
the cost functional. Then, we apply the adjoint method which evaluates the resulting

expression from right to left. Since there is no state dependent constraint, the adjoint
method involves only nv additional solutions of the state systems An

ε with the right-

hand sides graduv,n
ε

(Ih). Moreover, we have to assemble the derivatives of the
element matrices with respect to the grid nodal displacements. They mainly involve

derivatives of the matrix Re and of its determinant, see (5). The computational
effort is comparable to the assembling of the system matrix. The multistate problem

sensitivity is then aggregated for each state as follows:

nv∑

v=1

[
− ∂An

ε

∂[xh
1 ]1

· uv,n
ε , . . . ,− ∂An

ε

∂[xh
n
xh

]3
· uv,n

ε

]T

· (An
ε )−1 · graduv,n

ε
(Ih).

In [17], [19] we develop an efficient object-oriented implementation for shape sensi-
tivity analysis governed by various linear elliptic 2nd-order partial differential equa-

tions, where the only part which has always to be recoded by a user is the formula
for Ih.

4. An application

4.1. Physical problem
We consider an electromagnet of the Maltese Cross (MC) geometry, as depicted

in Fig. 4. It consists of a ferromagnetic yoke and 4 poles completed with coils which

are pumped with direct electric currents.

The electromagnets are used for measurements of Kerr magnetooptic effects [31].
The latter are measured by a reflection of an optical beam on a sample located in the
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Figure 4. The Maltese Cross electromagnet and its cross-section.

magnetization area Ωm. Here the magnetic field is required to be as homogeneous,
i.e., as constant as possible in a given normal direction. Due to the anisotropy the

measurements should be done in more directions, see [13], [24], [25]. Therefore,
the MC electromagnet is capable of generating magnetic fields homogeneous in up

to 8 directions just by switching some currents in coils on or off, or by switching
their senses. Our aim is to improve the current geometry of the pole heads of the

MC electromagnet such that inhomogeneities of the magnetic field are minimized,
but the field itself is still strong enough.

4.2. Mathematical settings

4.2.1. Set of admissible shapes
The geometry of the MC electromagnet is depicted in Fig. 4. The dimensions are

in meters. The computational domain is Ω := (−0.2, 0.2)×(−0.05, 0.05)×(−0.2, 0.2).
We assume all the pole heads to be the same and symmetric. Then, it is enough
to consider the shape α to be a quarter of the shape of the left pole head, while

the symmetry with respect to the planes x1 = 0 and x2 = 0 will be involved in
the parametrization F later on. The shape is a continuous function defined over

ω := (0, dpole,1/2)×(0, dpole,2/2), where dpole,1 := 0.045, dpole,2 := 0.025. Further, we
choose C5 := arctan(3π/8) and specify the box constraints by αl := 0.012, αu := 0.05.
The pole heads cannot penetrate then. Now, the set of admissible shapes U is
determined and Lemma 7 holds.

From the practical point of view, we cannot manufacture any shape, so we con-

sider a Bézier patch of a fixed number of design parameters nΥ := nΥ,1 · nΥ,2,
where nΥ,1 := 4, nΥ,2 := 3. To this end, we decompose the shape domain ω into

(nΥ,1 − 1) · (nΥ,2 − 1) regular rectangles whose nΥ,1 · nΥ,2 corners are xω,i,j :=
((i−1)dpole,1/(nΥ,1−1), (j−1)dpole,2/(nΥ,2−1)) for i = 1, . . . , nΥ,1, j = 1, . . . , nΥ,2.
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Figure 5. Bézier design parameters and the corresponding shape.

The set Υ is defined as

Υ := {p := (p1,1, . . . , pnΥ,1,nΥ,2) ∈ � nΥ | αl 6 pi,j 6 αu}.

The mapping F : Υ 7→ U , see also (14), is the following (tensor product) Bézier
mapping that involves the symmetry assumed above:

α(x1, x2) := [F (x1, x2)](p)

:=
nΥ,1∑

i=1

nΥ,2∑

j=1

pi,j

[
β

2nΥ,1−1
i

(−2x1 + dpole,1

2dpole,1

)
+ β

2nΥ,1−1
i

(2x1 + dpole,1

2dpole,1

)]

×
[
β

2nΥ,2−1
j

(−2x2 + dpole,2

2dpole,2

)
+ β

2nΥ,2−1
j

(2x2 + dpole,2

2dpole,2

)]
,

where (x1, x2) ∈ ω and where for n ∈ � , i ∈ � , i 6 n, and t ∈ [0, 1] we have

βn
i (t) :=

(n− 1)!
(i− 1)! (n− i)!

ti−1(1− t)n−i,

which is called the Bernstein polynomial. An example of the mapping F is depicted
in Fig. 5. Concerning 15, we perform the mirroring of the shape α with respect

to the planes x1 = 0 and x2 = 0 and, moreover, copy this resulting shape to all
the remaining pole heads. In this way the shape α controls the decomposition of Ω
into Ω0(α) that denotes the domain occupied by the coils or air and into Ω1(α) which
is the domain occupied by the yoke or poles. It is easy to see that the mapping F is

continuous on Υ.

4.2.2. Multistate problem
Concerning the bilinear form, µ0 := 4π10−7 [Hm−1] is the air permeability and

µ1 := 5100µ0 [Hm−1] is the permeability of the kind of steel used. We distinguish
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two variations of Jv , namely, we set v := 1 for a vertical variation for which only two
opposite coils are pumped and v := 2 for a diagonal variation for which four coils
are pumped as in Fig. 4. Each of the other 6 variations of the current excitation is
given by a mirroring. We consider the static current I = 5 [A] and 600 turns on each
coil. The compatibility condition (3) is obviously fulfilled.

4.2.3. Shape optimization problem
We introduce the magnetization area Ωm := (−0.005, 0.005)3, see Fig. 4. The cost

functional is

I(u1(α,x),u2(α,x)) :=
1
2
·

2∑

v=1

[ϕv(Bv(α,x)) + % · θv(Bv(α,x))],

where, for v = 1, 2, Bv(α,x) := curlx(uv(α,x)) is the magnetic field of the vth state
problem, and where the particular contributions are defined by

ϕv(Bv(α,x)) :=
1

meas(Ωm) · (Bavg,v
min )2

×
∫

Ωm

‖Bv(α,x) −Bavg,v(Bv(α,x)) · nv
m‖2 dx,

θv(Bv(α,x)) := (max{0, Bavg,v
min −Bavg,v(Bv(α,x))})2, % := 106,

Bavg,v(Bv(α,x)) :=
1

meas(Ωm)
·
∫

Ωm

‖Bv(α,x) · nv
m‖ dx,

where Bavg,1
min = Bavg,2

min := 0.08 [T], n1
m := (1, 0, 0), and n2

m := (1/
√

2, 0, 1/
√

2). It is
obvious that I is continuous. Now the existence of solutions to both the problems (P)
and (P̃) follows.
Further, we choose ε := 10−6 and h := 0.4. The triangulation T h

ω of the shape
domain involves the nodes xω,i,j . The integrals involved in the cost functional are

replaced by the corresponding sums over elements.

4.3. Numerical results
The problem is solved using scientific software tools [15], [19], [28]. They have been

developed within SFB F013 at the University of Linz, Austria. The resulting linear

systems are solved by a preconditioned conjugate gradient method. In case the num-
ber of design variables is small, a direct solver is applied. Concerning optimization,

we use the sequential quadratic programming (SQP) with an updating formulae of
the Hessian matrix. The gradient is calculated by the adjoint method. Moreover, we

have introduced and used a multilevel optimization approach the idea of which is to
use the SQP within a hierarchy of discretizations of the optimization problem such
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that a coarse optimized design is prolonged and used as the initial guess at the next

finer level. In [20] we have shown that using the multilevel approach significantly
reduces the computational time.
The 3d optimized shape is described by 12 design variables and was solved

in 93 SQP iterations which took almost 30 hours. The underlying discretized
3d state problem has 29541 unknowns. The 2d and 3d resulting shapes are depicted

in Fig. 6, where the reduced 2d problem has arisen by neglecting the dimension x2.
The initial design is depicted in Fig. 4. Some 2d and preliminary 3d numerical

results, as well as various details, are presented in [16], [18].

Figure 6. 2d and 3d optimized pole heads of the MC electromagnet.

4.4. Manufacture and measurements
After the 2d optimized shape, see Fig. 6, the pole heads were manufactured and

the magnetic field was measured. In Fig. 7 the related distributions of the nor-
mal component of the magnetic flux density are depicted. We can see a significant

improvement of the homogeneity of the magnetic field. The cost functional calcu-
lated from the measured data decreased 4.5-times. Nevertheless, the magnitude of

the magnetic field decreased as well. Choosing a proper compromise between the
homogeneity and the strength of the magnetic field is a difficult engineering task.

Moreover, the relative differences between the measured and the calculated magnetic
fields are about 30%, which might be caused by saturation of the magnetic field in

the corners. Employing a nonlinear governing magnetostatic state problem should
improve this mismatch.

5. Conclusions

This paper treated the shape optimization in three-dimensional linear magneto-
statics. We have met one serious obstacle, see Remark 1, that we can hardly find

a continuous mapping between the shape design nodes and the remaining nodes in
the discretization grid. For fine discretizations and large changes in the design shape
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Figure 7. Magnetic field for the initial and the optimized design.

some elements flip. One possible solution consists in the use of the multilevel opti-

mization techniques, where on the fine grids the difference between the initial and
optimized shapes is not that big. Another one might be when using composite fi-

nite elements that were developed for the treatment with complicated geometries in
the papers [8], [9]. It is also connected to fictitious domain methods, cf. [10]. We

can also avoid this problem by using a boundary element discretization. However,
construction of efficient multigrid solvers as well as using the method for nonlinear
governing state problems are still topics of the current research.
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