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Abstract. We consider a stochastic process Xx
t which solves an equation

dXx
t = AXx

t dt+ΦdB
H
t , Xx

0 = x

where A and Φ are real matrices and BH is a fractional Brownian motion with Hurst
parameter H ∈ (1/2, 1). The Kolmogorov backward equation for the function u(t, x) =�
f(Xx

t ) is derived and exponential convergence of probability distributions of solutions to
the limit measure is established.

Keywords: fractional Brownian motion, Kolmogorov backwards equation, linear stochas-
tic equation

MSC 2000 : 60H05, 60H10

1. Introduction

Fractional Brownian motion (fBm) is a family of Gaussian processes indexed by

a parameter H ∈ (0, 1) called the Hurst parameter. The first result on this type of
processes goes back to Kolmogorov [13], basic properties of (fBm) have been proved

in the pioneering work of Mandelbrot and Van Ness [15]. Hurst [10], [11] used these
processes to describe the long term storage capacity of reservoirs along the Nile river,

which demonstrated their usefulness as a model for physical phenomena. Later these
processes have been used to describe some economic data and most recently to model

telecommunication traffic.

*This research has been supported by the grant no. 201/01/1197 of the Grant Agency of
the Czech Republic.

63



In recent years numerous papers on (fBm)-based stochastic calculus have appeared

(e.g. [4] and [1], [3], [5], [6], [7], [20], [21]). Difficulties are coming from the fact that
(fBm) is not a semimartingal, so the classical concept of stochastic integral may not
be used. On the other hand, the paths of (fBm) do not have bounded variation,

hence the classical concept of Lebesgue-Stieltjes integral is useless as well and it
is necessary to develop a stochastic calculus. Very recently stochastic differential

equations driven by (fBm) have been studied, see e.g. [2], [12], [14], [17] in a finite
dimensional state space and [7], [8], [16] in infinite dimensions.

In the present paper we are concerned with a linear stochastic differential equation
driven by (fBm). We derive the backward Kolmogorov equation (BKE) associated

with the linear stochastic equation. Although our stochastic equation is autonomous,
the coefficients of the (BKE) are time-dependent, which reflects the non-Markovian

character of the equation. Note that the PDE for the transition density of (fBm)
has been derived in [19].

The definition and basic properties of a stochastic integral of a deterministic func-
tion with respect to the (fBm) and the formula for integration by parts are in Sec-

tion 2 of the paper. The main results of the paper are Propositions 3.3, 3.4 and 4.2
where the parabolic equation for 
 f(Xx

t ) is derived and conditions for exponential
convergence in total variation of probability distributions of Xx

t to the limit distri-
bution are established. Note that in [7] strong convergence (but not the speed of

convergence) has been shown in an infinite dimensional state space.

2. Preliminaries

Let (Ω,F ,P) be a probability space.

Definition 2.1. A fractional Brownian motion (BH(t), t > 0) with Hurst pa-
rameter H ∈ (0, 1) on (Ω,F ,P) is an � n -valued Gaussian process which satisfies
(i) 
 BH (t) = 0 for all t ∈ � + ,
(ii) 
 BH (s)BH (t)′ = 1/2(s2H + t2H − |t− s|2H)I , for all s, t ∈ � + , where I is the
identity matrix,

(iii) (BH(t), t > 0) has continuous sample paths P-a.s.

Since the function FH(s, t) = 1/2(s2H + t2H − |t − s|2H is positive definite for

H ∈ (0, 1) there exists a Gaussian process with this covariance function due to the
Daniell-Kolmogorov theorem. Continuous modification of this process follows from

the Kolmogorov-Tschentsov theorem. From the condition (ii) it is clear that the
components of this process are independent. Conditions (i) and (ii) easily imply

BH(0) = 0 P-a.s. The (fBm) BH with H = 1/2 is the usual Wiener process. In the
rest of the paper we assume that H > 1/2.
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Now, following [7], we define a stochastic integral with respect to the (fBm), with

deterministic integrand. For this purpose we use

Lemma 2.2. If p > 1/H , then for ϕ ∈ Lp(0, T ; � ) the inequality
∫ T

0

∫ T

0

ϕ(u)ϕ(v)ψ(u− v) du dv 6 C|ϕ|2Lp(0,T ; � )

holds for some C > 0 which depends only on T and p, where

(1) ψ(u) = H(2H − 1)|u|2H−2.

This lemma is an easy consequence of the Young inequality ([18], Proposition
12.25).

First we define the stochastic integral

(2)
∫ T

0

f dβH

for f ∈ Lp(0, T ; � n) and a scalar (fBm) (βH (t), t ∈ [0, T ]). Let E be the family of
all � n -valued step functions, i.e.

E =
{
f : f(s) =

n−1∑

i=1

fi1[ti,ti+1)(s), 0 = t1 < t2 < . . . < tn = T and

fi ∈ � n for i ∈ {1, . . . , n− 1}
}
.

For f ∈ E we define the stochastic integral (2) as
∫ T

0

f dβH :=
n−1∑

i=1

fi(βH (ti+1)− βH(ti)).

The mean of this Gaussian random variable is zero and the covariance matrix is



(∫ T

0

f dβH

∫ T

0

f ′ dβH

)
(3)

=
n−1∑

i=0

n−1∑

j=0

fif
′
j 


(
βH (ti+1)− βH (ti)

)(
βH(tj+1)− βH (tj)

)

=
n−1∑

i=0

n−1∑

j=0

fif
′
j 


(
βH (ti+1)βH(tj+1)− βH (ti+1)βH (tj)

− βH(ti)βH (tj+1) + βH(ti)β(tj)
)
.
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It is easy to verify that the last term is equal to

(4)
n−1∑

i=0

n−1∑

j=0

∫ ti+1

ti

∫ tj+1

tj

fif
′
jψ(u− v) du dv =

∫ T

0

∫ T

0

f(u)f(v)′ψ(u− v) du dv.

By Lemma 2.2 it follows that
∥∥∥∥
∫ T

0

f dβH

∥∥∥∥
2

L2(Ω; � n)

=
∫ T

0

∫ T

0

〈f(u), f(v)〉ψ(u− v) du dv(5)

6 C

(∫ T

0

|f(s)|p ds
)2/p

= C|f |2Lp(0,T ; � n) .

Because E is dense in Lp(0, T ; � n) there is a sequence {fk} ⊂ E such that |fk −
f |Lp(0,T ; � n) → 0 for f ∈ Lp(0, T ; � n). This is a Cauchy sequence in Lp(0, T ; � n).
It follows from inequality (5) that also the sequence of the corresponding stochas-

tic integrals is a Cauchy sequence in the complete space L2(Ω; � n ) and therefore∫ T

0
fk dβH converge to some centered, Gaussian random vector which we denote by∫ T

0
f dβH .

Now we will define the stochastic integral with respect to an � n -valued (fBm)

(6)
∫ T

0

G dBH

where G : [0, T ] → � n×n is a non-random real matrix. We assume that the matrix G
satisfies

(7) G(·) ∈ Lp(0, T ; � n×n)

for some p > 1/H . We define the stochastic integral (6) as

I(G;T ) :=
∫ T

0

G dBH :=
n∑

i=1

∫ T

0

Gi dβH
i

where βH
i (·), i = 1, . . . , n, are components of the (fBm) BH(·) andGi are the columns

of G. Independence of random variables
∫ T

0 Gi dβH
i , conditions (7) and (5) imply


 |I(G, T )|2 =
n∑

i=1

∣∣∣∣
∫ T

0

Gi dβH

∣∣∣∣
2

=
n∑

i=1

∫ T

0

∫ T

0

〈G(s)i, G(r)i〉ψ(s− r) ds dr <∞,

therefore the integral (6) is an � n -valued Gaussian variable. Its probability law is
given in the next proposition.
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Proposition 2.3. If G : [0, T ] → � n×n satisfies condition (7), then I(G, T ) is an
� n -valued Gaussian random variable with zero mean and the covariance matrix

(8) 
 [I(G, T )I(G, T )′ ] =
∫ T

0

∫ T

0

G(u)G(v)′ψ(u− v) du dv

where ψ is given by (1).

���������
. I(G, T ) is obviously a Gaussian random variable with zero mean. Let

C be its covariance matrix. We have

〈Cx, y〉 = 
 [〈x, I(G, T )〉〈y, I(G, T )〉]

= 

[〈

x,

n∑

i=1

∫ T

0

Gi dβH
i

〉〈
y,

n∑

j=1

∫ T

0

Gj dβH
j

〉]

= 

[ n∑

i=1

〈
x,

∫ T

0

Gi dβH
i

〉〈
y,

∫ T

0

Gi dβH
i

〉]

for all x, y ∈ � n . For arbitrary f ∈ Lp(0, T ; � n) we have

〈
x,

∫ T

0

f dβH
i

〉
:=

∫ T

0

〈x, f〉 dβH
i for i = 1, . . . , n and x ∈ � n .

This is true for step functions and therefore for every function from Lp(0, T ; � n).
Consequently,

〈Cx, y〉 =
n∑

i=1



[∫ T

0

〈x,Gi〉 dβH
i

∫ T

0

〈y,Gi〉 dβH
i

]

=
n∑

i=1

∫ T

0

∫ T

0

〈x,G(r)i〉〈y,G(s)i〉ψ(r − s) dr ds

=
∫ T

0

∫ T

0

〈G(s)G(r)′x, y〉ψ(r − s) dr ds,

and hence C =
∫ T

0

∫ T

0 G(u)G(v)′ψ(u− v) du dv. �

Now it will be shown that the integration by parts is valid. Let BV (0, T ) denote
the space of functions with bounded variation on [0, T ].
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Proposition 2.4. Let ϕ ∈ BV (0, T ) and assume that βH (t) is an � -valued (fBm).
Then

(9)
∫ T

0

ϕ(t) dβH (t) = ϕ(T )βH(T )−
∫ T

0

βH (t) dϕ(t) P-a.s.

where the second term on the right-hand side is the Stieltjes integral.
���������

. Since ϕ ∈ BV (0, T ) there exist nondecreasing functions ϕ+, ϕ− :
[0, T ] → � such that ϕ = ϕ+ − ϕ−. We will prove the equality (9) for ϕ+ (the

proof for ϕ− is analogous). Let ∆n(T ) := {0 = tn0 < tn1 < . . . < tnkn
= T, kn ∈ � },

n ∈ � , be a partition of the interval [0, T ] such that

(10) |∆n(T )| := max
06k6kn

|tnk+1 − tnk | → 0 for n→∞.

If we define a sequence of the step functions

ϕ+
n (t) =

kn−1∑

k=0

ϕ+(tnk )1[tn
k

,tn
k+1)

(t) for t ∈ [0, T ), ϕ+
n (T ) = ϕ(T ) for n ∈ � ,

we obtain

kn∑

k=0

ϕ+(tnk )
(
βH(tnk+1)− βH (tnk )

)

=
kn∑

k=0

(
ϕ+(tnk+1)β

H(tnk+1)− ϕ+(tnk )βH (tnk )− βH(tnk+1)(ϕ
+(tnk+1)− ϕ+(tnk ))

)

and hence

(11)
∫ T

0

ϕ+
n (t) dβH(t) = ϕ+(T )βH(T )−

kn−1∑

k=0

βH(tnk+1)
(
ϕ+(tnk+1)− ϕ+(tnk )

)
.

For every ω ∈ Ω the function βH(ω, ·) is continuous, therefore for n → ∞ the limit
on the right-hand side exists and is equal to the Stieltjes integral

∫ T

0

βH(t) dϕ+(t).

Functions ϕ+
n converge to ϕ

+ in Lp(0, T ; � ), because 1 < 1/H < p and

∫ T

0

|ϕ+(t)− ϕ+
n (t)|p dt =

kn−1∑

k=0

∫ tn
k+1

tn
k

|ϕ+(t)− ϕ+
n (t)|p dt

6
kn−1∑

k=0

|tnk+1 − tnk |
(
ϕ+(tnk+1)− ϕ+(tnk )

)p

6 |∆n(T )|
(
ϕ+(T )− ϕ+(0)

)p
.
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Consequently, we can find a subsequence ∆nm(T ) such that
∫ T

0

ϕ+
nm

(t) dβH(t) →
∫ T

0

ϕ+(t) dβH(t) for m→∞ P-a.s.

From the linearity of the stochastic integral we can conclude that ϕ ∈ Lp(0, T ; � )
and

∫ T

0

ϕ(t) dβH(t) :=
∫ T

0

ϕ+(t) dβH (t)−
∫ T

0

ϕ−(t) dβH(t)

:= ϕ(T )βH (T )−
(∫ T

0

βH(t) dϕ+(t)−
∫ T

0

βH (t) dϕ−(t)
)

= ϕ(T )βH (T )−
∫ T

0

βH(t) dϕ(t).

�

3. The linear equation

In this section the linear stochastic differential equation

(12) dXt = AXt dt+ Φ dBH
t , X0 = x0

is studied where A ∈ � n×n , Φ ∈ � n×m , x0 ∈ � n and BH is an � m -valued (fBm)
defined on the probability space (Ω,F ,P).
A strong solution of the equation (12) is defined as a continuous process (Xt, t > 0)

satisfying

(13) Xt = x0 +
∫ t

0

AXs ds+ ΦBH
t , t > 0 P-a.s..

The strong solution to the equation (12) exists and is given by the so called “mild
formula”:

(14) Xt = eAtx0 +
∫ t

0

eA(t−s)Φ dBH
s , t > 0.

As is well known, formula (14) for H = 1/2 defines the Ornstein-Uhlenbeck process
which solves our equation (12) with H = 1/2 (B1/2 is the Wiener process).

The process defined by (14) is Gaussian with the mean eAtx0 and the covariance
matrix

(15) Qt =
∫ t

0

∫ t

0

eAuΦΦ′eA′vψ(u− v) du dv

for t > 0 as follows from Proposition 2.3.
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Proposition 3.1. The strong solution to the equation (12) is unique P-a.s. and

is given by the formula (14).
���������

. First we will prove that the process (14) has a continuous modification.

For n ∈ � and t, s ∈ [n, n+ 1], t > s, we have


 |Xt −Xs|2 6 2
∣∣eAtx0 − eAsx0

∣∣2 + 2 

∣∣∣∣
∫ t

0

eA(t−u)Φ dBH
u −

∫ s

0

eA(s−u)Φ dBH
u

∣∣∣∣
2

= J1 + J2.

There exist constants K1 and K2 such that

J1 6 2
(
|x0| |A|e|A|T (t− s)

)2 6 K1(t− s)2H ,

J2 = 2 

∣∣∣∣
∫ s

0

(
eA(t−u) − eA(s−u)Φ

)
dBH

u +
∫ t

s

eA(t−s)Φ dBH
u

∣∣∣∣
2

6 4 

∣∣∣∣
(
eA(t−s) − I

) ∫ s

0

eA(s−u)Φ dBH
u

∣∣∣∣
2

+ 4 

∣∣∣∣
∫ t

s

eA(t−u)Φ dBH
u

∣∣∣∣
2

6 4
(
|A|e|A|(t− s)

)2 Tr
∫ s

0

∫ s

0

eAuΦΦ′eA′vψ(u− v) du dv

+ 4 Tr
∫ t

s

∫ t

s

eAuΦΦ′eA′vψ(u− v) du dv

6 4|A|e2|A| sup
s∈[n,n+1]

|TrQs|(t− s)2H + 4 Tr sup
n6u, v6n+1

∣∣eAuΦΦ′eA′v
∣∣(t− s)2H

6 K2(t− s)2H .

It follows from the Kolmogorov-Tchentsov Theorem that there exists a continuous

modification Xn
t of the process Xt in the interval [n, n + 1]. Therefore we can find

sets Un, n ∈ � , such that

Xn
n+1(ω) = Xn+1(ω) = Xn+1

n+1 (ω), ω ∈ Ω \ Un, P (Un) = 0.

It follows that P
( ∞⋃

n=0
Un

)
= 0 and for ω ∈ Ω\

∞⋃
n=0

Un the process X̃t(ω) := Xn
t (ω) is

a continuous modification of Xt on [n, n+1] (we will write Xt for this modification).
Now we verify that the process (14) satisfies equation (13). We use the equation

(16)
∫ t

0

(∫ s

0

AeA(s−r)Φ dBH (r)
)

ds =
∫ t

0

(∫ t

r

AeA(s−r) ds
)

Φ dBH(r)

which we have got by integration by parts:
∫ s

0

AeA(s−r)Φ dBH(r) = AΦBH(s) +
∫ s

0

A2eA(s−r)ΦBH(r) dr
∫ t

0

(∫ t

r

AeA(s−r) ds
)

Φ dBH(r) =
∫ t

0

(
A+

∫ t

r

A2eA(s−r) ds
)

ΦBH(r) dr.
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Using (16) we have for the left-side of (13)

x0 +
∫ t

0

AX(s) ds+ ΦBH(t)

= x0 +
∫ t

0

A

(
eAsx0 +

∫ s

0

eA(s−r)Φ dBH(r)
)

ds+ ΦBH(t)

= eAtx0 +
∫ t

0

(∫ t

r

AeA(s−r) ds
)

Φ dBH(r) + ΦBH(t)

= eAtx0 +
∫ t

0

(
eA(t−r) − I

)
Φ dBH(r) + ΦBH(t) = X(t)

and hence Xt is a strong solution. Let Yt be any strong solution, then

|Xt − Yt| =
∣∣∣∣
∫ t

0

A(Xs − Ys) ds
∣∣∣∣ 6

∫ t

0

|A| |Xs − Ys| ds for t > 0 P-a.s.,

and using the Gronwall lemma we have P [|Xt − Yt| = 0, t > 0] = 1. �

Proposition 3.2. Let matrices S(t), Qt ∈ � n×n be differentiable, Qt symmetric

and positive definite, S(t) invertible and let

(17) p(t, x, y) =
1

(2 � )n/2(detQt)1/2
exp

{
−1

2
(S(t)x − y)′Q−1

t (S(t)x− y)
}

be the density of the n-dimensional Gaussian distribution Nn(S(t)x,Qt). Then

∂p(t, x, y)
∂t

= 〈S(t)−1Ṡ(t)x,Dxp(t, x, y)〉(18)

+
1
2

Tr(S(t)−1Q̇t(S(t)−1)′D2
xp(t, x, y)).

���������
. We are using the following formulae for the time derivatives of the

determinant and the inverse matrix:

d
dt

detQt = detQt Tr(Q−1
t Q̇t),

d
dt
Q−1

t = −Q−1
t Q̇tQ

−1
t .

Thus for the first factor in the formula (17) we have

d
dt

(detQt)−1/2 = −1
2

detQt TrQ−1
t Q̇t

(detQt)3/2
= −1

2
TrQ−1

t Q̇t

(detQt)1/2
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and setting z := S(t)x− y we have

∂p(t, x, y)
∂t

= − p(t, x, y)
{

1
2

Tr(Q−1
t Q̇t) + (Ṡ(t)x)′Q−1

t z

}

+
1
2
p(t, x, y)

{
z′Q−1

t Q̇tQ
−1
t z

}
.

We have

Dxp(t, x, y) = − p(t, x, y)S(t)′Q−1
t z,

D2
xp(t, x, y) = p(t, x, y)S(t)′Q−1

t zz′Q−1
t S(t)− p(t, x, y)S(t)′Q−1

t S(t),

and therefore

〈S(t)−1Ṡ(t)x,Dxp(t, x, y)〉 = − p(t, x, y)(Ṡ(t)x)′Q−1
t z,

(S(t)−1)′D2
xp(t, x, y)S(t)−1Q̇t = p(t, x, y)Q−1

t zz′Q−1
t Q̇t − p(t, x, y)Q−1

t Q̇t,

and

1
2

Tr((S(t)−1)′D2
xp(t, x, y)S(t)−1Q̇t)

=
1
2
p(t, x, y)z′Q−1

t Q̇tQ
−1
t z − 1

2
p(t, x, y)Tr(Q−1

t Q̇t).

Now it is easy to see that equation (18) is satisfied. �

Let Xx
t denote the solution of equation (12) with an initial condition X

x
0 = x.

Proposition 3.3. Suppose ΦΦ′ > 0 and let f : � n → � be a Borel-measurable
function satisfying the condition

(19)
∫ +∞

−∞
|f(y)|e−a|y|2 dy <∞

for some a > 0. Then there exists t0 > 0 such that the function

(20) u(t, x) := 
 f(Xx
t )

is well defined, differentiable with respect to t for t ∈ (0, t0), u(t, ·) ∈ C∞( � n ), and
that

(21)
∂u(t, x)
∂t

= 〈Ax,Dxu(t, x)〉 + Tr(ΦΦ′C(t)D2
xu(t, x))
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holds for (t, x) ∈ (0, t0) × � n where C(t) =
∫ t

0
e−A′sψ(s) ds and ψ(s) = H(2H −

1)|s|2H−2. If f is bounded and continuous, then

(22) f(x) = lim
t→0+

u(t, x) ∀x ∈ � n .

���������
. Let p(t, x, y) be given by (17), where we substitute S(t) = eAt and Qt

according to (15). Note that

S(t)−1Ṡ(t) = e−AtAeAt = A

and due to the symmetry of the covariance matrix we have

Qt =
∫ t

0

∫ t

0

eAuΦΦ′eA′vψ(u− v) du dv

= 2
∫ t

0

eAu

∫ u

0

ΦΦ′eA′vψ(u− v) dv du,

Q̇t = 2eAtΦΦ′
∫ t

0

eA′vψ(t− v) dv,(23)

S(t)−1Q̇t(S(t)−1)′ = 2ΦΦ′
∫ t

0

eA′(v−t)ψ(t− v) dv(24)

= 2ΦΦ′
∫ t

0

e−A′uψ(u) du.

Therefore, we have

(25)
∂p(t, x, y)

∂t
= 〈Ax,Dxp(t, x, y)〉+ Tr(ΦΦ′C(t)D2

xp(t, x, y)).

Now we will prove that the function u(t, x) =
∫
� n f(y)p(t, x, y) dy is differentiable.

We bound eigenvalues Qt from above and from below to find an integrable majorant

to derivatives of p(t, x, y). Matrices Qt are positive definite for t > 0, therefore there
exist orthonormal matrices Ut and diagonal matrices Λt > 0 such that Qt = U ′tΛtUt.
If we denote the diagonal entries of the matrix Λt by λi(t), then lim

t→0
λi(t) = 0 for

i ∈ {1, . . . , n}. It follows that we can find t0 > 0 such that

(26) 0 < λi(t) < (4a)−1 for 0 < t < t0, i ∈ {1, . . . , n}.

The function detQt is continuous, positive and so for every t1 ∈ (0, t0)

(27) inf
t16t6t0

detQt =: inf
t16t6t0

n∏

i=1

λi(t) =: δ1 > 0
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and for t ∈ (t1, t0) and for all i

λi(t) > δ1

(∏

j 6=i

λj(t)
)−1

> δ1(4a)n−1 =: δ > 0.

Therefore |Q−1
t |2 =

n∑
i=1

λi(t)−2 < nδ−2 and we can estimate the normalizing constant

in p(t, x, y) by (2 � )−n/2(detQt)−1/2 < (2 � )−n/2δ
−1/2
1 for t > t1. Further we estimate

the exponent in p(t, x, y). Let |x| < k for some constant k. Then for 0 < t < t0

−1
2
(
eAtx− y

)′
Q−1

t

(
eAtx− y

)
= − 1

2
(
eAtx− y

)′
U ′tΛ

−1
t Ut

(
eAtx− y

)
(28)

= − 1
2
(
UteAtx− Uty

)′Λ−1
t

(
UteAtx− Uty

)

6 4a
(
UteAt

)′
Uty − 2a(Uty)′Uty

6 4a|Ut|2e|A|t|x| |y| − 2a|y|2

6 4an e|A|t0k|y| − 2a|y|2(29)

= − 2a|y|2
(

1− 2nk e|A|t0

|y|

)
6 −a|y|2

for |y| > y0, y0 sufficiently large. If we take J = (t1, t0) × Bk(0) (Bk(0) is the open
ball with center 0 and radius k), then we have

∣∣∣∂f(y)p(t, x, y)
∂t

∣∣∣ ∨
∣∣∣∂

k+lf(y)p(t, x, y)
∂xk

i ∂x
l
j

∣∣∣ 6 K|f(y)|e−a|y|2(30)

∀ y ∈ � n , ∀ (t, x) ∈ J, i, j ∈ {1, . . . , n}, k, l ∈ {0, 1}

where K is a constant independent of t and x. Our statement follows from (25) and
the theorem about differentiation of an integral with respect to a parameter.

If the function f is bounded and continuous then for almost all ω we have

f(Xx
t (ω)) → f(x) < ∞ for all x and the equation (22) follows from the dominated

convergence theorem. �

Corollary 3.4. If ΦΦ′ > 0, f : � n → � is a Borel-measurable function and there
exists b > 0 such that

(31)
∫ +∞

−∞
|f(y)|e−b|y| dy <∞

then the statement of Proposition 3.4 is valid for all t0 > 0.
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. For arbitrary t0 > 0 we have sup

t∈(0,t0)

λi(t) < ∞. Therefore we can find

a > 0 which satisfies (26) and also (19) because

∫ +∞

−∞
|f(y)|e−a|y|2 dy =

∫ +∞

−∞
e−a|y|2+b|y||f(y)|e−b|y| dy <∞

for every a > 0. �

4. Limit measure for the solution of the equation

In this section we are interested in weak and strong convergence of the probability

laws of the solutions to the equation (12). In the case when the matrix A is negatively
definite there exists a limit measure in the weak sense. Let Nn(a,Q) denote the
n-dimensional Gaussian distribution with mean a and a covariance matrix Q and let
µx

t denote the distribution of the solution X
x
t to the equation (12) with an initial

condition Xx
0 = x.

Proposition 4.1. If A is negatively definite then the matrix

Q∞ =
∫ ∞

0

∫ ∞

0

eAuΦΦ′eA′vψ(u− v) du dv

is well defined and for µ∞ := N(0, Q∞) we have

lim
t→∞

µx
t = µ∞, w?-weakly

for every x.

���������
. If A is negatively definite then there exist constantsM,ω > 0 such that

|eAt| 6 Me−ωt, t > 0.

We define a random process Z(t) by

Z(t) :=
∫ t

0

eAuΦ dBH(u)

which has the distribution µt = N(0, Qt), where Qt is the covariance matrix from
Proposition 3.2. Now we show that (Z(t), t > 0) converge in L2(Ω; � n ) for t → ∞.
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Let t > s > 1. There exist constants (all of them are denoted by the same K) such
that


 |Z(t) − Z(s)|2 = 

∣∣∣∣
∫ t

s

eAuΦ dBH(u)
∣∣∣∣
2

= Tr
∫ t

s

∫ t

s

eAuΦΦ′eA′vψ(u− v) du dv

6
∫ t

s

∫ t

s

∣∣eAuΦ
∣∣ ∣∣eA′vΦ

∣∣ψ(u− v) du dv

6 K

∫ ∞

s

∫ ∞

s

e−ωue−ωvψ(u− v) du dv

= 2K
∫ ∞

s

∫ v

s

e−ωue−ωvψ(u− v) du dv

6 K

∫ ∞

s

e−ωv

∫ v

s

e−ωu(v − u)2H−2 du dv

6 K

∫ ∞

s

e−ωvv2H−1

∫ 1

0

(1− u)2H−2 du dv

6 K

∫ ∞

s

e−ωvv2H−1 dv.

The last integral on the right-hand side converges to 0 for s → ∞. Therefore every
sequence Z(t), t → ∞ is Cauchy sequence in L2(Ω; � n ) and hence there exists a
random vector Z(∞) such that Z(t) → Z(∞) in L2(Ω). The probability law of Z(∞)
is µ∞ = N(0, Q∞), because Qt → Q∞. For x ∈ � n and ϕ : � n → � a bounded and
lipschitz continuous function we have

∣∣∣∣
∫

� n

ϕ dµx
t −

∫

� n

ϕ dµ∞

∣∣∣∣ =
∣∣ 
 ϕ(

eAtx+ Z(t)
)
− 
 ϕ(Z(∞))

∣∣

6 kϕ

(∣∣eAtx
∣∣ + 
 |Z(t) − Z(∞)|

)

6 kϕ(M |x|e−ωt + 
 |Z(t) − Z(∞)|2)1/2)

where kϕ is the Lipschitz constant of ϕ. Our assertion easily follows. �

In what follows we consider the metric of total variation ‖P1 − P2‖var :=
sup
B∈B

|P1(B) − P2(B)| as the “distance” between two probability measures P1 and

P2 on B ≡ B( � n ). If these measures are absolutely continuous with respect to the
Lebesgue measure with densities f1 and f2 we have

(32) ‖P1 − P2‖var =
1
2

∫

� n

|f1(x)− f2(x)| dx.
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Suppose moreover that A = A′ and ΦΦ′A = AΦΦ′. Then there exists an or-
thonormal basis (ei) and numbers −αn < −αn−1 < . . . < −α1 < 0 and 0 < λi such
that

(33) Aei = −αiei and ΦΦ′ei = λiei

(see [9]). In this case the eigenvalues of Qt are

qi(t) = λi

∫ t

0

∫ t

0

e−αiue−αivψ(u− v) du dv(34)

=
λi

α2H
i

∫ tαi

0

∫ tαi

0

e−ue−vψ(u− v) du dv

and the eigenvalues of Q∞ are

(35) qi =
λi

α2H
i

∫ ∞

0

∫ ∞

0

e−ue−vψ(u− v) du dv.

If we denote

f(y, z, t) = ( � )−n/2(detQt)−1/2 exp{−(z − y)′Q−1
t (z − y)}

for y, z ∈ � n , t ∈ � + ∪ {∞} then the measure µx
t has the density f(·, eAtx, t) and

the measure µ∞ has the density f(·, 0,∞).

Proposition 4.2. If A and ΦΦ′ satisfy the above conditions then

(36) ‖µx
t − µ∞‖var 6 K(|x|+ 1)e−tα, t > 1,

for an arbitrary 0 < α < α1 and a constant K = K(H,α, λi).
���������

. The measures µx
t and µ∞ are absolutely continuous with respect to the

Lebesgue measure, therefore

‖µx
t − µ∞‖var =

1
2

∫

� n

∣∣f
(
y, eAtx, t

)
− f(y, 0,∞)

∣∣dy(37)

6
∫

� n

∣∣f
(
y, eAtx, t

)
− f(y, 0, t)

∣∣dy

+
∫

� n

|f(y, 0, t)− (detQ−1
t detQ∞)1/2f(y, 0,∞)| dy

+
∫

� n

|(detQ−1
t detQ∞)1/2f(y, 0,∞)− f(y, 0,∞)| dy.
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Due to the mean value theorem and to the Fubini theorem we can estimate the first

term on the right-hand side:
∫

� n

∣∣f
(
y, eAtx, t

)
− f(y, 0, t)

∣∣dy(38)

=
∫

� n

∣∣∣∣
∫ 1

0

〈
Dzf

(
y, ueAtx, t

)
, eAtx

〉
du

∣∣∣∣dy

=
∫

� n

∣∣∣∣
∫ 1

0

〈
Q−1

t

(
ueAtx− y

)
, eAtx

〉
f
(
y, ueAtx, t

)
du

∣∣∣∣dy

6 |Q−1
t |

∣∣eAtx
∣∣
∫ 1

0

∫

� n

∣∣ueAtx− y
∣∣f

(
y, ueAtx, t

)
dy du.

Now we substitute z = ueAtx− y and use the Hölder inequality, which yields

|Q−1
t | |eAtx|

∫

� n

|z|f(z, 0, t) dz 6 |Q−1
t | |Qt|

∣∣eAtx
∣∣(39)

6 |Q−1
1 | |Q∞| |x| e−tα1 .

The second term on the right-hand side in (37) we estimate as follows:

∫

� n

|f(y, 0, t)− (detQ−1
t detQ∞)1/2f(y, 0,∞)| dy(40)

=
∫

� n

( � n detQt)−1/2

∣∣∣∣exp
{
−

n∑

i=1

qi(t)−1y2
i

}
− exp

{
−

n∑

i=1

q−1
i y2

i

}∣∣∣∣dy

= ( � n detQt)−1/2

∫

� n

∣∣∣∣
∫ 1

0

∂

∂u
exp

{
−

n∑

i=1

(q−1
i + u(qi(t)−1 − q−1

i ))y2
i

}
du

∣∣∣∣dy

= ( � n detQt)−1/2
n∑

i=1

∫

� n

(
qi − qi(t)
qi(t)qi

)
y2

i exp
{
−

n∑

i=1

q−1
i y2

i

}

×
∫ 1

0

exp
{
−u

n∑

i=1

(qi(t)−1 − q−1
i )y2

i

}
du dy

6 max
i∈{1,...,n}

{
qi − qi(t)
qiqi(t)

}
( � n detQt)−1/2

∫

� n

|y|2 exp
{
−

n∑

i=1

q−1
i y2

i

}
dy

= max
i∈{1,...,n}

{
qi − qi(t)
qiqi(t)

}
(detQ−1

t Q∞)1/2|Q∞|

6
n∑

i=1

(
qi − qi(t)
qiqi(t)

)
(detQ−1

1 Q∞)1/2|Q∞|,

because 0 < q(1) < qi(t) for all i and for all t > 1. Let α < α1, then there exist
constants ki (their values may differ from line to line) depending only on H , λi, αi
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and α such that

qi − qi(t) = ki

∫ ∞

t

e−αiu

∫ u

0

e−αiv |u− v|2H−2 dv du(41)

6 ki

∫ ∞

t

e−αiu

∫ ∞

0

e−αiv|u− v|2H−2 dv du

= ki

∫ ∞

t

e−αiu

∫ ∞

0

e−αivu2H−2|1− v/u|2H−2 dv du

= ki

∫ ∞

tαi

e−uu2H−1

∫ ∞

0

e−uv|v − 1|2H−2 dv du

6 ki

∫ ∞

tαi

e−uu2H−1 du = ki

∫ ∞

t

e−αiuu2H−1 du

= kie−tα

∫ ∞

t

e−(αi−α)uu2H−2 du 6 kie−tα.

Now we can estimate the expression (40) by a negative exponential, because

(42)
n∑

i=1

(
qi − qi(t)
qiqi(t)

)
6 e−tα

n∑

i=1

ki

qiqi(1)
.

For the third term in (37) we have

∫

� n

|(detQ−1
t detQ∞)1/2f(y, 0,∞)− f(y, 0,∞)| dy(43)

= |(detQ−1
t detQ∞)1/2 − 1| =

∣∣∣∣
n∏

i=1

√
qiqi(t)−1 − 1

∣∣∣∣.

As we have

√
qi
qi(t)

=
√
qi −

√
qi(t)√

qi(t)
+ 1 =

qi − qi(t)√
qi(t)(

√
qi +

√
qi(t))

+ 1

6 qi − qi(t)
qi(t)

+ 1 6 exp
{
qi − qi(t)
qi(t)

}

and 0 < qi − qi(t) → 0 for t→ +∞ we get

(44)

∣∣∣∣
n∏

i=1

√
qiqi(t)−1 − 1

∣∣∣∣ 6 exp
{ n∑

i=1

qi − qi(t)
qi(t)

}
− 1 6 K1

n∑

i=1

qi − qi(t)
qi(t)

for some constant K1. Similarly to (42) there exists a constant K such that Ke−tα,
t > 1 is a majorant for the right-hand side of (44). �
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4.3. In particular, if A and Φ are diagonal, Proposition 4.2 may be

applied.
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