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Abstract. An equivalent model of nonsmooth equations for a constrained minimax prob-
lem is derived by using a KKT optimality condition. The Newton method is applied to
solving this system of nonsmooth equations. To perform the Newton method, the compu-
tation of an element of the b-differential for the corresponding function is developed.
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1. Introduction

Consider the nonlinear programming problem of the form

minimize f(x)(P1)

subject to gi(x) 6 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , l

where f, gi, hj : � n → � , i = 1, . . . ,m, j = 1, . . . , l, are continuously differentiable.
Under some constraint conditions, the problem (P1) is equivalent to the following

Karush-Kuhn-Tucker (KKT) system:

(1.1)





∇f(x) +
m∑

i=1

ui∇gi(x) +
l∑

j=1

vj∇hj(x) = 0,

uigi(x) = 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , l,

ui > 0, gi(x) 6 0, i = 1, . . . ,m.

*This work has been supported by Shanghai Education Committee (04EA01).
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The system (1.1) could be transformed into nonsmooth equations of the form

(1.2)





∇f(x) +
m∑

i=1

ui∇gi(x) +
l∑

j=1

vj∇hj(x) = 0,

min{ui,−gi(x)} = 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , l.

Many publications dealt with the system (1.2) to solve the problem (P1), see for
instance [4], [11]–[15].

Nevertheless, no papers which would apply directly the nonsmooth equations
methods to solving minimax problems have appeared. In this paper, we intend to ex-

plore a nonsmooth equations method for solving the constrained minimax problem,
see the problem (P2) below. The paper is organized as follows: In the remainder of
this section, some preliminaries are reviewed. In the next section, the nonsmooth
equations model of the minimax problem is derived. In Section 3, the method for

solving our system of nonsmooth equations is developed. In Section 4, numerical
examples are listed.

Let F : � n → � m be locally Lipschitzian and let DF denote the set where F is
differentiable. By the definition in [12],

∂BF (x) =
{

lim
xn→x

JF (xn) | xn → x, xn ∈ DF

}
,

where “J” denotes the Jacobian, is called the B-differential of F at x. According
to [1],

∂ClF (x) = conv ∂BF (x)

is called the Clarke generalized Jacobian of F at x; in particular, in the case m = 1,
∂ClF (x) reduces to the Clarke generalized gradient. Following [15],

∂bF (x) = ∂Bf1(x) × . . .× ∂Bfm(x),

where fi(x) is the ith component of F (x), is called the b-differential of F at x;
particularly, if m = 1, ∂bF (x) = ∂BF (x).
Following the definition in [14], a locally Lipschitzian function F : � n → � m is

said to be semismooth at x provided that

lim
V ∈∂ClF (x+th′)

h′→h, t→0+

V h′

exists for any h ∈ � n . Convex functions, smooth functions, maximums of smooth

functions and piecewise C1 functions are semismooth. It was shown that a function F
from � n to � m is semismooth if and only if all its components are semismooth.
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According to the definition in [3], f : � n → � is said to be quasidifferentiable at a
point x ∈ � n , in the sense of Demyanov and Rubinov, if it is directionally differen-
tiable at x and its directional derivative f ′(x; ·) is representable as the difference of
two sublinear functions. In other words, there exists a pair of convex compact sets

∂f(x), ∂f(x) ⊂ � n such that

f ′(x; d) = max
v∈∂f(x)

vT d+ min
w∈∂f(x)

wT d, ∀ d ∈ � n .

The pair of sets Df(x) = [∂f(x), ∂f(x)] is called the quasidifferential of f at x, ∂f(x)
and ∂f(x) are called the subdifferential and the superdifferential, respectively.
Let U be a convex compact set in � n . The support function PU of U is defined

by PU (x) = max
u∈U

uTx.

Given ψi : � n → � , i ∈ I , where I is a finite index set, we denote

g(x) = max
i∈I

ψi(x),(1.3)

h(x) = min
i∈I

ψi(x),(1.4)

I(x) = {i ∈ I | ψi(x) = g(x)},(1.5)

I(x) = {i ∈ I | ψi(x) = h(x)}.(1.6)

If ψi, i ∈ I are continuously differentiable, then the Clarke generalized gradients of g
and of h, given in (1.3) and (1.4), are formulated as follows:

∂Clg(x) = conv{∇ψi(x) | i ∈ I(x)},(1.7)

∂Clh(x) = conv{∇ψi(x) | i ∈ I(x)}.(1.8)

Suppose that each ψi is quasidifferentiable with the quasidifferential [∂ψi(x), ∂ψi(x)].
Then both g and h, given in (1.3) and (1.4), respectively, are again quasidifferentiable
and their quasidifferentials [∂g(x), ∂g(x)] and [∂h(x), ∂h(x)] have the form

∂g(x) = conv
⋃

k∈I(x)

(
∂ψk(x)−

∑

i∈I(x), i6=k

∂ψi(x)
)
,(1.9)

∂g(x) =
∑

k∈I(x)

∂ψk(x),(1.10)

∂h(x) =
∑

k∈I(x)

∂ψk(x),(1.11)

∂h(x) = conv
⋃

k∈I(x)

(
∂ψk(x)−

∑

i∈I(x), i6=k

∂ψi(x)
)
.(1.12)
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2. The model of nonsmooth equations

Consider the constrained minimax problem of the form

minimize max
16i6m

fi(x)(P2)

subject to gj(x) 6 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q

where fi, gj , hk : � n → � , i = 1, . . . ,m, j = 1, . . . , p, k = 1, . . . , q are continuously
differentiable.

We know that the Karush-Kuhn-Tucker (KKT) optimality condition for (P2) has
the form [1], [2]

(2.1)





0 ∈ ∂Cl

(
max

16i6m
fi(x)

)
+

p∑

j=1

vj∇gj(x) +
q∑

k=1

wk∇hk(x),

vjgj(x) = 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q,

vj > 0, gj(x) 6 0, j = 1, . . . , p.

Under some constraint qualifications, for instance fi, i = 1, . . . ,m and gj , j = 1, . . . , p
are convex, hk, k = 1, . . . , q are affine [1], [7], the problem (P2) is equivalent to

the system (2.1). Actually, most existing algorithms for solving the problem (P2)
generate a KKT point, i.e., a point satisfying (2.1). They are not ensured to generate

a minimizer. According to [1], [3], we have

∂Cl

(
max

16i6m
fi(x)

)
= conv{∇fi(x) | fi(x) = max

16s6m
fs(x)}

=
{ m∑

i=1

ui∇fi(x) | ui

(
max

16s6m
fs(x)− fi(x)

)
= 0,

m∑

i=1

ui = 1, ui > 0
}
.

Thus (2.1) is equivalent to the system

(2.2)





m∑

i=1

ui∇fi(x) +
p∑

j=1

vj∇gj(x) +
q∑

k=1

wk∇hk(x) = 0,

ui

(
max

16s6m
fs(x) − fi(x)

)
= 0, i = 1, . . . ,m,

m∑

i=1

ui = 1, ui > 0, i = 1, . . . ,m,

vjgj(x) = 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q,

vj > 0, gj(x) 6 0, j = 1, . . . , p.
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We now consider a constraint qualification at a point x denoted by (CQ): The

following nonlinear system has no non-zero solutions:




p∑

j=1

vj∇gj(x) +
q∑

k=1

wk∇hk(x) = 0,

vjgj(x) = 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q,

vj > 0, gj(x) > 0, m, j = 1, . . . , p.

Under the constraint qualification (CQ), it is easy to see that (2.2) is equivalent to

the system

(2.3)





m∑

i=1

ui∇fi(x) +
p∑

j=1

vj∇gj(x) +
q∑

k=1

wk∇hk(x) = 0,

ui

(
max

16s6m
fs(x)− fi(x)

)
= 0, i = 1, . . . ,m,

vjgj(x) = 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q,

ui > 0, i = 1, . . . ,m, vj > 0, gj(x) 6 0, m, j = 1, . . . , p.

On the other hand, (2.3) can be rewritten by

(2.4)





m∑

i=1

ui∇fi(x) +
p∑

j=1

vj∇gj(x) +
q∑

k=1

wk∇hk(x) = 0,

min{ui, max
16s6m

fs(x)− fi(x)} = 0, i = 1, . . . ,m,

min{vj ,−gj(x)} = 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q,

because 0 6 max
16s6m

fs(x) − fi(x) for i = 1, . . . ,m.

Evidently, the corresponding function of the system (2.4) is Lipschitzian and semis-

mooth. Therefore, many existing methods for solving nonsmooth equations can be
applied to this system. In this paper, we will apply a Newton method to solving

the system (2.4). Of course, the problem (P2) can be transformed into the follow-
ing equivalent nonlinear programming problem by means of introducing an auxiliary

variable:

minimize z(P3)

subject to fi(x) − z 6 0, i = 1, . . . ,m,

gj(x) 6 0, j = 1, . . . , p,

hk(x) = 0, k = 1, . . . , q.
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Some nonlinear optimization methods (for instance the SQP method) can be applied

to (P3). In this paper we are interested in nonsmooth equations methods for the
minimax problem. It should be said that the system of nonsmooth equations, trans-
formed from the Karush-Kuhn-Tucker system of the problem (P3), hasm+n+p+q+1
equations and variables, whereas the system (2.4) has m+ n+ p+ q equations and
variables.

3. Solving the nonsmooth equations

This section is devoted to solving the system (2.4) by using the Newton method

proposed by Sun and Han [15]. We start with considering the nonsmooth equations

(3.1) F (x) = 0,

where F : � n → � n is locally Lipschitzian. Newton methods for solving the non-
smooth equations (3.1) are given as follows:

(3.2) xk+1 = xk − V −1
k F (xk),

where Vk can be taken as an element of various subdifferentials of F at xk [6],
[12], [14], [15]. In [15], Vk is an element of the b-differential. Locally superlinear

convergence of these Newton methods was shown when F is semismooth and all
elements of the corresponding subdifferentials are nonsingular at the solution x∗. Of

course, all Newton methods, given in (3.2), work on the assumption that at least one
element for their corresponding subdifferentials of F at each iteration point can be

calculated.

To perform the Newton method in [15] for solving the nonsmooth equations (2.4),
an element of the b-differential for the function on the left-hand side of (2.4), in

other words, an element of the B-differential for each component of this function is
required. On the left-hand side of (2.4) we have to do with two nonsmooth functions.

For the computation of the b-differential of the first one, the quasidifferential calculus
will be used. We know that an element of the B-differential for the other function

can be computed in a direct way.
Let

(3.3) H(x) = min
{
ϕ(x),max

i∈I
ψi(x)

}
,

where ϕ, ψi : � n → � , i ∈ I are continuously differentiable and I is a finite index set.
We employ the notation g(x) and I(x) introduced by (1.3) and (1.5), respectively.
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Evidently, H is quasidifferentiable. Based on the quasidifferential calculus, we obtain

that

∂g(x) = conv{∇ψi(x) | i ∈ I(x)}, ∂g(x) = {0},
∂ϕ(x) = {0}, ∂ϕ(x) = {∇ϕ(x)}.

Using formulas (1.11) and (1.12), one has

∂H(x) = ∂g(x) + ∂ϕ(x)(3.4)

= conv{∇ψi(x) | i ∈ I(x)} if ϕ(x) = max
i∈I

ψi(x),

∂H(x) = conv[(∂g(x)− ∂ϕ(x)) ∪ (∂ϕ(x) − ∂g(x))](3.5)

= conv[{0} ∪ conv{∇ϕ(x)−∇ψi(x) | i ∈ I(x)}]
= conv{0,∇ϕ(x)−∇ψi(x) | i ∈ I(x)} if ϕ(x) = max

i∈I
ψi(x).

Early results on the relation between the Clarke generalized gradient and the
quasidifferential were obtained by [2], [9]. In this paper we apply the results of [5].

In what follows, we review the notion of the Demyanov difference of convex compact
sets, due to [3], which can be used to calculate the Clarke generalized gradient via

the quasidifferential for a certain class of functions.
A set T ⊂ � n is said to be of full measure (with respect to � n ), if the Lebesgue

measure of the set � n \T is zero. Let U, V ⊂ � n be convex compact sets and T ⊂ � n

a full measure set such that their support functions PU and PV are differentiable at

every point x ∈ T . The set U−̇V is defined by

(3.6) U−̇V = cl conv{∇PU (x) −∇PV (x) | x ∈ T}.

We call U−̇V the Demyanov difference of U and V . It has been shown that U−̇V
does not depend on the specific choice of the set T , so it is well-defined.

Let f be quasidifferentiable. Given a fixed point x ∈ � n , the function f ′(x; ·) is
locally Lipschitzian. The following relation holds:

(3.7) ∂Clf
′(x; y)|y=0 = ∂f(x)−̇(−∂f(x))

and if both [U1, V1] and [U2, V2] are quasidifferentials of f at x, then U1−̇(−V1) =
U2−̇(−V2). That is to say, the set ∂f(x)−̇(−∂f(x)) is independent of the specific
choice of the quasidifferential.

By the definition in [10], f : � n → � m is said to be piecewise Ck on an open set
S ⊂ � n , where k is a positive integer, if there exists a finite family of Ck functions
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fi : S → � m for i = 1, . . . , l, called the Ck pieces of f , such that f is continuous on S

and for every x ∈ S, f(x) = fi(x) for at least one index i ∈ {1, . . . , l}. The family of
piecewise Ck functions is denoted by PCk. By [10] the following relation holds:

(3.8) ∂Bf
′(x; y)|y=0 ⊂ ∂Bf(x), ∀ f ∈ PC1.

Combining (3.7) and (3.8) with the relation between the B-differential and the Clarke

generalized gradient yields

(3.9) ∂f(x)−̇(−∂f(x)) ⊂ ∂Clf(x), ∀ f ∈ PC1.

(3.9) enables us to compute some elements of the Clarke generalized gradient via the
quasidifferential for a PC1 function.

Obviously, H defined by (3.3) is a PC1 function.

The next proposition gives us a formula of the Demyanov difference for a pair of

polyhedrons.

Proposition 3.1 [5]. Let U = conv{ui | i ∈ I} and V = conv{vj | j ∈ J}, where
ui, vj ∈ � n , I and J are finite index sets. Without loss of generality, suppose that

us 6= ut, ∀ s, t ∈ I , s 6= t and vs 6= vt, ∀ s, t ∈ J , s 6= t. Given a pair of indices i ∈ I

and j ∈ J , define a system of linear inequalities (Lij) as follows:

(us − ui)T y < 0, ∀ s ∈ I \ {i}(Lij ,)

(vt − vj)T y < 0, ∀ t ∈ J \ {j}

where y ∈ � n . We then have

U−̇V = conv{ui − vj | (Lij) is consistent, i ∈ I, j ∈ J}.

The system (Lij) has card(I)+card(J)−2 linear inequalities, where “card” denotes
cardinality.

In the light of Proposition 3.1, we investigate the Clarke generalized gradient of

the function H at a point x satisfying ϕ(x) = max
i∈I

ψi(x) in the next theorem.
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Theorem 3.1. Let H be defined by (3.3) and x ∈ � n with ϕ(x) = max
i∈I

ψi(x).

Given an index i ∈ I(x), we construct two systems of linear inequalities as follows:
{

(∇ψs(x)−∇ψi(x))T y < 0, ∀ s ∈ I(x) \ {i},
(∇ϕ(x)−∇ψi(x))T y < 0

(3.10)

and
{

(∇ψs(x)−∇ψi(x))T y < 0, ∀ s ∈ I(x) \ {i},
(∇ψi(x)−∇ϕ(x))T y < 0

(3.11)

where y ∈ � n . Then ∇ϕ(x) ∈ ∂ClH(x) if (3.10) is consistent and ∇ψi(x) ∈ ∂ClH(x)
if (3.11) is consistent.
���������

. Suppose (3.10) is consistent. According to (3.5), one has

−∂H(x) = conv{0,∇ψi(x)−∇ϕ(x) | i ∈ I(x)}.

Obviously, (3.10) can be rewritten as

(3.12)





(∇ψs(x)−∇ψi(x))T y < 0, ∀ s ∈ I(x) \ {i},
[(∇ψs(x)−∇ϕ(x))− (∇ψi(x)−∇ϕ(x))]T y < 0, ∀ s ∈ I(x) \ {i},
[0− (∇ψi(x)−∇ϕ(x))]T y < 0.

Notice that both ∂H(x) and −∂H(x) are convex hulls of finitely many points. By
virtue of Proposition 3.1, the consistency of (3.12) implies

∇ψi(x)− (∇ψi(x)−∇ϕ(x)) = ∇ϕ(x) ∈ ∂H(x)−̇(−∂H(x)).

From (3.9) and H ∈ PC1, it follows that ∇ϕ(x) ∈ ∂ClH(x).
Suppose that (3.11) is consistent. It is not hard to see that (3.11) is equivalent to

the system

(3.13)

{
(∇ψs(x)−∇ψi(x))T y < 0, ∀ s ∈ I(x) \ {i},
(∇ψs(x)−∇ϕ(x))T y < 0, ∀ s ∈ I(x).

Moreover, (3.13) can be rewritten as

{
(∇ψs(x)−∇ψi(x))T y < 0, ∀ s ∈ I(x) \ {i},
[(∇ψs(x))−∇ϕ(x))− 0]T y < 0, ∀ s ∈ I(x).

Similarly to the above argument, it can be obtained that ∇ψi(x) = ∇ψi(x)−∇0 ∈
∂ClH(x). This completes the proof of the theorem. �
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Let S be a closed convex set in � n . By the definition in [7], we say x ∈ S is an

extreme point, if there exists no convex combination x =
k∑

i=1

λixi, where xi ∈ S,

k∑
i=1

λi = 1, λi > 0, other than x1 = . . . = xk = x.

Proposition 3.2. Let S = conv{ai | i ∈ I}, ai ∈ � n , and let I be a finite index

set. Without loss of generality, suppose as 6= at, ∀ s, t ∈ I, s 6= t. Given an index

i ∈ I , ai is an extreme point of S if and only if the following system is consistent:

(3.14) (ak − ai)T y < 0, y ∈ � n , ∀ k ∈ I \ {i}.

���������
. Suppose that the system (3.14) is consistent. Let y ∈ � n be a solution

of (3.14). Any x ∈ S, x 6= ai, can be expressed as x =
∑
k∈I

λkak,
∑
k∈I

λk = 1, λk > 0,

with at least one index k ∈ I \ {i} satisfying λk 6= 0. This leads to

(3.15) xT y =
∑

k∈I

λka
T
k y <

∑

k∈I

λka
T
i y = aT

i y.

Suppose ai is expressed as a convex combination, i.e., ai =
m∑

s=1
µsxs, where xs ∈ S,

m∑
s=1

µs = 1, µs > 0. It follows that aT
i y =

m∑
s=1

µsx
T
s y. This yields xs = ai since

(3.15) implies xT
s y < aT

i y whenever xs 6= ai. By definition, ai is an extreme point of
the set S.

Conversely, suppose ai is an extreme point of S. Then ai 6∈ conv{ak | k ∈ I \ {i}},
otherwise ai =

∑
k∈I\{i}

λkak,
∑

k∈I\{i}
λk = 1, λk > 0, which contradicts the fact that

ai is an extreme point. Applying the separation theorem (see [7]) to sets {ai} and
conv{as | s ∈ I \ {i}}, we obtain that there exists y1 ∈ � n such that

max{uTy1 | u ∈ conv{as | s ∈ I \ {i}}} < aT
i y1.

Moreover,

(as − ai)T y1 < 0, ∀ s ∈ I \ {i},

i.e., (3.14) is consistent. We have thus completed the proof of the proposition. �
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Corollary 3.1. Let S be given as in Proposition 3.2. Suppose that an index i ∈ I
satisfies

‖ai‖ = max
s∈I

‖as‖,

where ‖ · ‖ refers to the Euclidean norm. Then ai is an extreme point of the set S.

���������
. It is easy to see that

(3.16) (as − ai)T ai < 0, ∀ s ∈ I \ {i},

which is to say the system (3.14) is consistent. By virtue of Proposition 3.2, ai is an

extreme point of the set S. �

Proposition 3.3. Let f : � n → � be locally Lipschitzian. If u is an extreme
point of ∂Clf(x), then u ∈ ∂Bf(x).
���������

. From the relation between the Clarke generalized gradient and the

B-differential, it follows that u can be expressed as a convex combination u =
k∑

i=1

λiui, where ui ∈ ∂Bf(x) ⊂ ∂Clf(x),
k∑

i=1

λi = 1, λi > 0. The definition of

extreme point implies u1 = . . . = uk = u. Therefore, u ∈ ∂Bf(x). �

The following theorem is devoted to the B-differential of the function

min
{
ui, max

16s6m
fs(x) − fi(x)

}
,

which appears on the left-hand side of (2.4). We hereafter take (u, v, w, x) ∈
� m+n+p+q as the variable, denote by ei the unit vector in � m whose ith component

is 1, and by 0s null vector in � s .

Theorem 3.2. Let x be a point in � n and ui a point in � satisfying

ui = max
16s6m

fs(x) − fi(x).

Then (eT
i , 0

T
n+p+q)

T belongs to the B-differential of the function

min
{
ui, max

16s6m
fs(x) − fi(x)

}
.

Let

I1(x) =
{
k ∈ {1, . . . ,m} | fk(x) = max

16s6m
fs(x)

}
,
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and let the index i0 ∈ I1(x) be such that

(3.17) ‖∇fi0(x)‖ = max
16s6m

‖∇fs(x)‖.

Then (0T
m+p+q,∇fi0(x)T−∇fi(x)T )T is contained in the B-differential of the function

min
{
ui, max

16s6m
fs(x)− fi(x)

}
.

���������
. Let

Fi(u, v, w, x) = min
{
ui + fi(x), max

16s6m
fs(x)

}
.

Noting that

min
{
ui, max

16s6m
fs(x) − fi(x)

}
= Fi(u, v, w, x) − fi(x),

one has

∂B

(
min

{
ui, max

16s6m
fs(x)− fi(x)

})
= ∂BFi(u, v, w, x) − (0T

m+p+q,∇fi(x)T )T .

Hence, it is sufficient to show that (eT
i , 0

T
p+q ,∇fi(x)T )T and (0T

m+p+q,∇fi0(x)T )T

are contained in the B-differential of the function Fi at (u, v, w, x). Let y1 =
(0T

m+p+q ,∇fi0(x)T )T . We know that ∇(ui + fi(x)) = (eT
i , 0

T
p+q,∇fi(x)T )T and

∇fs(x) = (0T
m+p+q ,∇fs(x)T )T . By virtue of (3.16 ) and (3.17), we have

(3.18)





[(0T
m+p+q ,∇fs(x)T )− (0T

m+p+q ,∇fi0(x)T )]y1

= (∇fs(x)−∇fi0(x))T∇fi0(x) < 0, ∀ s ∈ I1(x) \ {i0}
[(eT

i , 0
T
p+q,∇fi(x)T )− (0T

m+p+q ,∇fi0(x)T )]y1

= (∇fi(x)−∇fi0(x))T∇fi0(x) < 0.

From Theorem 3.1, in particular (3.10), it follows that (eT
i , 0

T
p+q,∇fi(x)T )T = ∇(ui+

fi(x)) ∈ ∂ClFi(u, v, w, x). On the other hand, notice that y = (eT
i , 0

T
p+q+n)T is a

solution of the system

[(0T
m+p+q ,∇fs(x)T )− (eT

i , 0
T
p+q ,∇fi(x)T )]T y < 0, ∀ s ∈ I1(x) \ {i}.

Based on Proposition 3.2, this yields the assertion that (eT
i , 0

T
p+q,∇fi(x)T )T is an ex-

treme point of the set conv{(eT
i , 0

T
p+q,∇fi(x)T )T , (0T

m+p+q,∇fs(x)T )T | s ∈ I1(x)}.
By the calculus of the Clarke generalized gradient, we obtain

∂ClFi(u, v, w, x)(3.19)

⊂ conv{(eT
i , 0

T
p+q,∇fi(x)T ), (0T

m+p+q,∇fs(x)T )T | s ∈ I1(x)}.
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Hence, (eT
i , 0

T
p+q,∇fi(x)T )T is also an extreme point of the set ∂ClFi(u, v, w, x).

By virtue of Proposition 3.3, (eT
i , 0

T
p+q,∇fi(x))T ∈ ∂BFi(u, v, w, x).

Let y2 = (MeT
i , 0

T
p+q,∇fi0(x)T )T and let M be a large number such that

(3.20)

{
[(0T

m+p+q ,∇fs(x)T )− (0T
m+p+q ,∇fi0(x)T )]T y2 < 0, ∀ s ∈ I1(x) \ {i0}

[(0T
m+p+q ,∇fi0(x)T )− (eT

i , 0
T
p+q,∇fi(x)T ]T y2 < 0.

According to Theorem 3.1, in particular (3.11), one has that (0T
m+p+q,∇fi0(x)T )T ∈

∂ClFi(u, v, w, x). Notice that y = (0T
m+p+q ,∇fi0(x)T )T is a solution of the system

(3.21)

{
[(0T

m+p+q ,∇fs(x)T )− (0T
m+p+q ,∇fi0(x)T )]T y < 0, ∀ s ∈ I1(x) \ {i0}

[(eT
i , 0

T
p+q,∇fi(x)T )− (0T

m+p+q ,∇fi0(x)
T )]y < 0.

From (3.19), (3.21), Proposition 3.3 and (0T
m+p+q,∇fi0(x)T )T ∈ ∂ClFi(u, v, w, x), it

follows that (0T
m+p+q ,∇fi0(x)T )T ∈ ∂BFi(u, v, w, x). This completes the proof of the

theorem. �

Theorem 3.2 enables us to obtain two elements of the B-differential (eT
i , 0

T
n+p+q)

T

and (0T
m+p+q,∇fi0(x)

T − ∇fi(x)T )T , where i0 satisfies (3.17) for the function
min

{
ui, max

16s6m
fs(x) − fi(x)

}
at the point x when ui = max

16s6m
fs(x) − fi(x). Evi-

dently, these two elements can be calculated. In particular, it should be mentioned

that (0T
m+p+q ,∇fi0(x)T −∇fi(x)T )T can be calculated by determining the maximum

of ‖∇fi(x)‖ for i = 1, . . . ,m.

Evidently, min
{
ui, max

16s6m
fs(x) − fi(x)

}
is differentiable and (eT

i , 0
T
n+p+q)

T is its

gradient in the case ui < max
16s6m

fs(x)− fi(x). If ui > max
16s6m

fs(x)− fi(x), then

(3.22) ∂B

(
min

{
ui, max

16s6m
fs(x)− fi(x)

})
= ∂B

(
max

16s6m
fs(x)− fi(x)

)
.

It is easy to see that (0T
m+p+q ,∇fi0(x)T − ∇fi(x)T )T , where i0 satisfies (3.17), is

an element of the set on the right-hand side of (3.22), so it is an element of the
B-differential of the functionmin

{
ui, max

16s6m
fs(x)−fi(x)

}
if ui > max

16s6m
fs(x)−fi(x).

To sum up, we give a formula for the element of the B-differential for the function
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min
{
ui, max

16s6m
fs(x)− fi(x)

}
as follows:

(3.23)

(eT
i , 0

T
n+p+q)

T ,

(0T
m+p+q ,∇fi0(x)

T −∇fi(x)T )T

(if ui = max
16s6m

fs(x) − fi(x))

(eT
i , 0

T
n+p+q)

T

(if ui < max
16s6m

fs(x) − fi(x))

(0T
m+p+q ,∇fi0(x)

T −∇fi(x)T )T

(if ui > max
16s6m

fs(x) − fi(x))





∈ ∂B min
{
ui, max

16s6m
fs(x)− fi(x)

}
,

where i0 satisfies (3.17). From (3.23), it is seen that computing an element of the
B-differential for the function min

{
ui, max

16s6m
fs(x) − fi(x)

}
can be performed by

finding an index i0 in (3.17). This work is very cheap. By [15], elements of the
B-differential of the function min{vj ,−gj(x)} are determined by

(0T
m, e

T
j , 0

T
q+n)T

(if vj < −gj(x))

(0T
m+p+q ,−∇gj(x)T )T

(if vj > −gj(x))

(0T
m, e

T
j , 0

T
q+n)T , (0T

m+p+q,−∇gj(x)T )T

(if vj = −gj(x))





∈ ∂B

(
min{vj ,−gj(x)}

)
.

Finally, each function hk and the first component of the function on the left-hand side

of (2.4) are continuously differentiable. So, their B-differentials are the gradients.
Up to now, we can calculate an element of the B-differential for each component

of the function on the left-hand side of (2.4) at a point. That is, an element of
the b-differential of this function at a point can be calculated. Hence, the Newton

method from [15] for solving the nonsmooth equations (2.4) can be applied.

4. Numerical examples

In this section, we present the result of a numerical test for four examples which
come from [16]. A comparison between our nonsmooth equations (NE) method and

the SQP method is given. They are implemented in Fortran with single precision on
a microcomputer. The termination accuracy is fixed at ε < 10−20.
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� �������! #"
1. Let f1(x) = −2x1 + 3x2

2, f2(x) = x1, f3(x) = x1 − x2
2, h1(x) =

x1 − x2
2. The solution is x

∗ = (0, 0), f∗ = 0. The initial points for the SQP method
are (a) x0 = (−1, 3), (b) x0 = (5,−2), (c) x0 = (10,−50). Applying our nonsmooth
equations method, Example 1 is transformed to a system of nonsmooth equations

with 7 variables. The solution is (x∗, u∗, v∗) = (0, 0, 0, 1, 0, 0, 2). The initial points are
given as (a) (x0, u0, v0) = (−1, 3, 9, 1

3 ,
1
3 ,

1
3 , 0), (b) (x0, u0, v0) = (5,−2, 12, 1

3 ,
1
3 ,

1
3 , 0),

(c) (x0, u0, v0) = (10,−50, 7000, 1
3 ,

1
3 ,

1
3 , 0).

� �������! #"
2. Let f1(x) = −x1+10(x2

1+x2
2−1), f2(x) = −x2

1−1, f3(x) = x2
2−2,

h1(x) = x2
1 + x2

2 − 1. The solution is x∗ = (1, 0), f∗ = −1. The initial points for the
SQP method are given by (a) x0 = (−1, 1), (b) x0 = (5,−2), (c) x0 = (10,−50). Us-
ing the nonsmooth equations method, Example 2 is transformed to a system of non-

smooth equations with 7 variables, the solution is (x∗, u∗, v∗)∗ = (1, 0,−1, 1, 0, 0, 9.5).
The initial points are given as (a) (x0, u0, v0) = (−1, 1, 11, 1

3 ,
1
3 ,

1
3 , 9.5), (b) (x0, u0,

v0) = (0.8, 0.6,−1, 1
3 ,

1
3 ,

1
3 , 0), (c) (x0, u0, v0) = (8, 6, 80, 1

3 ,
1
3 ,

1
3 , 0).

� �������! #"
3. Let f1(x) = 10(x2 − 3x2

1), f2(x) = −f1(x), f3(x) = 1 − x1,
f4(x) = −f3(x), g1(x) = 100(x2

1 + x2 − 101), g2(x) = 80(x2
1 − x2

2 − 79). The
solution is x∗ = (1.0, 1.0), f∗ = 0. The initial points for the SQP method are
given by (a) x0 = (−1.2, 1.0), (b) x0 = (2,−20). Applying the nonsmooth equa-
tions method, Example 3 is reformulated as a system of nonsmooth equations with
9 variables, whose solution is (x∗, u∗, v∗) = (1.0, 1.0, 0, 0, 0, 0.5, 0.5, 0, 0). The initial
points are given as (a) (x0, u0, v0) = (−1.2, 1.0, 4.4, 1

4 ,
1
4 ,

1
4 ,

1
4 , 0, 0), (b) (x0, u0, v0) =

(2,−20, 0, 0, 0, 1, 0, 0, 0).
� �������! #"

4. Let f1(x) = (x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4),
f2(x) = f1(x) + 10g1(x), f3(x) = f1(x) + 10g2(x), f4(x) = f1(x) + 10g3(x), g1(x) =
(x2

1 +x2
2+x2

3 +x2
4+x1−x2+x3−x4−8), g2(x) = (x2

1 +2x2
2+x2

3+2x2
4−x1−x4−10),

g3(x) = (x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5). The solution is x∗ = (0, 1, 2,−1), f∗ =

−44. The initial points are (a) x0 = (0, 1, 1, 0). Applying the proposed nonsmooth
equations method, Example 4 can be changed to a system of nonsmooth equations

with 12 variables, the solution is x∗ = (0, 1, 2,−1,−44, 0.7, 0.1, 0, 0.2, 0, 0, 0). The
initial points are given by (a) x0 = (0, 1, 1, 0,−27, 1

4 ,
1
4 ,

1
4 ,

1
4 , 0, 0, 0).

Tab. 1 is a comparison of the iterations of the examples applying the SQP method

from [16] and the nonsmooth equations (NE) method proposed in this paper.

iterations E1(a) E1(b) E1(c) E2(a) E2(b) E2(c) E3(a) E3(b) E4(a)

SQP 13 10 15 11 8 – 6 – 10

NE 3 3 6 16 8 8 3 2 10

Table 1. Results for Examples 1–4.
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From Tab. 1 we observe that the NE method practically converges after much less

iterations than the SQP method. However, its shortcoming is that we cannot ensure
convergence theoretically. Now proving its convergence is underway.
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