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SPACE-FILLING CURVES FOR 2-SIMPLICIAL MESHES

CREATED WITH BISECTIONS AND REFLECTIONS

����� ��� � 	 
 	��  ��� � �
, Eindhoven

Abstract. Numerical experiments in J. Maubach: Local bisection refinement and optimal
order algebraic multilevel preconditioners, PRISM-97 conference Proceedings, 1977, 121–
136 indicated that the refinement with the use of local bisections presented in J. Maubach:
Local bisection refinement for n-simplicial grids generated by reflections, SIAM J. Sci.
Comput. 16 (1995), 210–227 leads to highly locally refined computational 2-meshes which
can be very efficiently load-balanced with the use of a space-filling curve. This paper
introduces the construction of this curve which can be produced at almost no costs, proofs
that all its properties are invariant under local bisection, and comments on the 3-dimensional
case.
With the use of a space-filling curve (which passes through all triangular elements), load

balancing over several processors is trivial: The load can be distributed over N processors
by cutting the curve into N almost equilength parts. Each processor then operates on the
triangles which are passed by its part of the curve.
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1. Introduction

Refinement with the use of local bisection has been examined and discussed in [1],

[14], [7], [9] and [8], [4], [3], [13] and [12]. The local bisection refinement in [7] is
simplest and efficient, and it is suited for modern challenging applications such as
optics and on-chip-interconnects (Fig. 1 shows an on-chip resistor).

In all such applications, the domains of interest are a coarse tensor product mesh

refined with the use of local bisection. These challenging applications require massive
parallel calculations (even massive parallel methods such as in [5], [6]), which at their

turn require a load balance algorithm.

This paper complements the local bisection method in [7] with a local curve adap-
tation method such that, independently of the level of refinement, the curve traverses
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Figure 1. An on-chip resistor.

all 2-simplices once and does not intersect/touch itself (see (P1) and (P2) in Sec-
tion 2). The fact that one such curve traverses all elements through midpoints of

facets without selfintersection is not trivial, because some simple meshes will not
permit one curve (see Fig. 2). Furthermore, the manner in which the curve traverses

all simplices (possible descendents created by refinement) is special (see (P1)): The
amount of vertices at the border of a subdomain will be small: Fast communication.

Figure 2. A single non-intersecting curve is not always possible.

The local curve adaptation method uses but the stored n-simplex data (coordinates
of the 3 vertices or levels of the 1-facets) and hence comes at negligible costs. The

curve adaptation method is defined with the introduced concept of “the level of
a 1-facet”. The different experimentally determined adaptation method presented

in [10] produces identical curves (commented on in Section 2).

The curve can be used to put the elements in curve-traversal order, and the re-

quired load-balance redistribution amounts to a possible inexpensive move of some
head-part- or tail-part-elements to another processor.
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Section 2 presents the bisection method [7], introduces the concept of clusters

and facet-levels, defines the curve per element and proves that it remains connected
and non-intersects under refinement. Then, Section 3 discusses expectations for the
3-dimensional case, and Section 4 formulates the conclusions.

2. The local curve adaptation method

This section discusses the construction of the curve. First, we introduce the bisec-
tion method from [7], and prove that compatible 2-elements always turn out to be

also elements of one of a sequence of uniform meshes. The related lines of symmetry
are assigned a unique level, and 1-facets inherit the level of the line on which they are

situated. Then, the curve per element is defined with the use of these levels. Note
that not all meshes permit a spacefilling curve (see Fig. 2), this paper just proves

that meshes created with the local bisection method presented in [7] do so.
The local refinement presented in [7] starts from a coarse mesh Ω1 (see Fig. 5)

where elements are all similar under reflection (horizontal and vertical lines) and
permutations (skew lines). Then the applied local bisections lead to a refined mesh

(see Fig. 4).
Each local bisection involves one or two elements which share the 1-facet to be

bisected ([7]). Each of these elements is bisected into 2 descendents (also called its
children). As an example, consider Fig. 3. Here one element is bisected multiple

times, which leads to four descendents. For each numbered elements, the 1-facet
to be bisected is marked with a black bullet. By construction (see [7]) elements 4

and 6 are compatible, but 3 and 4 are not. Fig. 5 shows collections of compatible
elements (A–E).

1

2

3 3

54 54

6

7

Figure 3. Three subsequent bisection steps.

To start with, we need the following property, which was not proven in [7] because
that paper was restricted to the general n-dimensional case.

Lemma. All 2-elements in a locally refined mesh have their 1-facet to be bisected
opposite the π/4 angle.
���������

. Fig. 3 shows that this holds under bisection (these are all cases in two
dimensions, see [7]). The property holds for all four elements of Ω1 in Fig. 5 (see [7]).
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Hence, by induction under refinement, the property holds for all elements in a locally

refined mesh. �

Figure 4. The coarse mesh and the refined mesh.

For the sake of brevity, we use the word cluster for a compatible pair of 2-elements
to be bisected. Note that a cluster in a refined mesh (see Fig. 4) is also a cluster A–D

in a uniform mesh (see Fig. 5). The vertices of elements of a uniform mesh are on
a lattice (are at regularly spaced positions) whence also the vertices of an element

in a cluster are on a lattice. The x and y-coordinates of each lattice are of the form
k/2L for L > 0 and k ∈ {0, 1, . . . , 2L − 1} and its lines of symmetry are either y = x,

y = 1 − x, y = 0 and x = 0 or images under a shift of the form k/2L for L > 0 and
k ∈ {0, 1, . . . , 2L − 1}.
Our construction of a space-filling curve for a cluster of elements in a refined mesh

will make use of the horizontal and skew lines in the lattice which contains this
cluster, as follows.

Definition. Let k mod 2L = 1 or L = 0. The levels of each line in the lattice
Ω1, Ω2, . . . , ΩL, . . . in Fig. 5 are:

line level

y = x + k/2L level 2L + 1
y = 1 − x + k/2L level 2L + 1
y = k/2L level 2L + 1
x = k/2L level 2L + 1

Table 1. Lattice line levels.

Note that the highest level line in the lattice ΩL is L and that the bisection of a
cluster in ΩL creates a new 1-facet on a line of level L + 1. An element in ΩL has
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vertices with coordinates of the form

(1)
k

2dL/2e ,

where d · e stands for round upwards to the nearest integer value. Furthermore,
observe that each element of ΩL has at least one horizontal/vertical 1-facet of level L.

Definition. Let the 2-element in a (refined) mesh be an element in one of the
uniform meshes ΩL. Then the level of one of its 1-facets is equal to the level of the
line which contains this facet.

Definition. For each 2-element in the (refined) mesh, its curve connects the
midpoints of its two highest-level 1-facets.

Based on the level of the edges of Ω1 (see Fig. 5), the related curve is a multi-
line through (1/4, 1/4), (3/4, 1/4), (3/4, 3/4), (1/4, 3/4), which is connected and
non-self-intersecting. Left to be proven is that

(P1) subsequently traverses both its children;

(P2) remains connected (does not intersect/touch itself)

and they remain invariant under bisection. In order to show this, we distinguish

5 cases A–E, see Fig. 5. The cases A and B are all different cluster orientations
in ΩL with L even, the cases C and D all cluster orientation in ΩL with L odd, and

the cases E are all cases of clusters from A–D with one or more 1-facets at one of
the boundaries.

Lemma. There are (apart from translation) 5 different cluster orientations on
each lattice Ω1, Ω2, . . ., called A, B, C and D. Clusters on the boundaries are

denoted E.

Lemma. The bisection of a cluster of orientation A satisfies (P1) and (P2).
���������

. From the coordinates of one of the vertices of the cluster, by and by,

we determine all levels of its 1-facets (first three columns of Fig. 6). Based on these
levels, we show how the curve traverses the cluster or the bisected cluster (last two

columns of Fig. 6).

Note that a cluster of orientation A is on a lattice of the form Ω2·L. It has a base

point (shown in Fig. 5) of the form (xb, yb) = (k/2L, l/2L), where mod (k − l, 2) = 0.
We will distinguish 2 cases, k even and k odd.

First assume k is even, the case depicted in the first row of Fig. 6. Now, because
k is even and mod (k − l, 2) = 0, also l is even. This yields the first two levels of the
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Figure 5. The sequence of uniform refined meshes (lattices).

1-facet, shown in the first column of Fig. 6 (recall that one of the horizontal and one
of the vertical lines are of level 2L).

Now assume x > y (the other case y > x can be treated indentically). Then we
know that there exist K > 0, N > 0 and odd numbers xodd and yodd such that we

can factor:

(2) xb =
2K · 2N · xodd

2L
, yb =

2K · yodd

2L
.

First assume that N > 0 (k still even). Then from

(3) xb =
xodd

2L−K−N
, yb =

yodd

2L−K
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Figure 6. Orientations A: Local bisection keeps the curve connected.

we obtain the level of the other two horizonal/vertical 1-facets (the 2nd column of

the first row in Fig. 6). For the level of diagonals, observe that the diagonal is a line
of the form

(4) y = x + yb − xb,

where the difference yb − xb determines the level:

(5) yb − xb =
2K2Nxodd

2L
− 2Kyodd

2L
=

2Nxodd

2L−K
− yodd

2L−K
=

zodd

2L−K
,

where zodd is odd (the difference between an even and an odd number), which (see

the table with lattice line levels) implies that our diagonal’s level is 2(L − K) + 1,
depicted in the 3rd column of the first row in Fig. 6. Because the 1-facet created
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in the bisection step will be of level 2L + 1 we can depict the form of the curve in
the last 2 columns of the first row of Fig. 6. This shows that the curve subsequently
traverses both children, and that it remains connected under the bisection step. This
concludes case (2) for N > 0.
Now assume that N = 0 (k still even). This determines the levels of the other two

horizonal/vertical 1-facets (the 2nd column of the second row in Fig. 6 (where now

N = 0). The level of the diagonal can be determined from

(6) yb − xb =
2Kxodd

2L
− 2Kyodd

2L
=

xodd

2L−K
− yodd

2L−K
=

2Mzoddd

2L−K
=

zoddd

2L−K−M

where zodd is an odd number and M > 0. Hence, here the level of the diagonal
is 2(L − K − M) + 1 (the 3rd column of the second row in Fig. 6) and (P1) and
(P2) hold for the related curves in the last two columns of Fig. 6.
To conclude with, consider the case when k is odd. Also here assume that xb > yb.

This proof follows in the same manner. The first two levels (the 1st column of the
3rd and 4th rows in Fig. 6) are known because

(7) xb =
xodd

2L
, yb =

yodd

2L
.

The other two horizontal/vertical lines’ and the diagonal’s levels follow best from
the top right vertex of the cluster,

(x′b, y
′
b) =

(
1 + xodd

2L
,
1 + yodd

2L

)
,

where 1 + xodd and 1 + yodd are even. Now we follow the line of the proof of the
k even case: It follows that there exist K > 0, N > 0 and odd numbers xodd and

yodd such that we can factor:

(8) x′b =
2K · 2N · xodd

2L
, y′b =

2K · yodd

2L
,

which determines the two levels shown in the 2nd column of the last two rows in
Fig. 6. For the level of the diagonal, observe that for N > 0 we have

(9) y′b − x′b =
2K2Nxodd

2L
− 2Kyodd

2L
=

2Nxodd

2L−K
− yodd

2L−K
=

zoddd

2L−K
,

and for N = 0

(10) y′b − x′b =
2Kxodd

2L
− 2Kyodd

2L
=

xodd

2L−K
− yodd

2L−K
=

2Mzoddd

2L−K
=

zoddd

2L−K−M
,

which leads to the 3rd column of the 3rd or 4th row, respectively, in Fig. 6. �

316



�������
. The proof that the curve possesses all properties for the cluster orientation

in case A relies on the fact that all levels of all 1-facets can be calculated from
one of the cluster’s vertices (xb, yb) = (k/2L, l/2L). The amount of factors 2 in k

determines the level of the vertical 1-facets, that amount in l determines the level of

the horizontal 1-facets, and that in k − l the level of the diagonal.

Lemma. The bisection of a cluster of orientation B–E satisfies (P1/2).
���������

. Also here, all levels can be calculated from the amount of factors 2 in k

and l. For case B, use vertex (xb, yb) = (k/2L, l/2L) shown in Fig. 5 and proceed as
in case A (also distinguish k odd and even). Also here either k and l have the same
amount of factors 2 (row 2 Fig. 7) whence l − k has extra factors 2 (M > 0), or k

and l have a different amount of factors of 2 (row 2 Fig. 7) (N > 0) whence l− k has
no extra factors of 2.

2L

2L

2(
L

−
K

−
N

)

2(L−K)

2(L−K)+1
2L

+1

2L

2L

2(L−K)

2(
L

−
K

)

2(L−K−M
)+1

2L
+1

Figure 7. Orientations B: Local bisection keeps the curve connected.

Case C: Here (xb, yb) = (k/2L, l/2L) is such that k and l are both even or both
odd. Two of the diagonals must be of level 2(L − 1) + 1. Also here the count of
factors 2 leads to the desired results: If k and l have an identical amount of factors 2
then k − l and k + l + 2L have extra factors 2, which explains the fact that M > 0
and N > 0 in columns 2 and 3 of row 1 of Fig. 8. The other case when k and
l have different amounts of factor 2 needs more attention: Either K = 1 (which is
the minimum) and we end up in the 2nd row of Fig. 8, or K > 1 and we end up in
the 1st row of this figure. Case D can be treated in a manner identical to case C.

Cases E can be treated as A–D with the difference that the boundary lines have

level 0 and that we know that either k or l is of the form 2L or 0, which has the
desired impact on the amount of factors of 2. �
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Figure 8. Orientations C: Local bisection keeps the curve connected.
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Figure 9. Orientations E: Local bisection keeps the curve connected.

� �"!$#���%
. Note that (P1) mentions “subsequently traverses both children”. This

implies that once a curve enters an element through its facet, it will not leave this

element until all its subsequently created descendents have been traversed, which is
what makes the communication between processors “minimal” (see Fig. 10 where

the space-filling curve of elements is cut into four approximately equi-length pieces).

The experimentally determined spacefilling curve in [10] turns out to be identical
(under the same order of refinements applied to the same initial mesh) with the

curve shown in Fig. 10. This is remarkable because in [10] a different strategy is
followed: First, observe that the space-filling curve enters and exits each individual
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Figure 10. The load-balance result.

triangle. Assume that a triangle is refined and that the curve will now pass through

its two descendents. Then the only choice is to determine through which descendent
it passes first. To determine which is first, [10] uses the orientation of the parent

element. More precisely, let the parent element’s vertices be v0, v1 and v2, and let
A = [v1 − v0|v2 − v0] ∈ & 2×2 be defined column-wise. Then [10] applies an in-situ

Householder QR transformation to A (see [2], p. 196) and uses the sign of the product
of the diagonal elements—which determines the orientation—to determine which of

the children is first. Note that [10] contains no proof that its descendent-based
strategy leads to a space-filling curve, just numerical corroboration.

3. Extensions and tetrahedral meshes

The proof that the curve fulfils (P1) and (P2) remains valid if the coarse mesh
is obtained under an invertable map F from the standard coarse mesh in [0, 1]2. In
this case one can extract the level information from the coordinates F−1(x) instead
of from the coordinates x. For more information on possible extensions, see [7].

Also in the 3-dimensional case, compatible clusters are forecasted to be clusters

in a uniform mesh (the uniform mesh where all elements have the same level as the
elements in the cluster, see [7]). However, the determination of the amount of similar

cluster orientations is not trivial. This, and whether our 2-factor-amount approach
will still work for the extra symmetry lines, is currently under examination.
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4. Conclusions

The local bisection refinement method from [7] can be complemented with a lo-

cal adaptation method which determines a curve for load balance purposes in the
2-d case. Both the local refinement and the curve adaptation method are simple

to formulate, simple to implement, and execute very efficiently. With the curve,
the load-balancing is simple and the communication of which processor is to process

which elements after refinements is fast: Each processor has a chain of elements to
process and after a sequence of refinements, it receives or deletes elements to be

processed at the start and/or end of its chain.
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