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Abstract. This paper is devoted to the problem of existence of a solution for a non-
resonant, non-linear generalized multi-point boundary value problem on the interval [0, 1].
The existence of a solution is obtained using topological degree and some a priori estimates
for functions satisfying the boundary conditions specified in the problem.
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1. Introduction

Let ϕ be an odd increasing homeomorphism from R onto R, f : [0, 1]×R×R → R
a function satisfying Carathéodory conditions and e : [0, 1] → R be a function in
L1[0, 1]. Let ξi, τj ∈ (0, 1), ai, bj ∈ R, i = 1, 2, . . . , m − 2, j = 1, 2, . . . , n − 2,

0 < ξ1 < ξ2 < . . . < ξm−2 < 1, 0 < τ1 < τ2 < . . . < τn−2 < 1 be given. We study

the problem of existence of solutions for the generalized multi-point boundary value

problem

(ϕ(x′))′ = f(t, x, x′) + e(t), a.e. on [0, 1],(1)

x(0) =

m−2
∑

i=1

aix
′(ξi), x(1) =

n−2
∑

j=1

bjx(τj)

417



in the non-resonance case. We say that this problem is non-resonant if the associated

problem

(ϕ(x′))′ = 0, a.e. on [0, 1],(2)

x(0) =

m−2
∑

i=1

aix
′(ξi), x(1) =

n−2
∑

j=1

bjx(τj)

has the trivial solution as its only solution. This is the case if the “non-resonance

condition”

(3)

(m−2
∑

i=1

ai

)(

1 −

n−2
∑

j=1

bj

)

6=

n−2
∑

j=1

bjτj − 1

holds. This problem was studied by Gupta, Ntouyas, and Tsamatos in [20] when the

homeomorphism ϕ from R onto R is the identity homeomorphism, i.e., for second
order ordinary differential equations when ai, bj ∈ R have the same sign for all
i = 1, 2, . . . , m − 2, j = 1, 2, . . . , n − 2. The study of multi-point boundary value

problems for nonlinear second order ordinary differential equations was initiated by

Il’in and Moiseev in [23], [24] who were motivated by the works of Bitsadze and

Samarskĭı on nonlocal linear elliptic boundary value problems, [2], [3], [4], and it

has been the subject of many papers, see for example [5], [6], [11], [12], [13], [14],

[15], [16], [17], [18], [19], [20], [22], [25], [30] and [31]. More recently multipoint

boundary value problems involving a p-Laplacian type operator or the more general

operator −(ϕ(x′))′ have been studied in [1], [7], [8], [9], [10], [26], to mention just a

few.

We present in Section 2 some a priori estimates for functions x that satisfy the

boundary conditions in (1). Our a priori estimates utilize the non-resonance con-

dition for the boundary value problem (1). In Section 3 we present an existence

theorem for the boundary value problem (1) using the degree theory.

2. A priori estimates

We shall assume the following throughout the rest of the paper:

(a) For any constant K > 0,

(4) α(K) := lim sup
z→∞

ϕ(Kz)

ϕ(z)
< ∞.

(b) For any σ, 0 6 σ < 1,

(5) α̃(σ) := lim sup
z→∞

ϕ(σz)

ϕ(z)
< 1.
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(c) ξi, τj ∈ (0, 1), ai, bj ∈ R, i = 1, 2, . . . , m − 2, j = 1, 2, . . . , n − 2, 0 < ξ1 <

ξ2 < . . . < ξm−2 < 1, 0 < τ1 < τ2 < . . . < τn−2 < 1 are such that the

non-resonance condition (3) holds.

We observe that when the non-resonance condition (3) holds then at least one

of 1 −
n−2
∑

j=1

bj,
n−2
∑

j=1

bjτj − 1 is non-zero. For a ∈ R, let us denote a+ = max(a, 0),

a− = max(−a, 0) so that a = a+ − a− and |a| = a+ + a−. Furthermore, let us define

(6)

σ1 ≡























































min



















n−2
∑

j=1

b+
j

1 +
n−2
∑

j=1

b−j

,

1 +
n−2
∑

j=1

b−j

n−2
∑

j=1

b+
j



















∈ [0, 1), if 1 −
n−2
∑

j=1

bj 6= 0 and
n−2
∑

j=1

b+
j 6= 0,

0, if 1 −
n−2
∑

j=1

bj 6= 0 and
n−2
∑

j=1

b+
j = 0,

1, if 1 −
n−2
∑

j=1

bj = 0.

Notice that σ1 ∈ [0, 1].

Theorem 1. Let assumption (c) hold. Also let a function x be such that x, x′ are

absolutely continuous on [0, 1] and x(0) =
m−2
∑

i=1

aix
′(ξi), x(1) =

n−2
∑

j=1

bjx(τj). Then

there exists an M ∈ (0,∞) such that

(7) ‖x‖∞ 6 M‖x′‖∞.

P r o o f. We see from x(t) = x(0) +
∫ t

0 x′(s) ds and the assumption that x(0) =
m−2
∑

i=1

aix
′(ξi) that

(8) |x(t)| 6

(m−2
∑

i=1

|ai| + 1

)

‖x′‖∞ for t ∈ [0, 1].

Accordingly we get

(9) ‖x‖∞ 6

(m−2
∑

i=1

|ai| + 1

)

‖x′‖∞.

Now, when 1 −
n−2
∑

j=1

bj = 0, estimate (7) holds with M = 1 +
m−2
∑

i=1

|ai|. Next, let us

assume in the following that 1 −
n−2
∑

j=1

bj 6= 0.
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Now, we see from x(1) − x(τj) =
∫ 1

τj
x′(s) ds, for j = 1, 2, . . . , n − 2 and from the

assumption x(1) =
n−2
∑

j=1

bjx(τj) that
(n−2

∑

j=1

bj − 1
)

x(1) =
n−2
∑

j=1

bj

∫ 1

τj
x′(s) ds. It follows

that

(10) |x(1)| 6

n−2
∑

j=1

|bj(1 − τj)|

∣

∣

∣1 −
n−2
∑

j=1

bj

∣

∣

∣

‖x′‖∞.

Next, we use the equations x(t)−x(τj) =
∫ t

τj
x′(s) ds for t ∈ [0, 1], j = 1, 2, . . . , n−2,

and the assumption x(1) =
n−2
∑

j=1

bjx(τj) to get

(11) x(t) =
1

n−2
∑

j=1

bj

(

x(1) +

n−2
∑

j=1

bj

∫ t

τj

x′(s) ds

)

for t ∈ [0, 1].

It follows from (10), (11) and with µj = max(τj , 1 − τj) for j = 1, 2, . . . , n − 2 that

(12) ‖x‖∞ 6
1

∣

∣

∣

n−2
∑

j=1

bj

∣

∣

∣











n−2
∑

j=1

|bj(1 − τj)|

∣

∣

∣1 −
n−2
∑

j=1

bj

∣

∣

∣

+

n−2
∑

j=1

µj |bj|











‖x′‖∞.

Similarly, starting from the equation x(t) = x(1) −
∫ 1

t
x′(s) ds, we obtain the

estimate

(13) ‖x‖∞ 6











n−2
∑

j=1

|bj(1 − τj)|

∣

∣

∣1 −
n−2
∑

j=1

bj

∣

∣

∣

+ 1











‖x′‖∞.

Next, since x(1) =
n−2
∑

j=1

bjx(τj), we see that

x(1) +
n−2
∑

j=1

b−j x(τj) =
n−2
∑

j=1

b+
j x(τj).

It follows, by the intermediate value theorem, that there must exist χ1, χ2 in [0, 1]

such that

(14)

(

1 +

n−2
∑

j=1

b−j

)

x(χ1) =

(m−2
∑

i=1

b+
j

)

x(χ2).

420



If now one of x(χ1), x(χ2) is zero, we see using one of the two equations

(15) x(t) = x(χk) +

∫ t

χk

x′(s) ds, k = 1, 2, t ∈ [0, 1]

that

(16) ‖x‖∞ 6 ‖x′‖∞.

If both x(χ1), x(χ2) are non-zero it is easy to see from (14) that x(χ1) 6= x(χ2), since

we have assumed that 1 −
n−2
∑

j=1

bj 6= 0, so that 1 +
n−2
∑

j=1

b−j 6=
n−2
∑

j=1

b+
j . It then follows

easily from (14) and (15) that

(17) ‖x‖∞ 6
1

1 − σ1
‖x′‖∞,

where σ1 is defined in (6).

Estimate (7) is now immediate from (9), (12), (13), (16), (17) with

M = min



















1
∣

∣

∣

n−2
∑

j=1

bj

∣

∣

∣











n−2
∑

j=1

|bj |µj +

n−2
∑

j=1

|bj(1 − τj)|

∣

∣

∣1 −
n−2
∑

j=1

bj

∣

∣

∣











,

1 +

n−2
∑

j=1

|bj(1 − τj)|

∣

∣

∣1 −
n−2
∑

j=1

bj

∣

∣

∣

,
1

1 − σ1
, 1 +

m−2
∑

i=1

|ai|



















when 1 −
n−2
∑

j=1

bj 6= 0. This completes the proof of the theorem. �

Lemma 2. Let us set

(18) A =

(

1 −

n−2
∑

j=1

bj

)+

+

n−2
∑

j=1

[bj(1 − τj)]
+ +

m−2
∑

i=1

[

ai

(

1 −

n−2
∑

j=1

bj

)]+

and

(19) B =

(

1 −

n−2
∑

j=1

bj

)

−

+

n−2
∑

j=1

[bj(1 − τj)]
− +

m−2
∑

i=1

[

ai

(

1 −

n−2
∑

j=1

bj

)]

−

.
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Then

A 6= B

provided the non-resonance condition (3) holds.

P r o o f. We note that

A − B =

(

1 −
n−2
∑

j=1

bj

)

+
n−2
∑

j=1

bj(1 − τj) +
m−2
∑

i=1

ai

(

1 −
n−2
∑

j=1

bj

)

= 1 −

n−2
∑

j=1

bj +

n−2
∑

j=1

bj −

n−2
∑

j=1

bjτj +

m−2
∑

i=1

ai

(

1 −

n−2
∑

j=1

bj

)

= 1 −

n−2
∑

j=1

bjτj +

(m−2
∑

i=1

ai

)(

1 −

n−2
∑

j=1

bj

)

6= 0

in view of the non-resonance assumption (3). Hence A 6= B. This completes the

proof of the lemma. �

Let us define σ∗ by

(20) σ∗ = min
{A

B
,
B

A

}

∈ [0, 1),

where A, B are defined in Lemma 2. Accordingly, we see that σ∗ ∈ [0, 1). Further-

more, in view of (5) we have α̃(σ∗) < 1.

Let ε > 0 be such that α̃(σ∗) + ε < 1 and let the constant Cε be such that

(21) ϕ(σ∗z) 6
(

α̃(σ∗) + ε
)

ϕ(z) + Cε for every z ∈ R.

Theorem 3. Let assumption (c) hold. Also let the function x be such that x,

x′ is absolutely continuous on [0, 1] with (ϕ(x′))′ ∈ L1(0, 1) and x(0) =
m−2
∑

i=1

aix
′(ξi),

x(1) =
n−2
∑

j=1

bjx(τj). Then

(22) ‖ϕ(x′)‖∞ 6
1

1 − α̃(σ∗) − ε
‖(ϕ(x′))′‖L1(0,1) +

Cε

1 − α̃(σ∗) − ε
,

where ε and Cε are as in (21).

P r o o f. For j = 1, 2, . . . , n − 2 we see using the mean value theorem that there

exist λj in [0, 1] such that

x(1) − x(τj) = (1 − τj)x
′(λj),
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and we see using x(1) =
n−2
∑

j=1

bjx(τj) that

(23)

(n−2
∑

j=1

bj − 1

)

x(1) =

n−2
∑

j=1

bj(1 − τj)x
′(λj).

Also, we see that there exists a λ ∈ [0, 1] such that

(24) x(1) − x(0) = x′(λ).

Now, we see from equations (23), (24) that

(n−2
∑

j=1

bj − 1

)

x′(λ) =

(n−2
∑

j=1

bj − 1

)

(

x(1) − x(0)
)

=

n−2
∑

j=1

bj(1 − τj)x
′(λj) −

(n−2
∑

j=1

bj − 1

)(m−2
∑

i=1

aix
′(ξi)

)

=

n−2
∑

j=1

bj(1 − τj)x
′(λj) +

(m−2
∑

i=1

ai

(

1 −

n−2
∑

j=1

bj

)

x′(ξi)

)

.

It follows that

(

1 −

n−2
∑

j=1

bj

)

x′(λ) +

n−2
∑

j=1

bj(1 − τj)x
′(λj) +

m−2
∑

i=1

ai

(

1 −

n−2
∑

j=1

bj

)

x′(ξi) = 0.

Similar to the proof of Theorem 1 (see (14)), we use (18), (19) and the intermediate

value theorem to see that there are υ1, υ2 in [0, 1] such that

(25) Ax′(υ1) − Bx′(υ2) = 0.

Suppose now that one of x′(υ1), x
′(υ2) is zero. We then see from one of the equation

(26) ϕ(x′(t)) = ϕ(x′(υk)) +

∫ t

υk

(ϕ(x′))′(s) ds, k = 1, 2, t ∈ [0, 1]

that

(27) ‖ϕ(x′)‖∞ 6 ‖(ϕ(x′))′‖L1(0,1).

Let us, next, suppose that both x′(υ1), x′(υ2) are non-zero. Since now A 6= B, in

view of Lemma 2 we see from equation (25) that

x′(υ1) 6= x′(υ2).
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We now use the equations

ϕ(x′(t)) = ϕ(x′(υ1)) +

∫ t

υk

(ϕ(x′))′(s) ds = ϕ
(B

A
x′(υ2)

)

+

∫ t

υk

(ϕ(x′))′(s) ds,

ϕ(x′(t)) = ϕ(x′(υ2)) +

∫ t

υk

(ϕ(x′))′(s) ds = ϕ
(A

B
x′(υ1)

)

+

∫ t

υk

(ϕ(x′))′(s) ds,

along with the definition of σ∗ given in (20), (21) and the estimate (27) to obtain

the estimate (22). This completes the proof of the theorem. �

3. Existence Theorem

Let ϕ be an odd increasing homeomorphism from R onto R, f : [0, 1]×R×R → R
a function satisfying the Carathéodory conditions and e : [0, 1] → R a function in
L1[0, 1]. Let assumption (c) hold.

Theorem 4. Let f : [0, 1]×R×R → R be a function satisfying the Carathéodory
conditions such that there exist non-negative functions d1(t), d2(t) and r(t) in L1(0, 1)

such that

|f(t, u, v)| 6 d1(t)ϕ(|u|) + d2(t)ϕ(|v|) + r(t)

for a.e. t ∈ [0, 1] and all u, v ∈ R. Suppose, further, that
(28) α(M)‖d1‖L1(0,1) + ‖d2‖L1(0,1) < 1 − α̃(σ∗)

where M is defined in Theorem 1, α(M) is defined in (4), σ∗ and α̃(σ∗) are defined

in (20), (21). Then, for every given function e(t) ∈ L1[0, 1], the boundary value

problem (1) has at least one solution x ∈ C1[0, 1].

P r o o f. We consider the family of boundary value problems

(ϕ(x′))′ = λf(t, x, x′) + λe(t), a.e. on [0, 1], λ ∈ [0, 1],(29)

x(0) =

m−2
∑

i=1

aix
′(ξi), x(1) =

n−2
∑

j=1

bjx(τj).

Also, we define an operator Ψ: C1[0, 1] × [0, 1] → C1[0, 1] by setting for (x, λ) ∈

C1[0, 1]× [0, 1]

Ψ(x, λ)(t) = x(0) +

∫ t

0

ϕ−1

(

ϕ(x′(0)) + λ

∫ s

0

(

f(τ, x(τ), x′(τ)) + e(τ)
)

dτ

)

ds(30)

+

(

x(0) −

m−2
∑

i=1

aix
′(ξi)

)

+ t

(

x(1) −

n−2
∑

j=1

bjx(τj)

)

.
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Let us suppose that x ∈ C1[0, 1] is a solution to the operator equation, for some

λ ∈ [0, 1],

(31) x = Ψ(x, λ).

Solving equation (31) at t = 0 we see that x satisfies the boundary condition

x(0) =

m−2
∑

i=1

aix
′(ξi).

Next, we differentiate equation (31) with respect to t to get

ϕ(x′(t)) = ϕ(x′(0)) + λ

∫ t

0

(

f(τ, x(τ), x′(τ)) + e(τ)
)

dτ(32)

+ x(1) −

n−2
∑

j=1

bjx(τj).

Solving now equation (32) at t = 0 we see that x satisfies the boundary condition

x(1) =

n−2
∑

j=1

bjx(τj),

and differentiating equation (32) with respect to t we get

(

ϕ(x′(t))
)

′

= λf
(

t, x(t), x′(t)
)

+ λe(t) for a.e. t ∈ [0, 1] and each λ ∈ [0, 1].

Thus we see that if x ∈ C1[0, 1] is a solution to the operator equation x = Ψ(x, λ)

for some λ ∈ [0, 1] then x is a solution to the boundary value problems (29) for the

same λ ∈ [0, 1]. Conversely, it is easy to see that if x ∈ C1[0, 1] is a solution to the

boundary value problems (29) for some λ ∈ [0, 1] then x ∈ C1[0, 1] is a solution to

the operator equation x = Ψ(x, λ) for the same λ ∈ [0, 1].

Next, it is easy to show, following standard arguments, that Ψ: C1[0, 1]× [0, 1] →

C1[0, 1] is a completely continuous operator.

We shall next show that there is a constant R > 0, independent of λ ∈ [0, 1],

such that if x ∈ C1[0, 1] is a solution to (31), equivalently to the boundary value

problem (29), for some λ ∈ [0, 1], then ‖x‖C1[0,1] < R.

We note first that if x ∈ C1[0, 1] satisfies

(33) x = Ψ(x, 0),
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then x(t) = 0 for all t ∈ [0, 1]. Indeed, from the definition of Ψ or from the boundary

value problem (29) it follows that x(t) = x(0) + x′(0)t. It then follows from the

two boundary conditions in (29) and the non-resonance assumption (3) that x(0) =

x′(0) = 0, which implies that x(t) = 0 for all t ∈ [0, 1].

We shall assume now that λ ∈ (0, 1]. We shall also assume that σ∗, as defined

in (20), is positive, since the proof for the case σ∗ = 0 is simpler. Let us choose ε > 0

such that α̃(σ∗) + ε < 1 and

(34)
(

α(M) + ε
)

‖d1‖L1(0,1) + ‖d2‖L1(0,1) < 1 − α̃(σ∗) − ε,

which is possible to do in view of our assumption (28). Here M is defined in Theo-

rem 1 and α(M) is defined in (4) so that for the ε > 0 chosen above there exists a

constant C1
ε > 0 such that

(35) ϕ(Mz) 6
(

α(M) + ε
)

ϕ(z) + C1
ε for every z ∈ R.

Also, from Theorem 3 we see that for the chosen ε > 0 there is a constant C2
ε > 0

such that

(36) ϕ(‖x′‖∞) 6
1

1 − α̃(σ∗) − ε
‖(ϕ(x′))′‖L1(0,1) + C2

ε .

We now see from the equation in (29), using our assumptions on the function f ,

Theorem 1, and estimates (35), (36) that

‖(ϕ(x′))′‖L1(0,1) 6 ϕ(‖x‖∞)‖d1‖L1(0,1) + ϕ(‖x′‖∞)‖d2‖L1(0,1)

+ ‖r‖L1(0,1) + ‖e‖L1(0,1)

6 ϕ(M‖x′‖∞)‖d1‖L1(0,1) + ϕ‖x′‖∞)‖d2‖L1(0,1)

+ ‖r‖L1(0,1) + ‖e‖L1(0,1)

6
(

(α(M) + ε)‖d1‖L1(0,1) + ‖d2‖L1(0,1)

)

ϕ(‖x′‖∞)

+ ‖r‖L1(0,1) + ‖e‖L1(0,1) + C1
ε ‖d1‖L1(0,1)

6

(

α(M) + ε
)

‖d1‖L1(0,1) + ‖d2‖L1(0,1)

1 − α̃(σ∗) − ε
‖(ϕ(x′))′‖L1(0,1) + Cε,

where Cε = ‖r‖L1(0,1) + ‖e‖L1(0,1) + C1
ε‖d1‖L1(0,1) + C2

ε [(α(M) + ε)‖d1‖L1(0,1) +

‖d2‖L1(0,1)]. It follows from (34) that there exists a constant R0, independent of

λ ∈ [0, 1], such that if x ∈ C1[0, 1] is a solution to the boundary value problem (29)

for some λ ∈ [0, 1] then

‖(ϕ(x′))′‖L1(0,1) 6 R0.
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This combined with (36) and (7) gives that there exists a constant R > 0 such that

‖x‖C1[0,1] < R.

This then implies that degLS

(

I − Ψ(·, λ), B(0, R), 0
)

is well-defined for all λ ∈ [0, 1],

where B(0, R) is the ball with center 0 and radius R in C1[0, 1]. Here I denotes the

identity mapping from C1[0, 1] onto C1[0, 1] and degLS denotes the Leray-Schauder

degree.

Let X denote the two-dimensional subspace of C1[0, 1] given by

(37) X = {α + βt for α, β ∈ R}.
Let us define the isomorphism i : R2 → X by

(38) i

(

α

β

)

= i(α

β)
∈ X for

(

α

β

)

∈ R2 ,

where

(39) i(α

β)
(t) = α + βt for t ∈ [0, 1].

Also, we define a 2 × 2 matrix A by setting
(40) A =









−1
m−2
∑

i=1

ai

−
(

1 −
n−2
∑

j=1

bj

)

−
(

1 −
n−2
∑

j=1

bjτj

)









.

We note that det A =1 −
n−2
∑

j=1

bjτj +
(m−2

∑

i=1

ai

)(

1 −
n−2
∑

j=1

bj

)

6= 0 in view of the non-

resonance assumption (3).

Next, we define a function G : R2 → R2 by setting

(41) G

(

α

β

)

= A ·

(

α

β

)

=







−α + β
(m−2

∑

i=1

ai

)

−α
(

1 −
n−2
∑

j=1

bj

)

− β
(

1 −
n−2
∑

j=1

bjτj

)







for
(

α

β

)

∈ R2 .

We note that for v(t) = α + βt ∈ X we have

(

I − Ψ(·, 0)
)

(v) = i
G(α

β)
,
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and it follows that

G = i−1 ◦
(

(I − Ψ(·, 0)
)

|X ◦ i.

Now, we see from the homotopy invariance property of the Leray-Schauder degree

that

degLS

(

I − Ψ(·, 1), B(0, R), 0
)

= degLS

(

I − Ψ(·, 0), B(0, R), 0
)

= degB

(

I − Ψ(·, 0)|X , X ∩ B(0, R), 0
)

= degB

(

G, B (0, R), 0
)

,

where B (0, R) denotes the ball of radius R in R2 with center at the origin. Finally,

we have, using standard results for the Brouwer degree and denoting it by degB

(see [27], [28], [29]), that

degB

(

G, B (0, R), 0
)

=

{

1, if det A > 0,

−1, if det A < 0.

Accordingly, we see from the non-resonance assumption (3), i.e.,

det A =

(

1 −
m−2
∑

i=1

ai

)(

1 −
n−2
∑

j=1

bjτj

)

+

(m−2
∑

i=1

aiξi

)(

1 −
n−2
∑

j=1

bj

)

6= 0,

that degLS

(

I − Ψ(·, 1), B(0, R), 0
)

6= 0 and there is x ∈ B(0, R) ⊂ C1[0, 1] that

satisfies

x = Ψ(x, 1);

equivalently, x is a solution to the boundary value (1). This completes the proof of

the theorem. �
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