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Weyl quantization for the semidirect product

of a compact Lie group and a vector space

Benjamin Cahen

Abstract. Let G be the semidirect product V ⋊ K where K is a semisimple
compact connected Lie group acting linearly on a finite-dimensional real vector
space V . Let O be a coadjoint orbit of G associated by the Kirillov-Kostant
method of orbits with a unitary irreducible representation π of G. We consider
the case when the corresponding little group H is the centralizer of a torus of K.
By dequantizing a suitable realization of π on a Hilbert space of functions on Cn

where n = dim(K/H), we construct a symplectomorphism between a dense open
subset of O and the symplectic product C2n ×O′ where O′ is a coadjoint orbit
of H. This allows us to obtain a Weyl correspondence on O which is adapted
to the representation π in the sense of [B. Cahen, Quantification d’une orbite

massive d’un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série
I (1997), 803–806].

Keywords: Weyl quantization, Berezin quantization, semidirect product, coad-
joint orbits, unitary representations

Classification: 81S10, 22E46, 22E99, 32M10

1. Introduction

Let G be a connected Lie group with Lie algebra g. Let π be a unitary irre-
ducible representation of G on a Hilbert space H . Assume that the representation
π is associated to a coadjoint orbit O of G by the Kirillov-Kostant method of or-
bits [19], [20], [21]. In [5] and [6] we introduced the notion of adapted Weyl
correspondence on O in order to generalize the usual quantization rules directly
[1], [15].

Definition 1.1. An adapted Weyl correspondence is an isomorphism W from a
vector space A of complex-valued (or real-valued) smooth functions on the orbit O
(called symbols) to a vector space B of (not necessarily bounded) linear operators
on H satisfying the following properties:

(1) the elements of B preserve a fixed dense domain D of H ;
(2) the constant function 1 belongs to A, the identity operator I belongs to

B and W (1) = I;
(3) A ∈ B and B ∈ B implies AB ∈ B;
(4) for each f in A the complex conjugate f̄ of f belongs to A and the adjoint

of W (f) is an extension of W (f̄) (in the real case: for each f in A the
operator W (f) is symmetric);
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(5) the elements of D are C∞-vectors for the representation π, the functions

X̃ (X ∈ g) defined on O by X̃(ξ) = 〈ξ, X〉 are in A and W (iX̃) v =
dπ(X)v for each X ∈ g and each v ∈ D.

For example, if G is a connected simply-connected nilpotent Lie group then
each coadjoint orbit O of G is diffeomorphic to R2n where n = 1/2 dim O, the
unitary irreducible representation of G associated with O can be realized in the
Hilbert space L2(Rn) and the usual Weyl correspondence gives an adapted symbol
calculus on O [2], [28]. It is also known that the Berezin calculus on an integral
coadjoint orbit O of a semisimple compact connected Lie group G provides an
adapted symbol calculus on O [5] (see also [12] and, for a similar result for the
discrete series representations of a semisimple noncompact Lie group, [11]). By
combining the usual Weyl correspondence and the Berezin calculus, we have ob-
tained an adapted Weyl correspondence on the principal series coadjoint orbits of
a connected semisimple noncompact Lie group [5], [10] and on the integral coad-
joint orbits of the semidirect product V ⋊ K where K is a connected semisimple
noncompact Lie group acting linearly on a finite-dimensional real vector space V ,
under the condition that the little group is a maximal compact subgroup of K [9].

In fact, an adapted Weyl correspondence provides a prequantization map in
the sense of [16, Definition 1]. In [9], we briefly described the relationship be-
tween adapted Weyl correspondences and the notion of quantization introduced
by Mark Gotay (see [16]). Our original motivation for constructing adapted Weyl
correspondences was to obtain covariant star-products on coadjoint orbits [5].
More recently, it has been established that adapted Weyl correspondences are
useful to study contractions of Lie group representations in the setting of the
Kirillov-Kostant method of orbits [14], [7], [8].

In the present paper, we continue the study of the adapted Weyl correspon-
dences for semidirect products started in [9]. We consider here the case of the
semidirect product G = V ⋊ K where K is a semisimple compact connected Lie
group acting linearly on a real vector space V . Let O be an integral coadjoint
orbit of G whose little group H is the centralizer of a torus of K and let π be
a unitary irreducible representation of G associated with O. The representa-
tion π is usually realized on a space of square integrable sections of a Hermitian
G-homogeneous vector bundle over K/H or, equivalently, on a space of square
integrable functions on K/H with values in the space of the corresponding little
group representation. Here we use a parametrization of a dense open subset of the
generalized flag manifold K/H in order to obtain a realization of π in a space of
square integrable functions on Cn where n = dim K/H (Section 3). We calculate
the corresponding derived representation dπ (Section 4) and we dequantize dπ by
using the usual Weyl correspondence on C2n ≃ R4n and the Berezin calculus on
the little group coadjoint orbit O′ associated with O (Section 5). Then we obtain
a symplectomorphism from the symplectic product C2n × O′ onto a dense open
subset of O (Section 6). This allows us to construct an adapted Weyl correspon-
dence on the orbit O (Section 6). In particular, these results can be applied to
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the case when V is the Lie algebra of K and the action of K on V is the adjoint
action (Section 7).

2. Preliminaries

The coadjoint orbits of a semidirect product were described by J.H. Rawnsley
in [23] (see also [3] for a detailed analysis of the geometrical structure of these
orbits).

Let K be a semisimple compact connected Lie group with Lie algebra k. Let
σ be a representation of K on a finite-dimensional real vector space V . For k
in K and v in V we write k.v instead of σ(k)v. We denote also by (k, p) → k.p
the representation of K on V ∗ which is contragredient to σ and by (A, v) → A.v
and (A, p) → A.p the corresponding derived representations of k on V and V ∗,
respectively. For v in V and p in V ∗ we define v∧p ∈ k∗ by (v∧p)(A) = p(A.v) =
−(A.p)(v) for A ∈ k. Note that Ad∗(k)(v ∧ p) = k.p ∧ k.v for k ∈ K, v ∈ V and
p ∈ V ∗.

We consider the semidirect product G = V ⋊ K. The group law of G is

(v, k).(v′, k′) = (v + k.v′, kk′)

for v, v′ in V and k, k′ in K. The Lie algebra g of G is the space V × k with the
Lie bracket

[(a, A), (a′, A′)] = (A.a′ − A′.a, [A, A′])

for a, a′ in V and A, A′ in k. We identify the dual g∗ of g to V ∗ × k∗. The
coadjoint action of G on g∗ is then given by

(v, k).(p, f) = (k.p, Ad∗(k)f + v ∧ k.p)

for (v, k) ∈ G and (p, f) ∈ g∗. We identify K-equivariantly k to its dual k∗ by
using the Killing form of k defined by 〈A, B〉 = Tr(adA adB) for A and B in k.
Then g∗ can be identified to V ∗ × k.

Now we consider the orbit O(ξ0) of the element ξ0 = (p0, f0) of g∗ ≃ V ∗ × k

under the coadjoint action of G on g∗. Henceforth we assume that the little group
H := {k ∈ K : k.p0 = p0} is the centralizer of a torus T1 of K. Let h denote
the Lie algebra of H . Let Z(p0) be the orbit of p0 under the action of K on V ∗.
Then Z(p0) is diffeomorphic to the generalized flag manifold K/H .

Let us describe how to endow Z(p0) ≃ K/H with a complex structure. Let
T be a maximal torus of K containing T1. Clearly T ⊂ H . Let t be the Lie
algebra of T . Let ∆ be the root system of K relative to T and let ∆1 be the root
system of H relative to T . We can simultaneously choose a Weyl chamber P of
T relative to K and a Weyl chamber P1 of T relative to H so that if ∆+ and ∆+

1

are, respectively, the positive roots of ∆ and ∆1 relative to P and P1 then
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(1) ∆+ ∩ ∆1 = ∆+
1 and

(2) if α ∈ ∆+ \ ∆+
1 , β ∈ ∆1 and α + β ∈ ∆ then α + β ∈ ∆+ \ ∆+

1 .

Moreover, if ∆s is the set of simple roots of ∆ relative to P and if ∆s
1 is the

set of simple roots of ∆1 relative to P1, then ∆s
1 ⊂ ∆s (see [27, 6.2.8]).

Let kc, hc and tc be the complexifications of k, h and t, respectively. Let Kc,
Hc and T c be the connected complex Lie groups whose Lie algebras are kc, hc

and tc, respectively. Let kc = tc ⊕
∑

α∈∆ kα be the root space decomposition of
kc. We set n+ =

∑

α∈∆+\∆+

1

kα and n− =
∑

α∈∆+\∆+

1

k−α. Then, by [27, 6.2.1],

n+ and n− are nilpotent Lie algebras satisfying [hc, n±] ⊂ n±. We also have

(2.1) kc = hc ⊕ n+ ⊕ n−, hc = tc ⊕
∑

α∈∆+

1

kα ⊕
∑

α∈∆+

1

k−α.

We denote by N+ and N− the analytic subgroups of Kc with Lie algebras
n+ and n−, respectively. A complex structure on K/H is then defined by the
diffeomorphism K/H ≃ Kc/HcN− [27, 6.2.11]. This complex structure depends
on the choice of P and P1.

The natural projection Kc → Kc/HcN− induces a projection τ : Kc → Z(p0).
The natural action of Kc on Kc/HcN− induces an action of Kc on Z(p0); we
denote by kp the action of k ∈ Kc on p ∈ Z(p0). Of course, if k ∈ K then kp is
the natural action k.p of k ∈ K on p ∈ V ∗.

Now we introduce a parametrization of a dense open subset of Z(p0) ≃ K/H .
Recall that (1) each k in a dense open subset of Kc has a unique Gauss decom-
position k = n+h n− where n+ ∈ N+, h ∈ Hc and n− ∈ N− and (2) the map
γ : Z → τ(exp Z) is a holomorphic diffeomorphism from n+ onto a dense open
subset of Z(p0) (see [17, Chapter VIII]). Then the action of Kc on Z(p0) induces
an action (defined almost everywhere) of Kc on n+. We denote by k ·Z the action
of k ∈ Kc on Z ∈ n+. Using the diffeomorphism K/H ≃ Kc/HcN− again, we see
that for each Z ∈ n+ there exists an element kZ ∈ K for which τ(kZ ) = τ(exp Z)
or, equivalently, kZ · 0 = Z.

Following [22], we introduce the projections κ : N+HcN− → Hc and ζ :
N+HcN− → N+. Then, for k ∈ Kc and Z ∈ n+ we have k · Z = log ζ(k expZ).
We set (X+iY )∗ = −X+iY for X, Y ∈ k and we denote by k → k∗ the involutive
anti-automorphism of Kc which is obtained by exponentiating X+iY → (X+iY )∗

to Kc. Also, let θ be the conjugation of kc with respect to k and let θ̃ be the
automorphism of Kc for which dθ̃ = θ. Then we have θ(X) = −X∗ for X ∈ kc

and θ̃(k) = (k∗)−1 for k ∈ Kc.
In the rest of the paper, we fix a Cartan-Weyl basis for kc, (Eα)α∈∆∪(Hα)α∈∆s

,
as in [20, Chapter 5]. In particular, k is spanned by the elements Eα − E−α,
i(Eα +E−α) for α ∈ ∆+ and iHα for α ∈ ∆s and we have the property E∗

α = E−α

for α ∈ ∆.
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Now we describe the K-invariant measure on Z(p0). Let dµL(Z) be the
Lebesgue measure on n+ defined as follows. Let (αk)1≤k≤n be an enumeration of
∆+ \∆+

1 . Then (Eαk
)1≤k≤n is a basis for n+ and we denote by z1 = x1 + iy1, z2 =

x2 + iy2, . . . , zn = xn + iyn the coordinates of Z ∈ n+ in this basis. Then we set
dµL(Z) = dx1dy1dx2dy2 · · · dxndyn. Now a K-invariant measure on n+ is given by
dµ(Z) = χΛ(κ(exp Z∗ expZ)) dµL(Z) where χΛ(h) = Detn+ Ad(h) is the charac-
ter of Hc corresponding to the weight Λ =

∑

α∈∆+\∆+

1
α, that is, Λ = dχΛ|tc (see

for instance [22] or [12]). Hence, a K-invariant measure on Z(p0) is dµ̃ = γ∗(dµ).
The two next lemmas will be needed later. First, we reformulate [23, Lemma 1]

as follows.

Lemma 2.1. The space V := {v∧p0 : v ∈ V } ⊂ k is the orthogonal complement

of h in k. We also have V = {Y + θ(Y ) : Y ∈ n−}.

Proof: The first assertion of the lemma follows from the equality (v ∧ p0)(A) =
p0(A.v) = −(A.p0)(v) for A ∈ k and v ∈ V . To prove the second assertion, we
note that h is spanned by the elements Eα − E−α, i(Eα + E−α) for α ∈ ∆+

1 and
iHα for α ∈ ∆s. On the other hand, the space {Y + θ(Y ) : Y ∈ n−} is spanned
by the elements Eα + θ(Eα) = Eα − E−α and iEα + θ(iEα) = i(Eα + E−α) for
α ∈ ∆+ \∆+

1 . Recalling that 〈Eα, Eβ〉 = δα,−β and 〈Eα, Hβ〉 = 0, the result then
follows. �

Observe that, for v ∈ V , one has (v, e).(p0, f0) = (p0, f0 + v ∧ p0) where e
denotes the identity element of K. Then, by Lemma 2.1, we may assume without
loss of generality that ξ0 = (p0, ϕ0) with ϕ0 ∈ h. We shall denote by O(ϕ0) ⊂ h

the orbit of ϕ0 ∈ h under the adjoint action of H .

Lemma 2.2. (1) For k ∈ N+HcN−, we have

κ(ζ(k)∗ζ(k)) = (κ(k)∗)−1κ(k∗k)κ(k)−1

(2) For Z ∈ n+, we have κ(exp Z∗ expZ) = κ(k−1
Z exp Z)∗κ(k−1

Z expZ).

Proof: (1) Write k = zhy where z ∈ N+, h ∈ Hc and y ∈ N−. Then k∗k =
y∗h∗z∗zhy. Hence κ(k∗k) = h∗κ(z∗z)h. This gives the desired result.

(2) Applying (1) to k = kZ = exp Zhy where h ∈ Hc and y ∈ N−, we get
κ(exp Z∗ expZ) = (h∗)−1h−1. Now k−1

Z expZ = y−1h−1 = h−1(hy−1h−1) gives

κ(k−1
Z exp Z) = h−1 and the result follows. �

3. Representations

In the rest of the paper, we assume that the orbit O(ϕ0) is associated with a
unitary irreducible representation (ρ, E) of H as in [29, Section 4]. This corre-
spondence can be described as follows. Let λ be the highest weight of (ρ, E). Let
ϕ0 ∈ t such that λ(A) = i〈ϕ0, A〉 for each A ∈ t. Then orbit of ϕ0 under the
adjoint action of H is said to be associated with the representation (ρ, E).
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Since O(ϕ0) is integral, the orbit O(ξ0) is also integral [23]. In fact, O(ξ0) is
associated with the unitarily induced representation

π̃ = IndG
V ×H (eip0 ⊗ ρ).

By a result of G. Mackey, π is irreducible because ρ is irreducible [25]. We
denote by π0 the usual realization of π̃ defined on a Hermitian vector bundle
as follows [21], [24]. We introduce the Hilbert G-bundle L := G ×eip0⊗ρ E over
Z(p0) ≃ K/H . Recall that an element of L is an equivalence class

[g, u] = {(g.(v, h), e−i〈p0,v〉ρ(h)−1u) : v ∈ V, h ∈ H}

where g ∈ G, u ∈ E and that G acts on L by left translations: g [g′, u] := [g.g′, u].
The action of G on Z(p0) ≃ K/H being given by (v, k).p = k.p, the projection
map [(v, k), u] → k.p0 is G-equivariant. The G-invariant Hermitian structure on
L is given by

〈[g, u], [g, u′]〉 = 〈u, u′〉E

where g ∈ G and u, u′ ∈ E. Let H0 be the space of sections s of L which are
square-integrable with respect to the measure dµ(p), that is,

‖s‖2
H0

=

∫

Z(p0)

〈s(p), s(p)〉 dµ(p) < +∞.

Then π0 is the action of G on H0 defined by

(π0(g) s)(p) = g s(g−1.p).

Now, following [24], we introduce an alternative realization of π̃ on a space of
functions. We associate with any s ∈ H0 the function fs : n+ → E defined by
s(γ(Z)) = [(0, kZ), fs(Z)]. For s and s′ in H0, we have

〈s(γ(Z)), s′(γ(Z))〉 = 〈fs(Z), fs′(Z)〉E .

This implies that

〈s, s′〉H0
=

∫

n+

〈fs(Z), fs′(Z)〉E δ(Z) dµL(Z).

where δ(Z) = χΛ(κ(exp Z∗ exp Z)) (see Section 2). This leads us to introduce
the Hilbert space H0 of functions f : n+ → E which are square-integrable with
respect to the measure δ(Z) dµL(Z). The norm on H0 is defined by

‖f‖2
H0 =

∫

n+

〈f(Z), f(Z)〉E δ(Z) dµL(Z).
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Moreover, for s ∈ H0, g = (v, k) ∈ G and Z ∈ n+, we have

(π0(g) s)(γ(Z)) = g s(g−1.γ(Z)) = g [(0, kk−1·Z), fs(k
−1 · Z)]

= [(v, kkk−1·Z), fs(k
−1 · Z)] = [(0, kZ).(k−1

Z .v, k−1
Z kkk−1·Z), fs(k

−1 · Z)]

= [(0, kZ), ei〈p0,k−1

Z
.v〉ρ(k−1

Z kkk−1·Z)fs(k
−1 · Z)].

Hence we conclude that the equality

(3.1) π0(v, k)f (Z) = ei〈kZ .p0,v〉 ρ(k−1
Z kkk−1·Z)f(k−1 · Z)

defines a unitary representation π0 on H0 which is unitarily equivalent to π0.
Now we deduce from π0 another realization of π̃ which is more convenient

for explicit computations and for the Weyl calculus. First, we extend ρ to a
representation ρ̃ of HcN− on E which is trivial on N− and we note that

(3.2)
ρ(k−1

Z kkk−1·Z) = ρ̃(k−1
Z exp Z)ρ̃(exp(−Z)k exp(k−1 · Z))

ρ̃((exp(k−1 · Z))−1kk−1·Z).

On the other hand, by (2) of Lemma 2.2, we have

(3.3)

〈ρ̃(k−1
Z exp Z)u, ρ̃(k−1

Z exp Z)u′〉E

= 〈ρ̃(κ(k−1
Z expZ))u, ρ̃(κ(k−1

Z exp Z))u′〉E

= 〈ρ̃(κ(k−1
Z expZ))∗ρ̃(κ(k−1

Z exp Z))u, u′〉E

= 〈ρ̃(κ(exp Z∗ exp Z))u, u′〉E .

Let us denote by R(v) = v1/2 the square root of a positive self-adjoint operator
on E. In order to simplify the notation, we set h(Z) := κ(exp Z∗ expZ) and
q(Z) = R(ρ̃(h(Z))). Then by (3.3) we have

(3.4) 〈ρ̃(k−1
Z expZ)u, ρ̃(k−1

Z exp Z)u′〉E = 〈q(Z)u, q(Z)u′〉E .

Let us introduce the Hilbert space H of functions φ : n+ → E which are square-
integrable with respect to the measure dµL(Z). From equations (3.1), (3.2)
and (3.4) we deduce immediately that π0 is unitarily equivalent to the repre-
sentation π of G on H defined by

(3.5)
π(v, k)φ (Z) = ei〈exp Z p0,v〉 δ(Z)1/2δ(k−1 · Z)−1/2q(Z)

ρ̃(exp(−Z)k exp(k−1 · Z))q(k−1 · Z)−1φ(k−1 · Z)

the intertwining operator f ∈ H0 7→ φ ∈ H being given by

φ(Z) = δ(Z)1/2q(Z)ρ̃(k−1
Z expZ)−1f(Z).
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4. Derived representation

In this section, we compute the differential dπ of the representation π of G.
For (w, A) ∈ g, we can write

(dπ(w, A)φ)(Z) = i〈expZp0, w〉φ(Z)(4.1)

+ δ(Z)1/2 d

dt
δ(k(t)−1 · Z)−1/2

∣

∣

t=0
φ(Z)

+ q(Z)
d

dt
q(k(t)−1 · Z)−1

∣

∣

t=0
φ(Z)

+ q(Z)dρ̃

(

d

dt
exp(−Z)k(t) exp(k(t)−1 · Z)

∣

∣

t=0

)

q(Z)−1φ(Z)

+
d

dt
φ(k(t)−1 · Z)

∣

∣

t=0

where k(t) := exp(tA). Recall that we have set h(Z) = κ(exp Z∗ expZ) and
q(Z) = R(ρ̃(h(Z))) where R denotes square root. The following lemma can be
easily deduced from results of [12]. We denote by phc , pn+ and pn− the projections
of kc on hc, n+ and n− associated with the direct decomposition kc = hc⊕n+⊕n−.

Lemma 4.1. Let A ∈ k and k(t) = exp(tA). Then we have

(4.2)

d

dt
ρ̃
(

exp(−Z)k(t) exp(k(t)−1 · Z)
)∣

∣

t=0
=

d

dt
ρ̃
(

κ(k(t)−1 exp Z)
)−1∣

∣

t=0

= dρ̃
(

phc(Ad exp(−Z)A)
)

and

(4.3)
d

dt
k(t)−1 · Z

∣

∣

t=0
= −

adZ

1 − e− ad Z
pn+(e− ad Z A).

Proof: Immediate consequence of [12], Proposition 4.1 and Proposition 5.1. �

Lemma 4.2. Let A ∈ k and k(t) = exp(tA). Then we have

(4.4)

d

dt
q(Z) q(k(t)−1 · Z)−1

∣

∣

t=0
= −Ad ρ̃(h(Z))1/2(id + Ad ρ̃(h(Z))−1/2)−1

(

dρ̃
(

phc(Ad exp(−Z)A)) + Ad ρ̃(h(Z))−1dρ̃
(

phc(Ad exp(−Z)A)∗)
)

and similarly

(4.5)

d

dt
δ(Z)1/2δ(k(t)−1 · Z)−1/2

∣

∣

t=0

= −
1

2

(

Λ(phc(Ad exp(−Z)A)) + Λ(phc(Ad exp(−Z)A)∗)
)

.
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Proof: First, note that exp(k(t)−1 · Z) = ζ(k(t)−1 exp Z). Then, applying
Lemma 2.2, we have

h(k(t)−1 · Z) = κ(k(t)−1 expZ)∗−1h(Z)κ(k(t)−1 exp Z)−1.

Hence

q(k(t)−1 · Z)−1 = R
(

ρ̃
(

κ(k(t)−1 expZ)h(Z)−1κ(k(t)−1 expZ)∗
))

and

d

dt
q(k(t)−1 · Z)−1

∣

∣

t=0

= dR(ρ̃(h(Z)−1))dρ̃(h(Z)−1)

(

d

dt
κ(k(t)−1 exp Z)h(Z)−1κ(k(t)−1 expZ)∗

∣

∣

t=0

)

= dR(ρ̃(h(Z)−1))
(

dρ̃(U)ρ̃(h(Z))−1
)

where

U :=
d

dt
κ(k(t)−1 expZ)h(Z)−1κ(k(t)−1 exp Z)∗h(Z)

∣

∣

t=0
.

Applying Lemma 4.1, we find

(4.6)
U =

d

dt
κ(k(t)−1 expZ)

∣

∣

t=0
+ Ad(h(Z)−1)

d

dt
κ(k(t)−1 expZ)∗

∣

∣

t=0

= − phc(Ad exp(−Z)A) − Ad(h(Z)−1)phc(Ad exp(−Z)A)∗.

On the other hand, using the equality

dR(u)v = (id + Adu1/2)−1(vu−1/2)

for any positive definite self-adjoint operator u on E, we get

q(Z)
d

dt
q(k(t)−1 · Z)−1

∣

∣

t=0

= ρ̃(h(Z))1/2(id + Ad ρ̃(h(Z))−1/2)−1
(

dρ̃(U)ρ̃(h(Z))−1/2
)

= Ad ρ̃(h(Z))1/2(id + Ad ρ̃(h(Z))−1/2)−1(dρ̃(U)).

Taking equation (4.6) into account, we then obtain (4.4). Moreover, writing (4.6)
for ρ̃ = χΛ, we also obtain (4.5). �
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Proposition 4.1. For (w, A) ∈ g and φ ∈ C∞
0 (n+, E) we have

dπ(w, A)φ(Z) =
d

dt
(π(tw, exp(tA))φ)(Z)

∣

∣

t=0

= i〈exp Zp0, w〉φ(Z)

−
1

2

(

Λ(phc(Ad exp(−Z)A)) + Λ(phc(Ad exp(−Z)A)∗)
)

φ(Z)

+ (id + Ad ρ̃(h(Z))−1/2)−1
(

dρ̃
(

phc(Ad exp(−Z)A)
)

− Ad ρ̃(h(Z))−1/2dρ̃
(

phc(Ad exp(−Z)A)∗
))

φ(Z)

− ∂Zφ(Z, Z∗)

(

adZ

1 − e− ad Z
pn+(e− ad Z A)

)

− ∂Z∗φ(Z, Z∗)

(

ad Z

1 − e− ad Z
pn+(e− ad Z A)

)∗

.

Proof: Using Lemma 4.1 and Lemma 4.2 and writing

q(Z)dρ̃

(

d

dt
exp(−Z)k(t) exp(k(t)−1 · Z)

∣

∣

t=0

)

q(Z)−1

= Ad ρ̃(h(Z))1/2dρ̃
(

phc(Ad exp(−Z)A)
)

= Ad ρ̃(h(Z))1/2(id + Ad ρ̃(h(Z))−1/2)−1(id + Ad ρ̃(h(Z))−1/2)

dρ̃
(

phc(Ad exp(−Z)A)
)

we see that

q(Z)dρ̃

(

d

dt
exp(−Z)k(t) exp(k(t)−1 · Z)

∣

∣

t=0

)

q(Z)−1

+ q(Z)
d

dt
q(k(t)−1 · Z)−1

∣

∣

t=0

= (id + Ad ρ̃(h(Z))−1/2)−1
(

dρ̃
(

phc(Ad exp(−Z)A)
)

− Ad ρ̃(h(Z))−1/2dρ̃
(

phc(Ad exp(−Z)A)∗
)

)

.

The result then follows. �

5. Dequantization

We first introduce the Berezin calculus on the orbit O(ϕ0). The Berezin cal-
culus associates with each operator B on the finite-dimensional complex vector
space E a complex-valued function s(B) on the orbit O(ϕ0) called the symbol of
the operator B (see [4]). The following properties of the Berezin calculus can be
found in [13], [5], [12].
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Proposition 5.1. (1) The map B → s(B) is injective.

(2) For each operator B on E, we have s(B∗) = s(B).
(3) For ϕ ∈ O(ϕ0), h ∈ H and for an operator B on E, we have

s(B)(Ad(h)ϕ) = s(ρ(h)−1Bρ(h))(ϕ).

(4) For A ∈ h and ϕ ∈ O(ϕ0), we have s(dρ(A))(ϕ) = i〈ϕ, A〉.

Now we introduce the Berezin-Weyl calculus on n+×n+×O(ϕ0). We first recall
the definition of the Berezin-Weyl calculus on R2n×R2n×O(ϕ0) (see [9]). We say
that a smooth function f : (T, S, ϕ) → f(T, S, ϕ) is a symbol on R

2n×R
2n×O(ϕ0)

if for each (T, S) ∈ R2n × R2n the function ϕ → f(T, S, ϕ) is the symbol in the

Berezin calculus on O(ϕ0) of an operator on E denoted by f̂(T, S). A symbol

f on R2n × R2n × O(ϕ0) is called an S-symbol if the function f̂ belongs to the
Schwartz space of rapidly decreasing smooth functions on R2n × R2n with values
in End(E). Now we consider the Weyl calculus for End(E)-valued functions [18].
For any S-symbol f on R2n × R2n × O(ϕ0) we define an operator W(f) on the
Hilbert space L2(R2n, E) by

(5.1) (W(f)φ)(T ) = (2π)
−2n

∫

R2n×R2n

ei〈S,S′〉f̂
(

T +
1

2
S, S′

)

φ(T + S) dS dS′

for φ ∈ C∞
0 (R2n, E).

The Weyl-Berezin calculus can be extended to much larger classes of symbols
(see for instance [18]). Here we are only concerned with a class of polynomial
symbols. We say that a symbol f on R2n × R2n × O(ϕ0) is a P-symbol if the

function f̂(T, S) is polynomial in S. Let f be the P-symbol defined by f(T, S, ϕ) =
u(T )Sα where u ∈ C∞(R2n, E) and Sα := sα1

1 sα2

2 . . . sα2n

2n for each multi-index
α = (α1, α2, . . . , α2n). Then we have (see [26]):

(5.2) (W(f)φ)(T ) = (i∂S)α
(

u(T +
1

2
S)φ(T + S)

)

∣

∣

∣

S=0
.

In particular, if f(T, S, ϕ) = u(T ) then

(5.3) (W(f)φ)(T ) = u(T )φ(T )

and if f(T, S, ϕ) = u(T )sk then

(5.4) (W(f)φ)(T ) = i

(

1

2
(∂tk

u)(T )φ(T ) + u(T )(∂tk
φ)(T )

)

.

The correspondence f 7→ W(f) is called the Berezin-Weyl calculus on R2n ×
R2n ×O(ϕ0). In order to obtain the Berezin-Weyl calculus on n+ × n+ ×O(ϕ0),
we just rewrite the Berezin-Weyl calculus on R2n × R2n × O(ϕ0) in complex
coordinates.
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Let j : R2n → n+ be the map defined by

j(t1, t2, . . . , tn, t′1, t
′
2, . . . , t

′
n) =

n
∑

k=1

(tk + it′k)Eαk

and let j̃ : R2n × R2n ×O(ϕ0) → n+ × n+ ×O(ϕ0) be the map given by

j̃(T, S, ϕ) = (j(T ), j(S), ϕ).

We say that a function f : n+×n+×O(ϕ0) → C is a symbol (resp. an S-symbol, a

P-symbol) on n+×n+×O(ϕ0) if f ◦ j̃ is a symbol (resp. an S-symbol, a P-symbol)
on R2n×R2n×O(ϕ0) and we define the Berezin-Weyl calculus on n+×n+×O(ϕ0)
by

W (f)φ ◦ j = W(f ◦ j̃)φ

for each φ ∈ C∞
0 (n+, E). Let Y =

∑n
k=1 ykEαk

be the decomposition of Y ∈ n+

in the basis (Eαk
). An easy computation shows that if f(Z, Y, ϕ) = u(Z) then

(5.5) (W (f)φ)(Z) = u(Z)φ(Z),

if f(Z, Y, ϕ) = u(Z)yk then

(5.6) (W (f)φ)(Z) = i(∂zk
u)(Z)φ(Z) + 2iu(Z)(∂zk

φ)(Z)

and if f(Z, Y, ϕ) = u(Z)yk then

(5.7) (W (f)φ)(Z) = i(∂zk
u)(Z)φ(Z) + 2iu(Z)(∂zk

φ)(Z).

In order to dequantize the derived representation dπ, that is, to calculate the
Berezin-Weyl symbol of the operators dπ(X) (X ∈ g), we need the following
lemma.

Lemma 5.1. For A ∈ kc let uA : n+ → n+ be the holomorphic map defined by

uA(Z) =
adZ

1 − e− ad Z
pn+(e− ad Z A).

Then

Trn+ duA(Z) = Λ(phc(e− ad ZA)).

Proof: Since n+ is a nilpotent Lie algebra, we can write

uA(Z) = s(ad Z)pn+(e− ad Z A) where s(z) =
∑N

k=0 akzk is a polynomial. For
Y ∈ n+ and Z ∈ n+, we have

duA(Z)(Y ) =
d

dt
s(ad(Z + tY ))

∣

∣

∣

t=0
pn+(e− ad ZA)

+ s(ad Z)pn+

(

d

dt
Ad(exp(−Z − tY ))A

∣

∣

∣

t=0

)

.
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Now

d

dt
s(ad(Z + tY ))

∣

∣

∣

t=0
=

N
∑

k=0

ak
d

dt
(adZ + t ad Y )k

∣

∣

∣

t=0

=
N

∑

k=0

ak

( k−1
∑

r=0

(ad Z)r ad Y (ad Z)k−r−1

)

.

Then, since for each r = 0, 1, . . . , k − 1 the endomorphism of n+ defined by

Y → (adZ)r adY (ad Z)k−r−1pn+(e− ad Z A)

= −(adZ)r ad
(

(ad Z)k−r−1pn+(e− ad Z A)
)

(Y )

is nilpotent, the endomorphism of n+ given by

Y →
d

dt
s(ad(Z + tY ))

∣

∣

∣

t=0
pn+(e− ad Z A)

has trace zero. On the other hand we have

d

dt
Ad(exp(−Z − tY ))A

∣

∣

∣

t=0

=
d

dt
Ad (exp(−Z) exp(Z + tY ))

−1
Ad exp(−Z)A

∣

∣

∣

t=0

= − ad

(

1 − e− ad Z

ad Z
Y

)

Ad exp(−Z)A

= ad (Ad exp(−Z)A)

(

1 − e− ad Z

ad Z

)

Y.

The trace of the endomorphism of n+ defined by

Y → s(ad Z)pn+

(

d

dt
Ad(exp(−Z − tY ))A

∣

∣

∣

t=0

)

is then

Trn+

(

s(ad Z)pn+ ◦ ad(Ad exp(−Z)A)
1 − e− ad Z

adZ

)

= Trn+

(1 − e− ad Z

adZ
s(ad Z) pn+ ◦ ad(Ad exp(−Z)A)

)

= Trn+ (pn+ ◦ ad(Ad exp(−Z)A)) .

Consequently, the lemma will be proved if we show that, for each A in kc, we have

Trn+ (pn+ ◦ ad A) = Λ(phc(A)).

If A ∈ n+ then pn+ ◦ ad A = adA is a nilpotent endomorphism of n+. Thus
Trn+(pn+ ◦adA) = 0. If A ∈ n− then for each k = 1, 2, . . . , n we have adA(Eαk

) ∈
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hc +
∑

α<αk
kαk

and we also find that Trn+(pn+ ◦ ad A) = 0. Finally, if A ∈ hc

then

Trn+(pn+ ◦ ad A) = Trn+(ad A) =
n

∑

k=1

αk(A) = Λ(A).

This ends the proof of the lemma. �

We consider the Cartan decomposition Kc = K exp(ik) [17, Chapter VI]. For
k ∈ Kc we can write k = up where u ∈ K and p ∈ exp(ik). Since u∗u = e
and p∗ = p we have k∗k = p∗u∗up = p2 and we can introduce the notation
p =: (k∗k)1/2.

Proposition 5.2. For X = (w, A) ∈ g, the Berezin-Weyl symbol of the operator

−idπ(X) is the P-symbol fX on n+ × n+ ×O(ϕ0) given by

fX(Z, Y, ϕ) = 〈exp Zp0, w〉

+ 〈ϕ, (id + Ad(h(Z))−1/2)−1
(

phc(Ad exp(−Z)A)

− Ad(h(Z))−1/2phc(Ad exp(−Z)A)∗
)

〉

+ Re〈uA(Z), Y ∗〉

where

uA(Z) =
adZ

1 − e− ad Z
pn+(e− ad Z A).

Proof: Write uA(Z) =
∑n

k=1 uk(Z)Eαk
. Then, by using (5.5), (5.6) and (5.7),

we see that the operator

φ 7→ i(∂Zφ)(Z, Z∗)(uA(Z)) = i

n
∑

k=1

uk(Z)∂zk
φ

has symbol

1

2

n
∑

k=1

uk(Z)yk −
1

2
i

n
∑

k=1

∂zk
uk =

1

2
〈uA(Z), Y ∗〉 −

1

2
iΛ(phc(e− ad Z A)).

Similarly, the operator

φ 7→ i(∂Z∗φ)(Z, Z∗)(uA(Z)∗) = i
n

∑

k=1

uk(Z)∂zk
φ

has symbol

1

2

n
∑

k=1

uk(Z)yk −
1

2
i

n
∑

k=1

∂zk
uk =

1

2
〈uA(Z), Y ∗〉 −

1

2
iΛ(phc(e− ad Z A)).

The result follows from Proposition 4.1 and Proposition 5.1(3). �
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6. Adapted Weyl correspondence

In this section we show how the dequantization procedure used in Section 5
allows us to obtain an explicit symplectomorphism from n+ × n+ ×O(ϕ0) onto a
dense open subset of O(ξ0). Using this symplectomorphism we then construct an
adapted Weyl correspondence on O(ξ0). We retain the notation from the previous
sections. Moreover, for A ∈ kc, we set Re(A) = 1

2 (A + θ(A)).
Recall that fX denotes the Berezin-Weyl symbol of the operator −idπ(X) for

X ∈ g. Since the map X → fX(Z, Y, ϕ) is linear there exists a map Ψ from
n+ × n+ ×O(ϕ0) to g∗ ≃ V ∗ ⊕ k such that

(6.1) fX(Z, Y, ϕ) = 〈Ψ(Z, Y, ϕ), X〉

for each X ∈ g and each (Z, Y, ϕ) ∈ n+ × n+ ×O(ϕ0). From Proposition 5.2 we
deduce a precise expression for Ψ.

Proposition 6.1. For (Z, Y, ϕ) ∈ n+ × n+ ×O(ϕ0), we have

Ψ(Z, Y, ϕ) =

(

exp Zp0, Re Ad(exp Z)

[

pn−

(

adZ

1 − eadZ
θ(Y )

)

+ 2(id + Ad(h(Z))1/2)−1ϕ

])

.

Proof: For (w, A) ∈ g, we transform the expression for fX(Z, Y, ϕ) given in
Proposition 5.2 as follows. First we have

〈ϕ, (id + Ad(h(Z))−1/2)−1phc(Ad exp(−Z)A)〉

= 〈(id + Ad(h(Z))1/2)−1ϕ, phc(Ad exp(−Z)A)〉

= 〈(id + Ad(h(Z))1/2)−1ϕ, Ad exp(−Z)A〉

= 〈Ad(expZ)(id + Ad(h(Z))1/2)−1ϕ, A〉.

On the other hand, by using the properties (Ad(k−1)B)∗ = Ad(k∗)B∗ for k ∈ kc

and B ∈ kc and 〈B∗
1 , B∗

2〉 = 〈B1, B2〉 for B1 and B2 in kc, we have

〈ϕ, (id + Ad(h(Z))−1/2)−1 Ad(h(Z))−1/2phc(Ad exp(−Z)A)∗〉

= 〈(id + Ad(h(Z))−1/2)−1ϕ, phc(Ad exp(−Z)A)∗〉

= −〈(id + Ad(h(Z))1/2)−1ϕ, phc(Ad exp(−Z)A)〉

= −〈(id + Ad(h(Z))1/2)−1ϕ, Ad exp(−Z)A〉

= −〈Ad(expZ) (id + Ad(h(Z))1/2)−1ϕ, A〉.
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Then
〈

ϕ, (id + Ad(h(Z))−1/2)−1
(

phc(Ad exp(−Z)A)

− Ad(h(Z))−1/2phc(Ad exp(−Z)A)∗
)〉

=
〈

2 Re
(

Ad(expZ) (id + Ad(h(Z))1/2)−1ϕ
)

, A
〉

.

Moreover we have

〈uA(Z), Y ∗〉 =
〈 ad Z

1 − e− ad Z
pn+(e− ad ZA), Y ∗

〉

=
〈

pn+(e− ad ZA), −
adZ

1 − eadZ
Y ∗

〉

=
〈

e− ad ZA, pn−

(

adZ

1 − eadZ
θ(Y )

)

〉

=
〈

A, ead Zpn−

(

adZ

1 − ead Z
θ(Y )

)

〉

.

The result therefore follows. �

Let ω0 and ω1 be the Kirillov 2-forms on O(ξ0) and O(ϕ0), respectively. Denote
by {·, ·}0 and {·, ·}1 the Poisson brackets associated with ω0 and ω1. We endow
n+ × n+ with the symplectic form

ω2 :=
1

2

n
∑

k=1

(dzk ∧ dyk + dzk ∧ dyk).

The corresponding Poisson bracket on C∞(n+ × n+) is

{f, g}2 := 2

n
∑

k=1

(

∂fzk
∂yk

g − ∂yk
f∂zk

g + ∂fzk
∂yk

g − ∂yk
f∂zk

g
)

.

We endow the product n+×n+×O(ϕ0) with the symplectic form ω := ω2⊗ω1

and we denote by {·, ·} the corresponding Poisson bracket. Let u, v ∈ C∞(n+ ×
n+) and a, b ∈ C∞(O(ϕ0)). Then, for f(Z, Y, ϕ) = u(Z, Y )a(ϕ) and g(Z, Y, ϕ) =
v(Z, Y )b(ϕ) we have

{f, g} = u(Z, Y )v(Z, Y ){a, b}1 + a(ϕ)b(ϕ){u, v}2.

Lemma 6.1. Suppose that f and g are two P-symbols on n+ × n+ × O(ϕ0) of

the form

u(Z) + 〈v(Z), ϕ〉 +

n
∑

k=1

(wk(Z)yk + w′
k(Z)yk)
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where u ∈ C∞(n+), v ∈ C∞(n+, kc) and wk, w′
k ∈ C∞(n+) for k = 1, 2, . . . , n.

Then we have

[W (f), W (g)] = −i W ({f, g}).

Proof: By using (5.5), (5.6) and (5.7), one can prove the result by a direct
computation. One can also deduce it from Lemma 6.2 of [9] by using the fact
that j̃ is a symplectomorphism from R2n ×R2n ×O(ϕ0) endowed with its natural
symplectic structure onto n+ × n+ ×O(ϕ0). �

Let Õ(ξ0) be the dense open subset of O(ξ0) defined by

Õ(ξ0) = {(v, k).(p0, ϕ0) : v ∈ V, k ∈ K ∩ N+HcN−}.

Proposition 6.2. The map Ψ is a symplectomorphism from (n+×n+×O(ϕ0), ω)

onto (Õ(ξ0), ω0).

Proof: (1) First, we show that for any ξ ∈ Õ(ξ0) there exists a unique element

(Z, Y, ϕ) in n+ × n+ × O(ϕ0) such that Ψ(Y, Z, ϕ) = ξ. Let ξ ∈ Õ(ξ0). Write
ξ = (v, k).(p0, ϕ0) where v ∈ V and k ∈ K ∩ N+HcN−. If Ψ(Y, Z, ϕ) = ξ then

(6.2) (0, k)−1.Ψ(Z, Y, ϕ) = (p0, ϕ0 + (k−1.v) ∧ p0).

This gives k−1 expZp0 = p0 or, equivalently, k−1 expZ ∈ HcN− and we can write
k−1 exp Z = yh where y ∈ N− and h ∈ Hc. Thus, equation (6.2) implies

(6.3)
2 ReAd(yh)(id + Ad(h(Z))1/2)−1ϕ + Re Ad(yh)pn−

( ad Z

1 − ead Z
θ(Y )

)

= ϕ0 + (k−1.v) ∧ p0.

Hence, noting that the element YZ,ϕ defined by

YZ,ϕ := Ad(y)Ad(h)(id + Ad(h(Z))1/2)−1ϕ − Ad(h)(id + Ad(h(Z))1/2)−1ϕ

belongs to n− and applying Lemma 2.1, we see that equation (6.3) is equivalent
to

{

(E1) Re
(

YZ,ϕ + Ad(yh)pn−

(

ad Z
1−ead Z θ(Y )

))

= (k−1.v) ∧ p0

(E2) 2 Re
(

Ad(h)(id + Ad(h(Z))1/2)−1ϕ
)

= ϕ0.

But we have

2Re
(

Ad(h)(id + Ad(h(Z))1/2)−1ϕ
)

= Ad(h)(id + Ad(h(Z))1/2)−1ϕ + Ad(θ(h))(id + Ad(θ(h(Z)))1/2)−1θ(ϕ)

= Ad(h)(id + Ad(h(Z))1/2)−1ϕ + Ad(h∗)−1(id + Ad(h(Z))−1/2)−1ϕ

= Ad(h)(id + Ad(h∗h)−1 Ad(h(Z))1/2)(id + Ad(h(Z))1/2)−1ϕ
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and, since h∗h = h(Z), we can write

2 Re
(

Ad(h)(id + Ad(h(Z))1/2)−1ϕ
)

= Ad(h)(id + Ad(h(Z))−1/2)(id + Ad(h(Z))1/2)−1ϕ

= Ad(h)Ad(h(Z))−1/2ϕ.

Finally, writing h = up, u ∈ K, p = (h∗h)1/2 ∈ exp(ik) for the Cartan decompo-
sition of h, we obtain

2 Re
(

Ad(h)(id + Ad(h(Z))1/2)−1ϕ
)

= Ad(u)ϕ

where u ∈ Hc ∩ K = H . Consequently, equation (E2) gives ϕ = Ad(u−1)ϕ0.
Since Z = log ζ(k), we have shown that Z and ϕ are unique. In order to verify
that Y is also unique, we have just to use equation (E1) and the following facts:
(1) the map Y → Re(Y ) from n+ to the ortho-complement of h in k is injective
and (2) the map

Y → pn−

( ad Z

1 − ead Z
θ(Y )

)

is a bijection from n+ onto n−, the inverse bijection being

U → θ

(

pn−

(1 − ead Z

ad Z
U

)

)

.

It is also clear that the element (Y, Z, ϕ) obtained below satisfies the equation
Ψ(Y, Z, ϕ) = ξ. Moreover, by similar considerations, we show that Ψ takes values

in Õ(ξ0) and we can conclude that Ψ is a bijection from n+ × n+ × O(ϕ0) onto

Õ(ξ0).

(2) For X ∈ g, we denote by X̃ the function on Õ(ξ0) defined by X̃(ξ) = 〈ξ, X〉.

Observe that fX = X̃ ◦ Ψ.
Let X and Y in g. Then by Proposition 5.2 and Lemma 6.1 we have

[W (fX), W (fY )] = −iW ({fX, fY }).

But we also have

[W (fX), W (fY )] = [−idπ(X),−idπ(Y )] = −dπ([X, Y ]) = −iW (f[X,Y ]).

Hence f[X,Y ] = {fX , fY }. Since ˜[X, Y ] = {X̃, Ỹ }0, we obtain

{

X̃, Ỹ
}

0
◦ Ψ =

{

X̃ ◦ Ψ, Ỹ ◦ Ψ
}

.

This implies that Ψ∗(ω0) = ω. Since the 2-form ω is non-degenerate, we also have
that the map Ψ is regular. Finally, Ψ is a symplectomorphism. �
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Remark 6.1. The map Ψ might define a symplectomorphism from n+ × n+ ×
O(ϕ0) onto Õ(ξ0) even when the orbit O(ϕ0) is not assumed to be integral.

Now, we are in position to construct an adapted Weyl transform on O(ξ0) by
transferring to O(ξ0) the Berezin-Weyl calculus on n+×n+×O(ϕ0). We say that
a smooth function f on O(ξ0) is a symbol (resp. a P-symbol, an S-symbol) on
O(ξ0) if f ◦ Ψ is a symbol (resp. a P-symbol, an S-symbol) for the Berezin-Weyl
calculus on n+ × n+ ×O(ϕ0).

Proposition 6.3. Let A be the space of P-symbols on O(ξ0) and let B be the

space of differential operators on n+ with coefficients in C∞(n+, E). Then the map

W̃ : A → B defined by the W̃ (f) = W (f ◦Ψ) is an adapted Weyl correspondence

in the sense of Definition 1.1.

Proof: The properties (1), (2) and (3) of Definition 1.1 are clearly satisfied with
D = C∞

0 (n+, E). The property (4) follows from the corresponding properties for
the Berezin calculus (see Proposition 5.1) and for the usual Weyl calculus [18].
Finally, the property (5) is an immediate consequence of Proposition 5.2 and
Proposition 6.1. �

7. Final remarks and examples

7.1. If ρ is a character of H then O(ϕ0) reduces to the point ϕ0 and Ψ is given
by

(7.1) Ψ(Z, Y, ϕ) =
(

exp Zp0, Re Ad(exp Z)
[

ϕ0 + pn−

( adZ

1 − ead Z
θ(Y )

)])

.

7.2. If Z(p0) ≃ G/H is a symmetric space then n+ and n− are abelian and
[n+, n−] ⊂ hc (see [17, Lemma VII 2.16]). Thus, for each Y and Z in n+, we have

pn−

( ad Z

1 − ead Z
θ(Y )

)

= θ(Y ).

Hence the expression for Ψ is

(7.2) Ψ(Z, Y, ϕ) =
(

expZp0, Re Ad(exp Z)
[

2(id + Ad(h(Z))1/2)−1ϕ + θ(Y )
])

.

7.3. In this subsection, we consider the case when V is equal to the Lie algebra
k of K and σ is the adjoint action of K on k. We identify V ∗ = k∗ to V = k by
means of the Killing form. Then we have v ∧ p = [v, p] for each v ∈ V = k and
each p ∈ V ∗ ≃ k. The coadjoint action of G on g∗ is thus given by

(v, k).(p, f) = (Ad(k)p, Ad(k)f + [v, Ad(k)p]).

Moreover, if ξ0 = (p0, ϕ0) is an element of g∗ such that p0 6= 0 and O(ϕ0) is integral
then the stabilizer H of p0 in K is the centralizer of the torus of K generated by
exp p0 and one can apply to O(ξ0) the results of the previous sections.
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7.4. We illustrate here the situation described in the previous subsection by the
following example. We take K = SU(m+n) and p0 to be the element of k defined
by

p0 = i

(

−nIm 0
0 mIn

)

.

The torus T1 generated by exp p0 consists of the matrices

(

eiaIm 0
0 eibIn

)

a, b ∈ R, (eia)m(eib)n = 1.

The torus T1 is contained in the maximal torus T ⊂ K consisting of the matrices

Diag(eia1 , eia2 , . . . , eiam+n), a1, a2, . . . , am+n ∈ R,

m+n
∏

k=1

eiak = 1.

Moreover, the subgroup H = {k ∈ K : k.p0 = p0} is the centralizer of T1 in K
and consists of the matrices

(

A 0
0 D

)

, A ∈ U(m), D ∈ U(n), DetA. Det D = 1,

that is, we have H = S(U(m) × U(n)). The complexification T c of T has Lie
algebra

tc =

{

X = Diag(x1, x2, . . . , xm+n) : xk ∈ C,

m+n
∑

k=1

xk = 0

}

.

The set of roots of tc on gc is λi − λj for 1 ≤ i 6= j ≤ m + n where λi(X) = xi

for X ∈ tc as above. The set of roots of tc on hc is λi − λj for 1 ≤ i 6= j ≤ m and
m + 1 ≤ i 6= j ≤ m + n. We take the set of positive roots ∆+ to be λi − λj for

1 ≤ i < j ≤ m+n and the set of positive roots ∆+
1 to be λi−λj for 1 ≤ i < j ≤ m

and m + 1 ≤ i < j ≤ m + n. Then we have

N+ =

{(

Im Z
0 In

)

: Z ∈ Mmn(C)

}

, N− =

{(

Im 0
Y In

)

: Y ∈ Mnm(C)

}

.

We identify n+ to Mmn(C) by means of the map

Z 7→ Z̃ =

(

0 Z
0 0

)

.

We also have

Hc =

{(

A 0
0 D

)

A ∈ Mm(C), D ∈ Mn(C), Det A. DetD = 1

}

.
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We easily see that the N+HcN−-decomposition of a matrix k ∈ Kc is given by

k =

(

A B
C D

)

=

(

Im BD−1

0 In

) (

A − BD−1C 0
0 D

) (

Im 0
D−1C In

)

.

Observe that a matrix k ∈ Kc have such a decomposition if and only if DetD 6= 0.
In particular we have K ⊂ N+HcN−. Moreover, we deduce from the preceding
decomposition that the action of Kc on n+ is given by

k · Z = (AZ + B)(CZ + D)−1, k =

(

A B
C D

)

.

Note that, for k ∈ Kc, we have k∗ = k
t

(conjugate transpose of k) and θ̃(k) =

(k
t
)−1. For X ∈ kc, we have X∗ = X

t
and θ(X) = −X

t
.

We are here in the situation of the subsection 7.2 and Ψ is then given by
equation (7.2) with

h(Z̃) =

(

(Im + ZZ⋆)−1 0
0 In + Z⋆Z

)

and

exp Z̃ p0 = i

(

(Im + ZZ⋆)−1(mZZ⋆ − nIm) (m + n)Z(In + Z⋆Z)−1

(m + n)(In + Z⋆Z)−1Z⋆ (mIn − nZ⋆Z)(In + Z⋆Z)−1

)

.

In particular, in the case when m = n = 1, we can take

ϕ0 =

(

−ia 0
0 ia

)

where a ∈ N \ (0). We get

exp Z̃p0 =
1

√

1 + |z|2
i

(

|z|2 − 1 2z
2z 1 − |z|2

)

and

Ψ(Z̃, Ỹ ) =

(

exp Z̃p0,
1

2

(

−2ai + yz − yz 2aiz + y + yz2

2aiz − y − yz2 2ai − yz + yz

))

.
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