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Relatively pseudocomplemented directoids

Ivan Chajda

Abstract. The concept of relative pseudocomplement is introduced in a commuta-
tive directoid. It is shown that the operation of relative pseudocomplementation
can be characterized by identities and hence the class of these algebras forms a
variety. This variety is congruence weakly regular and congruence distributive.
A description of congruences via their kernels is presented and the kernels are
characterized as the so-called p-ideals.

Keywords: directoid, relative pseudocomplementation, filter, congruence distri-
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By a directoid (a commutative directoid in sense of [3]) we understand a
groupoid D = (D;⊓) satisfying the identities

(D1) x ⊓ x = x;

(D2) x ⊓ y = y ⊓ x;

(D3) x ⊓ ((x ⊓ y) ⊓ z) = (x ⊓ y) ⊓ z.

It is known (see [3]) that the relation ≤ defined on D by

x ≤ y if and only if x ⊓ y = x

is an order and for any x, y ∈ D we have x ⊓ y ≤ x, x⊓ y ≤ y. Also conversely, if
(D;≤) is downward directed ordered set and for any x, y ∈ D we define x ⊓ y =
y ⊓ x ∈ L(x, y) = {z ∈ D; z ≤ x, z ≤ y} arbitrarily if x, y are non-comparable and
x ⊓ y = y ⊓ x = x if x ≤ y then the resulting algebra (D;⊓) is a directoid.

The concept of pseudocomplementation was introduced for directoids by the
author in [1]. Our aim here is to extend the concept of relative pseudocomplement
from semilattices or lattices (see e.g. [2], [4]) to directoids.

If (S;∧) is a meet-semilattice and a, b ∈ S, a relative pseudocomplement of a
with respect to b is a greatest element x (if it exists) such that

a ∧ x ≤ b.

It is easy to check that this condition is equivalent to

a ∧ x = a ∧ b.

Supported by the Research and Development Council of the Czech Government via the
project MSM6198959214.
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However, if a directoid is considered instead of a semilattice, these conditions are
not equivalent, see the following

Example 1. Let D = (D;⊓) be a directoid whose diagram is visualized in
Figure 1

x

0

1

a ⊓ b

a b

a ⊓ x

Figure 1

Then clearly, a ⊓ x ≤ b but a ⊓ x 6= a ⊓ b, in fact the elements a ⊓ x, a ⊓ b are
non-comparable. ♦

The situation explained in Example 1 is caused by the fact that a ≤ b in a
directoid D does not imply a ⊓ c ≤ b ⊓ c for any c ∈ D. It holds if and only if D
is a semilattice. To avoid these difficulties, we define

Definition. Let D = (D;⊓) be a directoid, a, b ∈ D. By a relative pseudocom-

plement of a with respect to b, a∗ b in symbol, is meant a greatest element x of D
such that a ⊓ x = a ⊓ b. A directoid D is called relatively pseudocomplemented if
there exists a ∗ b for every a, b ∈ D. We will denote by D = (D;⊓, ∗) a relatively
pseudocomplemented directoid.

In what follows, we will suppose the priority of the operation ∗ and hence we
will write e.g. x ⊓ y ∗ z instead of x ⊓ (y ∗ z).

Example 2. Consider the directoid as shown in Figure 2

1

q

a c
b

0

p r

Figure 2
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where a⊓ b = p, a⊓ c = q, b⊓ c = r. Then there does not exist a greatest element
x ∈ D with a ⊓ x ≤ b since a ⊓ b = p ≤ b, a ⊓ c = q ≤ b but a ⊓ 1 = a � b.
On the other hand, there is a greatest element x = b with a ⊓ x = a ⊓ b since
a ⊓ c = q 6= p = a ⊓ b, thus a ∗ b exists and equals to b. ♦

Example 3. An example of relatively pseudocomplemented directoid is depicted
in Figure 3

0

1

a

c d

b

Figure 3

where for non-comparable elements we define c ⊓ d = a. Then, relative pseudo-
complements are given by the table

∗ 0 a b c d 1
0 1 1 1 1 1 1
a b 1 b 1 1 1
b a a 1 1 1 1
c 0 d b 1 d 1
d 0 c b c 1 1
1 0 a b c d 1

♦

Theorem 1. Every relatively pseudocomplemented directoid has a greatest

element which is equal to a ∗ a for each a ∈ D.

Proof: Let D = (D;⊓, ∗) be a relatively pseudocomplemented directoid and
a, b ∈ D. Let p = a ⊓ b. Then p ≤ a, p ≤ b and hence for p ∗ a we have
p⊓p∗a = p⊓a = p thus a ≤ p∗a. However p ≤ b thus p⊓b = p = p⊓a = p⊓p∗a
whence p ∗ a ≤ p ∗ b. Interchanging a and b in the previous reasoning we conclude
that p ∗ a = p ∗ b. Since b ≤ p ∗ b, we have that p ∗ a is a common upper bound of
both a, b, i.e. (D;≤) is an upward directed set.

Now, let a, b ∈ D. We have that a ≤ a∗a and b ≤ b∗ b where a∗a is a greatest
element with a ⊓ a ∗ a = a, i.e. a greatest element over a and b ∗ b is a greatest
element over b. Since (D;≤) is upward directed, it easily yields that a ∗ a = b ∗ b,
i.e. a ∗ a is a greatest element of (D;≤). �
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For a relatively pseudocomplemented directoid, its greatest element will be
denoted by 1.

Lemma 1. Let D = (D;⊓, ∗) be a relatively pseudocomplemented directoid.

Then

(a) 1 ∗ x = x;
(b) a ≤ b if and only if a ∗ b = 1;
(c) b ≤ a ∗ b;
(d) a ∗ b = a ∗ (a ⊓ b).

Proof: (a) Since 1 ⊓ x = x for each x ∈ D, we get 1 ∗ x = x immediately.

(b) Assume a ≤ b. Then a ⊓ b = a and hence a ⊓ 1 = a = a ⊓ b gets 1 = a ∗ b.
Conversely, if a ∗ b = 1 then a = a ⊓ 1 = a ⊓ b whence a ≤ b.

(c) Since a ∗ b is a greatest element with a ⊓ a ∗ b = a ⊓ b, we have b ≤ a ∗ b.

(d) It follows immediately by the fact that a ⊓ b = a ⊓ (a ⊓ b). �

We are going to show that also conversely, the properties (c), (d) and those
of Theorem 1 and of the Definition characterize the operation of relative pseudo-
complementation.

Theorem 2. Let D = (D;⊓) be commutative directoid and ∗ be a binary

operation on D. Then D = (D;⊓, ∗) is relatively pseudocomplemented if and

only if it satisfies the following identities

(S1) x ⊓ (x ∗ y) = x ⊓ y;

(S2) (x ∗ y) ⊓ y = y;

(S3) x ∗ y = x ∗ (x ⊓ y);

(S4) x ∗ x = y ∗ y.

Proof: If D = (D;⊓, ∗) is a relatively pseudocomplemented directoid then it
satisfies (S1)–(S4) directly by the Definition and Theorem 1 and Lemma 1.

Conversely, assume that a directoid (D;⊓) with ∗ satisfies (S1)–(S4). By (S2)
we have (y ∗ y)⊓ y = y and, by (S4) we conclude (x ∗ x)⊓ y = y for each x, y ∈ D
thus (D;⊓) has a greatest element 1 = x ∗ x.

Suppose a, b ∈ S and a ⊓ x = a ⊓ b for some x ∈ D. By (S3) we obtain

a ∗ x = a ∗ (a ⊓ x) = a ∗ (a ⊓ b) = a ∗ b

thus, due to (S2), x ≤ a ∗ x = a ∗ b. By (S1), we have a ⊓ (a ∗ b) = a ⊓ b i.e.
a ∗ b is a greatest element x of D satisfying a ⊓ x = a ⊓ b and hence a relative
pseudocomplement of a with respect to b. �

Corollary. The class of all relatively pseudocomplemented directoids is a variety

presented by the identities (D1)–(D3), (S1)–(S4).

Denote by V the variety of relatively pseudocomplemented directoids. Recall
that a variety with a constant 1 is weakly regular if for any algebra A of this
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variety, every congruence θ ∈ ConA is determined by its 1-class [1]θ. By Csákány
Theorem (see e.g. [2]), a variety is weakly regular if and only if there exist binary
terms b1(x, y), . . . , bn(x, y) such that

(W) b1(x, y) = · · · = bn(x, y) = 1 if and only if x = y.

We can state the following

Theorem 3. The variety V of relatively pseudocomplemented directoids is

weakly regular.

Proof: Consider the term b1(x, y) = (x∗y)⊓(y∗x). If x = y then, by Theorem 1,
b1(x, x) = (x ∗ x)⊓ (x ∗ x) = 1⊓ 1 = 1. Conversely, let b1(x, y) = 1. Since 1 is the
greatest element of this directoid, it yields that x ∗ y = 1 and y ∗ x = 1. By (b) of
Lemma 1 we have x ≤ y and y ≤ x thus x = y. By (W), V is weakly regular. �

It means that congruences on a relatively pseudocomplemented directoid will
be fully described when the congruence kernels are known. In what follows we
get this description.

Let D = (D;⊓) be a directoid. A non-void subset F ⊆ D is called a filter of D
if it satisfies the following conditions:

(i) if a, b ∈ F then also a ⊓ b ∈ F ;
(ii) if a ∈ F and a ≤ x for x ∈ D then x ∈ F .

For relatively pseudocomplemented directoids, filters can be characterized as
the so-called deductive systems, i.e. as subset closed under Modus Ponens, see the
following

Lemma 2. Let D = (D;⊓, ∗) be a relatively pseudocomplemented directoid and

F ⊆ D. The following are equivalent:

(a) F is a filter of D;

(b) 1 ∈ F and if x ∈ F and x ∗ y ∈ F then also y ∈ F .

Proof: (a)⇒(b): Since F 6= ∅, there is a ∈ F . By (ii) of the previous definition
we conclude 1 ∈ F since a ≤ 1. Assume x ∈ F and x ∗ y ∈ F . Then, by (i) and
the definition of relative pseudocomplement we have

x ⊓ y = x ⊓ x ∗ y ∈ F,

thus x ⊓ y ≤ y yields y ∈ F .

(b)⇒(a): Assume b ∈ F and b ≤ a. Then b ∗ a = 1 ∈ F and, due to (b), also
a ∈ F .

Assume now that c, d ∈ F . By Lemma 1(c) we have d ≤ c ∗ d thus, as already
shown, also c ∗ d ∈ F . However c ∗ (c ⊓ d) = c ∗ d by Lemma 1(d). Since c ∈ F ,
the condition (b) yields c ⊓ d ∈ F and hence F is a filter of D. �

Lemma 3. Let D = (D;⊓, ∗) be a relatively pseudocomplemented directoid and

θ ∈ ConD. Then [1]θ is a filter of D.
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Proof: It is evident that 1 ∈ [1]θ. Further, [1]θ is certainly closed under ⊓ since
1 ⊓ 1 = 1 and θ is a congruence on D. Moreover, if x ∈ [1]θ and x ≤ y, then
x = x ⊓ y θ 1 ⊓ y = y, so y ∈ [1]θ. Hence [1]θ is a filter of D. �

Theorem 4. Let D = (D;⊓, ∗) be a relatively pseudocomplemented directoid,

θ ∈ ConD. Then

〈x, y〉 ∈ θ if and only if x ∗ y ⊓ y ∗ x ∈ [1]θ.

Proof: Let 〈x, y〉 ∈ θ. Then 〈1, x ∗ y〉 = 〈x ∗ x, x ∗ y〉 ∈ θ and 〈y ∗ x, 1〉 =
〈y ∗ x, y ∗ y〉 ∈ θ. Hence x ∗ y, y ∗ x ∈ [1]θ. By Lemma 3, [1]θ is a filter thus also
x ∗ y ⊓ y ∗ x ∈ [1]θ.

Conversely, assume x ∗ y ⊓ y ∗ x ∈ [1]θ. Then 〈x ∗ y ⊓ y ∗ x, 1〉 ∈ θ thus also

〈x ∗ y ⊓ y ∗ x, x ∗ y〉 = 〈(x ∗ y) ⊓ (x ∗ y ⊓ y ∗ x), (x ∗ y) ⊓ 1〉 ∈ θ

and, analogously, 〈x∗y⊓y∗x, y∗x〉 ∈ θ. Using transitivity, we get 〈x∗y, y∗x〉 ∈ θ.
This yields

〈x ⊓ y, x〉 = 〈x ⊓ x ∗ y, x ⊓ y ∗ x〉 ∈ θ and

〈y, x ⊓ y〉 = 〈y ⊓ x ∗ y, y ⊓ y ∗ x〉 ∈ θ

whence 〈x, y〉 ∈ θ. �

To describe congruence kernels, let us introduce the following concept.
A filter F of a relatively pseudocomplemented directoid is called a p-filter if it

satisfies the following condition

if x ∗ y ∈ F and y ∗ x ∈ F then

(x ∗ z) ∗ (y ∗ z) ∈ F and (z ∗ x) ∗ (z ∗ y) ∈ F

and (x ⊓ z) ∗ (y ⊓ z) ∈ F for each z ∈ D.

Theorem 5. Let D = (D;⊓, ∗) be a relatively pseudocomplemented directoid.

A subset F ⊆ D is a congruence kernel if and only if F is a p-filter. If F is a

p-filter of D then it induces the congruence θF given by 〈x, y〉 ∈ θF if and only if

x ∗ y ⊓ y ∗ x ∈ F .

Proof: Let θ ∈ ConD and F = [1]θ. By Lemma 3, F is a filter of D. Assume
x∗y ∈ F and y ∗x ∈ F . Then also x∗y⊓y ∗x ∈ F and, by Theorem 4, 〈x, y〉 ∈ θ.
Thus also 〈x ∗ z, y ∗ z〉 ∈ θ, 〈z ∗ x, z ∗ y〉 ∈ θ and 〈x ⊓ z, y ⊓ z〉 ∈ θ. By Theorem 4
we easily conclude that F is a p-filter.

Conversely, let F be a p-filter of D. Define 〈x, y〉 ∈ θF if and only if x∗y⊓y∗x ∈
F . Since 1 ∈ F , the relation θF is reflexive. Symmetry of θF follows immediately.
Assume 〈x, y〉 ∈ θF and z ∈ D. Then x ∗ y ⊓ y ∗ x ∈ F thus also x ∗ y, y ∗ x ∈ F .
Since F is a p-filter, we conclude (x ∗ z) ∗ (y ∗ z), (z ∗ x) ∗ (z ∗ y) ∈ F . Moreover,
the same memberships with x and y permuted follow as the condition ”x ∗ y ∈ F



Relatively pseudocomplemented directoids 355

and y ∗x ∈ F” is symmetric, so we get also (y ∗z)∗ (x∗z) ∈ F , (z ∗y)∗ (z ∗y) ∈ F .
Thus (x ∗ z) ∗ (y ∗ z) ⊓ (y ∗ z) ∗ (x ∗ z) ∈ F whence

〈x ∗ z, y ∗ z〉 ∈ θF .

Analogously it can be shown 〈z ∗ x, z ∗ y〉 ∈ θF and 〈x ⊓ z, y ⊓ z〉 ∈ θF .
Assume now that also 〈y, z〉 ∈ θF . Then y ∗ z, z ∗ y ∈ F . Since y ∗ z ∈ F and

(y ∗ z) ∗ (x ∗ z) ∈ F , by Lemma 2 also x ∗ z ∈ F . Analogously we check z ∗ x ∈ F
and hence x∗z⊓z ∗x ∈ F giving 〈x, z〉 ∈ θF . Altogether, θF is also transitive and
hence an equivalence on D and, due to the previous compatibility conditions, θF

is a congruence on D. The fact that F = [1]θF
follows directly by Theorem 4. �

Theorem 6. The variety V of relatively pseudocomplemented directoids is

congruence distributive.

Proof: We need only to find Jónsson terms. For this, take

t0(x, y, z) = x = t1(x, y, z), t2(x, y, z) = x ⊓ y ∗ z,

t3(x, y, z) = x ⊓ z, t4(x, y, z) = z ⊓ y ∗ x, t5(x, y, z) = z.

Then clearly t0(x, y, x) = t1(x, y, x) = t5(x, y, x) = x and

t2(x, y, x) = x ⊓ y ∗ x = x, t3(x, y, x) = x ⊓ x = x,

t4(x, y, x) = x ⊓ y ∗ x = x.

For i even we have

t0(x, x, y) = x = t1(x, x, y)

t2(x, x, y) = x ⊓ x ∗ y = x ⊓ y = t3(x, x, y)

t4(x, x, y) = y ⊓ x ∗ x = y ⊓ 1 = y = t5(x, x, y).

For i odd we compute

t1(x, y, y) = x = x ⊓ 1 = x ⊓ y ∗ y = t2(x, y, y)

t3(x, y, y) = x ⊓ y = y ⊓ x = y ⊓ y ∗ x = t4(x, y, y).

Hence, t0, . . . , t5 are Jónsson terms and thus V is congruence distributive. �

It is well-known that every relatively pseudocomplemented lattice is distribu-
tive. It is not the case of pseudocomplemented directoids (where the second
operation can be established) since distributivity of such an algebra yields that
it is a lattice, see e.g. [2] or [5]. However, a certain form of distributivity can
be considered. If D = (D;⊓, ∗) is a relatively pseudocomplemented directoid
and M ⊆ D, denote by

∨
M the supremum of M provided it exists. An easy

transcription of the definition of relative pseudocomplementation shows that D
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satisfies the identity

x ⊓
∨

{z; x ⊓ z = x ⊓ y} = x ⊓ y.

In what follows we show that relatively pseudocomplemented directoids need not
be even distributive ordered sets (see e.g. [6]). For our reasons, let us modify the
definition from [6] as follows:

We say that a commutative directoid D = (D;⊓) is order-distributive if it
satisfies the condition

(D) U(a ⊓ b, c) = U(a, c) ⊓ U(b, c) for all a, b, c ∈ D,

where U(x, y) = {z ∈ D; x ≤ z and y ≤ z} and for subsets A, B ⊆ D we put
A⊓B = {a⊓ b; a ∈ A, b ∈ B} if A 6= ∅ 6= B and A⊓B = ∅ else. Moreover, denote
U(x) = {y ∈ D; x ≤ y}.

Recall that a meet-semilattice (S,∧) is distributive if for any a, b ∈ S and each
c ≥ a ∧ b there exist a1 ≥ a, b1 ≥ b such that c = a1 ∧ b1.

We can state the following

Theorem 7. A commutative directoid D = (D;⊓) is order-distributive if and

only if it is a distributive meet-semilattice.

Proof: Assume that D = (D;⊓) is not a semilattice. Then there are a, b ∈ D
such that either a ∧ b exists but a ⊓ b < a ∧ b or a ∧ b does not exist.

Let D = (D;⊓) be order-distributive.

(a) If a ∧ b exists and a ⊓ b < a ∧ b = p, then U(a ⊓ b, p) = U(p) but p ≤ a,
p ≤ b yield U(a, p) = U(a), U(b, p) = U(b) and hence

a ⊓ b ∈ U(a) ⊓ U(b) = U(a, p) ⊓ U(b, p), a ⊓ b /∈ U(p) = U(a ⊓ b, p)

which is a contradiction.

(b) If a ∧ b does not exist then there exists q ∈ D such that q ≤ a, q ≤ b but
q ‖ a ⊓ b, see Figure 4.

a ⊓ b

a b

q

Figure 4

We have a ⊓ b ∈ U(a) ⊓ U(b) = U(a, q) ⊓ U(b, q) but a ⊓ b /∈ U(a ⊓ b, q), a
contradiction.

(c) Assume that D = (D;⊓) is a ∧-semilattice, i.e. a ∧ b exist for all a, b ∈ D
and a ∧ b = a ⊓ b. Let a, b ∈ D and c > a ∧ b. Then U(a ∧ b, c) = U(c).
Since U(a ∧ b, c) = U(a, c) ∧ U(b, c), we have c ∈ U(a ∧ b, c) and hence there are
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a1 ∈ U(a, c), b1 ∈ U(b, c) such that c = a1 ∧ b1. Evidently, a1 ≥ a, b1 ≥ b thus D
is a distributive semilattice.

Conversely, assume that D = (D;⊓) is a distributive semilattice and x ∈
U(a ⊓ b, c) for given elements a, b, c ∈ D. Then x ≥ a ⊓ b = a ∧ b, i.e. there exist
a1 ≥ a, b1 ≥ b such that x = a1 ∧ b1. Since x ≥ c, we have a1 ≥ a1 ∧ b1 ≥ c,
b1 ≥ a1 ∧ b1 ≥ c thus a1 ∈ U(a, c), b1 ∈ U(b, c) and hence

x = a1 ∧ b1 ∈ U(a, c) ∧ U(b, c).

Assume y ∈ U(a, c) ∧ U(b, c). Then there exist z ∈ U(a, c), v ∈ U(b, c) such that
y = z ∧ v. Hence z ≥ a, v ≥ b, z ≥ c, v ≥ c thus

y = z ∧ v ≥ a ∧ b, y ≥ c

which yield y ∈ U(a ∧ b, c). We have shown

U(a ∧ b, c) = U(a, c) ∧ U(b, c)

thus D is order-distributive. �
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