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A note on discrete sets

Santi Spadaro

Abstract. We give several partial positive answers to a question of Juhász and
Szentmiklóssy regarding the minimum number of discrete sets required to cover
a compact space. We study the relationship between the size of discrete sets, free
sequences and their closures with the cardinality of a Hausdorff space, improving
known results in the literature.

Keywords: discrete set, dispersion character, compact space, Eberlein compact,
free sequence, elementary submodel

Classification: 54A25

1. Introduction

How many discrete sets does it take to cover a compact space? Do discrete sets
reflect the cardinality of a compact space? These questions have been considered
by many authors.

Call dis(X) the least number of discrete sets required to cover X . Gruenhage
([12]) proved that dis(X) ≥ c for every compact space without isolated points,
thus answering a question of Juhász and van Mill [14]. It is unknown whether
compactness can be replaced by countable compactness. By exploiting a lemma
of Gruenhage, and yet using a completely different approach, Juhász and Szent-
miklóssy [15] proved that in every compact space with χ(x,X) ≥ κ for every
x ∈ X we have dis(X) ≥ 2κ, thus generalizing both Gruenhage’s theorem and the
classical Čech-Pospǐsil theorem.

Call ∆(X) the least cardinality of a non-empty open set in X . Since in every
compact space where every point has character at least κ we have ∆(X) ≥ 2κ,
Juhász and Szentmiklóssy naturally ask the following question.

Question 1.1 ([15]). Is dis(X) ≥ ∆(X) for every compact space X?

In the first part of this note we will give several partial positive answers to the
previous question.

We consider special classes of compact spaces (compact T5 spaces, compact
LOTS, polyadic compacta, Gul’ko compacta. . . ) and prove that Juhász and
Szentmiklóssy’s inequality is true for them. A few results outside of the compact
realm are obtained as a byproduct, for example we determine the least number
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of discrete sets required to cover a Σ-product. Also, sometimes we can replace
compactness by a weaker property (for example, the Baire property).

Let now g(X) = sup{|D| : D ⊂ X is discrete}. Alas, Tkachuk and Wilson [2]
ask whether g(X) ≤ c implies that |X | ≤ c for every compact X . Only consistent
negative answers are known for this question (see [5]). On the other hand, Alas
provides a partial consistent positive answer in the following theorem.

Theorem 1.2 ([1]). (MA) If X is compact, ŝ(X) ≤ c and g(X) ≤ c then |X | ≤ c.

The condition ŝ(X) ≤ c just means that every discrete set in X has size < c.
Another partial positive answer is provided by the following theorem of Alan Dow.

Theorem 1.3 ([5]). If X is a compact space of countable tightness such that
g(X) ≤ c then |X | ≤ c.

In the second part of this note we are going to prove a common generalization of
the above results that takes them out of the compact realm. Further investigations
on when cardinality is reflected by discrete sets or even free sequences will follow.

All spaces are assumed to be Hausdorff. A space is called crowded if it has no
isolated points. All undefined notions can be found in [6] and [13]. The spread,
cellularity, tightness, weight, π-character and the number of regular open sets of
X will be denoted respectively by s(X), c(X), t(X), w(X), πχ(X) and ρ(X).

2. Covering a compact space by discrete sets

Testing a conjecture about compact spaces on compact hereditarily normal
spaces is quite a natural thing to try, and indeed, Juhász and Van Mill already
did that for the inequality dis(X) ≥ c, before Gruenhage proved it to be true for
every compact Hausdorff space.

Theorem 2.1 ([12]). Let f : X → Y be a perfect map. Then dis(X) ≥ dis(Y ).

Let κω be the product of countably many copies of the discrete space κ. The
following was proved in [18].

Lemma 2.2. For every Baire metric space dis(X) ≥ ∆(X). In particular
dis(κω) = κω.

A cellular family is a family of pairwise disjoint open sets in X . The following
lemma is crucial to most of our results in this section.

Lemma 2.3. Let X be a compact space whose every open set contains a cellular
family of cardinality κ. Then dis(X) ≥ κω.

Proof: Use regularity of X to find a cellular family {Uα : α < κ} such that the
closures of its members are pairwise disjoint. Suppose you have constructed open
sets {Uσ : σ ∈ κ<n}. Then let {Uσ⌢α : α ∈ κ} be a cellular family inside Uσ such
that the closures of its members are pairwise disjoint and contained in Uσ.

For each f ∈ κω let Ff =
⋂

n∈ω Uf↾n, which is a non-empty set because of
compactness, and set Z =

⋃
f∈κω Ff .
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We are now going to show a perfect map Φ from Z onto κω. By Theorem 2.1
and Lemma 2.2 we will get that dis(X) ≥ κω.

Define Φ simply as Φ(x) = f whenever x ∈ Ff . It is easy to see that the Ff ’s
are pairwise disjoint, so Φ is well-defined. Moreover, Φ is clearly continuous, onto
and has compact fibers.

The following characterization of closed maps is well-known (see [6, Theo-
rem 1.4.13]).

Fact 2.4. A mapping f : X → Y is closed if and only if for every point y ∈ Y and
every open set U ⊂ X which contains f−1(y), there exists in Y a neighbourhood
V of the point y such that f−1(V ) ⊂ U .

Let now f ∈ κω, and U be an open set in Z such that Φ−1(f) = Ff =⋂
n∈ω Uf↾n ⊂ U . By compactness, we can find an increasing sequence of integers

{jk : 1 ≤ k ≤ n} such that Uf↾jn
=

⋂
1≤k≤n Uf↾jk

⊂ U .

So let B(f ↾ jn) be the basic neighbourhood in κω determined by f ↾ jn. Then
Φ−1(B(f ↾ jn)) ⊂ Uf↾jn

⊂ U , which proves Φ is closed. �

Theorem 2.5. Let X be an hereditarily collectionwise Hausdorff compact space.
Then dis(X) ≥ ∆(X).

Proof: Recall that cellularity and spread coincide for hereditarily collectionwise
Hausdorff spaces (see [13, 2.23 a)]). So if c(G) < ∆(X), for some open set G ⊂ X
we also have s(G) < ∆(X) ≤ ∆(G). Hence dis(X) ≥ ∆(X).

Suppose now that c(G) ≥ ∆(X) for every open set G ⊂ X . If ∆(X) is a
successor cardinal then every open set contains a cellular family of size ∆(X),
and hence, in view of Lemma 2.3 we have dis(X) ≥ ∆(X).

If ∆(X) is a limit cardinal then, again by Lemma 2.3, every open set contains
a cellular family of size κ for every κ < ∆(X). Hence dis(X) ≥ κ for every
κ < ∆(X), which implies dis(X) ≥ ∆(X) again. �

Corollary 2.6. For every compact LOTS X , dis(X) ≥ ∆(X).

Proof: Compact LOTS are monotonically normal, which implies collectionwise
normal, and monotone normality is hereditary (see [10]). �

From Theorem 2.5 it also follows that, under V=L, dis(X) ≥ ∆(X) for every
compact hereditarily normal space X . Indeed, Stephen Watson [19] proved that
compact T5 spaces are hereditarily collectionwise Hausdorff in the constructible
universe. We can do better, and prove that dis(X) ≥ ∆(X) for X compact T5

under a slight weakening of GCH.

Theorem 2.7. (for every cardinal κ, 2κ < 2κ+

) Let X be a compact T5 space.
Then dis(X) ≥ ∆(X).

Proof: Suppose first that c(G) < ∆(X) for some open set G. Since c(G) = c(G)
and G is compact T5 we can assume that X = G.

Let κ = c(X). By Shapirovskii’s bound on the number of regular open sets
(see [13, 3.21]) we have ρ(X) ≤ 2κ. Note that κ+ ≤ ∆(X). If dis(X) < ∆(X)
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then we would have s(X) ≥ ∆(X) and hence we could find a discrete D ⊂ X

such that |D| ≥ κ+. By Jones’ lemma (see [13, 3.1]), ρ(X) ≥ 2κ+

> 2κ, which
contradicts our upper bound for the number of regular open sets.

If c(G) ≥ ∆(X) for every open set G, then reasoning as in the last few lines of
the proof of Theorem 2.5 we can conclude that dis(X) ≥ ∆(X). �

Question 2.8. Is it true in ZFC that dis(X) ≥ ∆(X) for every compact T5 space?

A trivial observation is that all compact metrizable spaces satisfy dis(X) ≥
∆(X).

The two most popular generalizations of compact metrizable spaces are dyadic
compacta and Eberlein compacta. In fact, they are two somewhat opposite
classes, as their intersection is precisely the class of compact metrizable spaces
(see [3]).

This made us wonder whether dis(X) ≥ ∆(X) was true for them. In fact, we
are able to prove that for the weaker classes of polyadic and Gul’ko compacta.
To achieve that we first need to prove that dis(X) is always bounded below by
the tightness. Recall that a space is called initially κ-compact if every set of
cardinality ≤ κ has a complete accumulation point.

Lemma 2.9 ([9]). Let X be an initially κ-compact space such that dis(X) ≤ κ.
Then X is compact.

Lemma 2.10. If X is compact then dis(X) ≥ t(X).

Proof: Suppose by contradiction that κ = dis(X) < t(X). Let A ⊂ X be a
non-closed set, and [A]κ be its κ-closure, that is, the union of the closures of its
subsets of cardinality κ. If we could prove that this last set is closed then we
would have t(X) ≤ κ, which is what we want.

If [A]κ is not closed then it cannot be initially κ-compact, or otherwise, since
dis([A]κ) ≤ κ, it would be compact by Lemma 2.9. So there is B ⊂ [A]κ such
that |B| ≤ κ and B has no point of complete accumulation in [A]κ; then, by
compactness, there is a point x /∈ [A]κ that is of complete accumulation for B.
But this contradicts the well-known and easy to prove fact that [[A]κ]κ = [A]κ. �

A compactum is called polyadic if it is the continuous image of some power of
the one-point compactification of some discrete set.

The following lemmas are due to Gerlits.

Lemma 2.11 ([7]). Let X be polyadic and A ⊂ X . Then there is a polyadic
P ⊂ X such that A ⊂ P and c(P ) ≤ c(A).

Lemma 2.12 ([8]). If X is polyadic then w(X) = t(X) · c(X).

Theorem 2.13. For a polyadic compactum X we have dis(X) ≥ ∆(X).
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Proof: If c(U) ≥ ∆(X) for any open set U ⊂ X then we are done by Lemma 2.3.
If there exists some open U such that c(U) < ∆(X), then let P be a polyadic space
such that U ⊂ P and c(P ) ≤ c(U). Assume dis(P ) < ∆(X). Then t(P ) < ∆(X),
which implies s(P ) ≤ w(P ) < ∆(X), and we are done, since |P | ≥ ∆(X). �

Recall that an Eberlein compactum is a compact space which embeds in Cp(Y )
for some compact Y . Equivalently, a space is an Eberlein compactum if and only
if it is a weakly compact subspace of a Banach space. A Gul’ko compactum is a
compact space X such that Cp(X) is a Lindelöf Σ-space. A Corson compactum

is a compact space with embeds in a Σ-product of lines. The following chain of
implications holds.

Eberlein ⇒ Gul’ko ⇒ Corson

Recall that a space is called meta-Lindelöf if every open cover has a point-
countable open refinement.

Lemma 2.14. Let X be an hereditarily meta-Lindelöf space such that dis(X) ≤
κ. If A ⊂ X is such that |A| ≤ κ then |A| ≤ κ.

Proof: If κ < ω then the statement is obviously true. Assume that κ is infinite,
and let X =

⋃
α<κDα, where each Dα is discrete. Let Bα = A ∩Dα. For every

x ∈ Bα, let Ux be an open set such that Ux ∩Bα = {x}. Then
⋃

x∈Bα
Ux is meta-

Lindelöf, and hence {Ux : x ∈ Bα} has a point-countable open refinement Vα. Now
for every x ∈ Bα choose Vx ∈ Vα such that x ∈ Vx and let Uα = {Vx : x ∈ Bα}.
Clearly |Uα| = |Bα| and for all U ∈ Uα, U ∩A 6= ∅. Fix some well-ordering of A
and define a function f : Uα → A by:

f(U) = min{a ∈ A : a ∈ U}.

Point-countability of Uα implies that |f−1(a)| ≤ ℵ0 for every a ∈ A, and
therefore |Bα| = |Uα| ≤ |A| · ℵ0 ≤ κ.

Since A =
⋃

α∈κBα it follows that |A| ≤ κ. �

Theorem 2.15. Let X be an hereditarily meta-Lindelöf space containing a dense
Baire metrizable subset. Then dis(X) ≥ ∆(X).

Proof: Let M ⊂ X be a dense metrizable subset and suppose by contradiction
that dis(X) < ∆(X). Then, by the previous lemma we have ∆(M) = ∆(X). So
dis(X) ≥ dis(M) ≥ ∆(M) = ∆(X), which is a contradiction. �

Corollary 2.16. For every Gul’ko compactum X we have dis(X) ≥ ∆(X).

Proof: Yakovlev ([20]) proved that every Corson compactum is hereditarily
meta-Lindelöf and Gruenhage ([11]) proved that every Gul’ko compactum con-
tains a dense Baire metrizable subset. �

We are sorry to admit that we have not been able to answer the following two
questions.
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Question 2.17. Is it true in ZFC that dis(X) ≥ ∆(X) for every Corson com-
pact X?

Question 2.18. Is dis(X) ≥ ∆(X) for every compact space with a (Baire) dense
metrizable subset?

As an application of the results in this section we are now going to determine
how many discrete sets are needed to cover the Σ-product of a Cantor cube.

Theorem 2.19. dis(Σ(2κ)) = κω.

To prove that we will embed in Σ(2κ) an Eberlein compactum X for which
∆(X) = κω.

Recall that a family A of subsets of a set T is called adequate if:

(1) for every A ∈ A, P(A) ⊂ A;
(2) if [A]<ω ⊂ A then A ∈ A.

It is easy to see that A with the topology inherited from the product space
2T is closed, and hence compact. Such a space is called an adequate compactum.
Adequate families are one of the most useful tools for constructing Corson com-
pacta: especially handy is the adequate family of all chains of a partial order.
If the partial order has no uncountable chains, then the corresponding adequate
compactum is Corson.

Leiderman and Sokolov characterized all adequate Eberlein compacta.

Theorem 2.20 ([16]). Let X be an adequate compact embedded in 2T . Then X
is an Eberlein compact if and only if there is a partition T =

⋃
i∈ω Ti such that

| supp(x) ∩ Ti| < ℵ0 for each x ∈ X and i ∈ ω.

The next example is a modification of an example due to Leiderman and
Sokolov. Their original space was a strong Eberlein compactum (a weakly com-
pact subset of a Hilbert space), and hence scattered. Our space is far from being
scattered.

Example 2.21. Let κ be any infinite cardinal. There is an Eberlein compactum,
embedded in 2κ, such that ∆(X) = κω.

Proof: Let W0 = Lim(κ) and let {xα : α ∈ κ} be an increasing enumeration
of W0. Let Wi = {xα + i : α ∈ κ}. Now let T =

⋃
i∈ω Wi × (Wi ∪ {−i}).

Define an order on T as follows : (α1, β1) < (α2, β2) if and only if α1 < α2

and β1 > β2. Then every chain in T is countable, so the adequate compact
X constructed from the adequate family consisting of all chains in T is Corson.
Moreover, the partition in the definition of T , along with Theorem 2.20 shows
that X is Eberlein. It remains to check that ∆(X) = κω. To see that, let U
be any basic open set. Then U is the set of all chains containing some fixed
finite chain {(αi, βi) : i ≤ k}, enumerated in increasing order, and missing a
fixed finite number of elements {(γj , δj) : j ≤ r}. Let t be an integer such
that {αi : i ≤ k} ∪ {γj : j ≤ r} ⊂

⋃
s<tWs. Now, for every chain of the

form {αs : s ≥ t} with αs ∈ Ws for every s ≥ t and αt > αk we have that
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{(αi, βi) : i ≤ k} ∪ {(αs,−s) : s ≥ t} ∈ U . Now the set of all such chains has
cardinality κω, since there is a natural bijection between that set and the set of
all countable increasing sequences in κ. �

Every Σ-product of compact spaces is countably compact, which reminds us of
the following question.

Question 2.22. Is dis(X) ≥ c for X countably compact crowded?

The starting point for our next pair of results is the following easy observation.

Theorem 2.23. Let X be a homogeneous compactum. Then dis(X) ≥ ∆(X).

Proof: Combining Arhangel’skii’s theorem with the Juhász-Szentmiklóssy’s re-
sult cited in the introduction we get dis(X) ≥ 2χ(X) ≥ ∆(X). �

A space is homogeneous with respect to character if χ(x,X) = χ(y,X) for any
x, y ∈ X . A space X is power homogeneous if Xκ is homogeneous for some κ.

The following lemma is due to Juhász and Van Mill.

Lemma 2.24 ([14]). Every infinite compactum contains a point x with χ(x,X) <
dis(X).

We are also going to need a couple of results from Guit Jan Ridderbos’ PhD
Thesis.

Lemma 2.25 ([17]). Let X be power homogeneous. If the set of all points of
π-character κ is dense in X , then πχ(X) ≤ κ.

Lemma 2.26 ([17]). LetX be a power-homogeneous space of pointwise countable
type such that πχ(X) ≤ κ. Then either χ(X) ≤ κ or X is homogeneous with
respect to character.

We are going to prove that under the GCH if a power-homogeneous compactum
is not too big then it satisfies Juhász and Szentmiklóssy’s inequality. We need the
following lemma, which, in a sense, says that the gap between ∆(X) and dis(X)
cannot be too large for power-homogeneous compacta.

Lemma 2.27. Let X be a power homogeneous compactum. Then ∆(X) ≤
2dis(X).

Proof: Suppose by way of contradiction that dis(X) ≤ κ but |U | > 2κ for every
open U ⊂ X . Then by Lemma 2.24 the set of all points of character less than κ
is dense in X , which implies πχ(X) ≤ κ. If χ(X) ≤ κ, then, by Arhangel’skii’s
theorem, |X | ≤ 2κ, which contradicts our initial assumption. Otherwise χ(X) ≥
κ+ and X is homogeneous with respect to character, which even implies dis(X) ≥

2κ+

, again a contradiction. �

Theorem 2.28. (GCH) Let X be a power-homogeneous compactum. Then
dis(X) ≥ min{∆(X),ℵω}.
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Proof: Suppose by contradiction that dis(X) < ∆(X) and dis(X) < ℵω. Then
dis(X) = ℵn+1 for some n ∈ ω. By Lemma 2.24 the space X contains a dense set
of Gℵn

points, and hence πχ(X) ≤ ℵn by Lemma 2.25. If X were homogeneous
with respect to character then dis(X) ≥ ∆(X) and we would get a contradiction.
So, by Lemma 2.26, χ(X) ≤ ℵn and hence ∆(X) ≤ 2ℵn = ℵn+1. Now by
Lemma 2.27 and GCH we have that dis(X)+ = ∆(X). So ∆(X) = ℵn+2 and we
get the desired contradiction. �

Corollary 2.29. (GCH) If X is a power-homogeneous compactum such that
|X | ≤ ℵω then dis(X) ≥ ∆(X).

If |X | ≤ ℵ3 then we need only assume CH by a different proof.

Theorem 2.30. (CH) Let X be a power-homogeneous compactum. Then
dis(X) ≥ min{∆(X), ω3}.

Proof: Suppose that βω does not embed in X , then X does not map onto Iω1

(see the proof of [13, 3.22]) and hence, as a consequence of Shapirovskii’s theorem
on maps onto Tychonoff cubes, the set of all points of countable π-character is
dense in X . Therefore, by Lemma 2.25, πχ(X) ≤ ω. If χ(X) ≤ ω, then |X | ≤ ω1,
by Arhangel’skii’s theorem, and since dis(X) ≥ ω1 holds for every compactum,
we are done. Otherwise, X is homogeneous with respect to character, and hence
|X | ≤ 2χ(X) ≤ dis(X), by Juhász and Szentmiklóssy’s result.

If βω embeds in X then dis(X) ≥ 2ω1 . Suppose that dis(X) < ω3, that is
dis(X) ≤ ω2. Then, by Lemma 2.24, X contains a dense set of Gω1

points. If
χ(X) ≤ ω1, then ∆(X) ≤ 2ω1 and we are done. Otherwise, X is homogeneous
with respect to character, and dis(X) ≥ ∆(X) is true again. �

Corollary 2.31. (CH) If X is a power-homogeneous compactum such that |X | ≤
ω3 then dis(X) ≥ ∆(X).

Question 2.32. Is dis(X) ≥ ∆(X) true for every power-homogeneous com-
pactum?

3. Closures of discrete sets and cardinality

Alas, Tkachuk and Wilson [2] asked whether a compact space in which the
closure of every discrete set has size ≤ c must have size ≤ c.

In [1] Ofelia Alas proves the following theorem, by way of a partial positive
answer.

Theorem 3.1. (MA) Let X be a Lindelöf regular weakly discretely generated
space such that ŝ(X) ≤ c and |D| ≤ c for every discrete D ⊂ X . Then |X | ≤ c.

We are going to prove that regular, Lindelöf and weakly discretely generated
can all be dropped from the above theorem. But, first of all let us define four
cardinal functions that will be handy in our study of this and related problems.
Recall that a sequence {xα : α < κ} is said to be free if, for every γ < κ we have

{xα : α ≤ γ} ∩ {xα : α > γ} = ∅. Every free sequence is a discrete set.
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Definition 3.2. Set ŝ(X) = min{κ : if A ⊂ X and |A| = κ then A is not a

discrete set} and F̂ (X) = min{κ : if A ⊂ X and |A| = κ then A is not a free
sequence}.

Definition 3.3. Set g(X) = sup{|D| : D ⊂ X is discrete} (the depth of X) and
b(X) = sup{|F | : F ⊂ X is a free sequence} (the breadth of X).

The condition g(X) ≤ κ appears to be a lot stronger than b(X) ≤ κ. In
fact, while the former implies that |X | ≤ 2κ (simply observe that the hereditarily
Lindelöf number is discretely reflexive [2] and use De Groot’s inequality |X | ≤
2hL(X)), the latter alone does not put any bound on the cardinality of X . For
example, the one-point compactification of a discrete set of arbitrary cardinality
satisfies b(X) = ω.

Before proving our first theorem, we need a little lemma about elementary
submodels, and an old lemma of Shapirovskii. All one needs to know about
elementary submodels to read this section can be found in [4]. The following
lemma is probably well-known. However, we include a proof of it anyway since
we could not find a direct reference to it.

Lemma 3.4. Suppose c is a regular cardinal. Let θ ≥ (2<c)+ be a regular
cardinal and A ⊂ H(θ) be a set of size ≤ 2<c. Then there is an elementary
submodel M ≺ H(θ) such that A ⊂ M , |M | = 2<c and M is λ-closed for every
λ < c.

Proof: It follows from regularity of the cardinal c that (2<c)|α| = 2<c for every
α < c. Let now M0 ≺ H(θ) be such that A ⊂ M0 and |M0| ≤ 2<c. Suppose we
have constructed {Mα : α < β} such that for every α < β we have Mα ≺ H(θ),
|Mα| ≤ 2<c. Then let Mα ≺ H(θ) be such that Mβ ∪ [Mβ ]|α| ⊂ Mα for every
β < α and |Mα| ≤ 2<c. Then {Mα : α < c} is a chain under containment of
elementary submodels of H(θ) and hence it is also an elementary chain, from
which it follows that M =

⋃
α<c

Mα is an elementary submodel of H(θ).
To see that M is < c-closed let λ < c and {xα : α < λ} ⊂ M . Then, by

regularity of c there is τ < c such that {xα : α < λ} ⊂ Mτ . We can certainly
assume τ > λ. But [Mτ ]|λ| ⊂Mτ+1 and therefore {xα : α < λ} ∈Mτ+1 ⊂M . �

Lemma 3.5. (Shapirovskii, see [13, 2.13]) Let U be an open cover for some
space X . Then there is a discrete D ⊂ X and a subcover W ⊂ U such that
|W| = |D| and X = D ∪

⋃
W .

Theorem 3.6. (2<c = c) Let X be a space such that ŝ(X) · g(X) ≤ c. Then
|X | ≤ c.

Proof: Let M be an elementary submodel of a large enough fraction of the
universe such that {X, τ} ⊂M , c∪{c} ⊂M , |M | ≤ c and M is λ-closed for every
λ < c.

We claim that X ⊂ M . Suppose not and fix p ∈ X \M . We claim that for
every x ∈ X ∩M we can choose an open U ∈ M such that x ∈ U and p /∈ U .
Indeed, fix x ∈ X ∩M and let V ∈ M be the set of all open sets V ⊂ X such
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that x /∈ V . Then V covers X \ {x}, so by Shapirovskii’s lemma we can find a
discrete D ∈ M and a subfamily W ⊂ V such that W ∈ M , |W| = |D| ≤ c and
X \ {x} ⊂ D ∪

⋃
W . Now W ∈M and |W| ≤ c imply that W ⊂M . Notice that,

since D ∈ M , also D ∈ M which implies D ⊂ M , since |D| ≤ c. So p /∈ D and
hence there is W ∈ W such that p ∈ W . Let U = X \W . Then U ∈ M is a
neighbourhood of x such that p /∈ U .

So for every x ∈ X ∩ M choose Ux ∈ M such that p /∈ U . The family
U = {Ux : x ∈ X ∩ M} covers X ∩ M , so, by Shapirovskii’s lemma there is
a discrete set D ⊂ X ∩ M and a set W ⊂ U such that |W| = |D| < c with
X ∩M ⊂ D ∪

⋃
W . Since M is < c-closed we have that D ∈ M and W ∈ M ,

and hence M |= X ⊂ D ∪
⋃
W . Now p /∈ W for any W ∈ W and p /∈ D, since

D ⊂ X ∩M , by the same reason as before. But that is a contradiction. �

Can we switch discrete sets with free sequences in the previous theorem?
Clearly not, and the one-point compactification of a discrete set is a counterex-
ample. However there are some cases where we can. Let us start by proving a
kind of free-sequence version of Shapirovskii’s lemma.

Lemma 3.7. Let X be a space such that the closure of every free sequence is
Lindelöf and U be an open cover for X . Then there is a free sequence F ⊂ X and
a subcollection V ⊂ U such that |V| = |F | and X = F ∪

⋃
V .

Proof: Suppose you have constructed, for some ordinal β, a free sequence {xα :

α < β} and countable subcollections {Uα : α < β} such that {xα : α < γ} ⊂⋃
α≤γ

⋃
Uα for every γ < β.

Let Uβ be a countable subcollection of U covering the Lindelöf subspace

{xα : α < β} and pick a point xβ ∈ X \
⋃

α≤β

⋃
Uβ . Let κ be the least ordi-

nal such that

{xα : α < κ} ∪
⋃

α<κ

⋃
Uα = X.

Then {xα : α < κ} is a free sequence and for V =
⋃

α<κ Uα we have |V| = κ. �

Theorem 3.8. (2<c = c) Let X be a Lindelöf space such that ψ(X) ≤ c and

F̂ (X) · b(X) ≤ c. Then |X | ≤ c.

Proof: Let M be a < c-closed elementary submodel such that c ∪ {c} ⊂M and
{X, τ} ⊂M .

Claim: The closure of every free sequence in X ∩M is Lindelöf.

Proof of Claim: Let F ⊂ X ∩M be a free sequence in X ∩M well-ordered in
type κ (where κ ≤ c because |M | ≤ c). We claim that F is also a free sequence
in X . Denote by Fβ the initial segment of F determined by its βth element. Let
α = sup{β < α : Fβ is a free sequence in X by the same well-ordering of F}.
Then Fα is a free sequence in X . If not, there would be some β < α such that
x ∈ Fβ ∩ Fα \ Fβ and x /∈ M . But Fβ is a free sequence in X and therefore

|Fβ | < c. Thus Fβ ∈ M , and hence Fβ ∈ M , which along with |Fβ | ≤ c implies
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that Fβ ⊂ M . So x ∈ M , which is a contradiction. But now Fα+1 is also a
free sequence in X , because you cannot spoil freeness by adding a single isolated
point. Therefore α = κ, which proves that F is a free sequence in X . Proceeding
as before we get that F ⊂ X ∩M , which proves our claim, since closed subspaces
of Lindelöf spaces are Lindelöf. △

We claim that X ⊂M . Suppose not, and let p ∈ X \M . For every x ∈ X ∩M
use ψ(X) ≤ c to pick a neighbourhood Ux ∈ M of x such that p /∈ Ux. Let
U = {Ux : x ∈ X ∩M}. By Lemma 3.7, there are a free sequence F ⊂ X ∩M and
a subcollection V ⊂ U such that |F | = |V| < c withX∩M ⊂ F∪

⋃
V . Now |F | < c,

so F ∈ M and hence F ∈ M , which, along with |F | ≤ c implies that F ⊂ M .
Also, V ⊂ M and |V| < c imply that V ∈ M . Therefore M |= X ⊂ F ∪

⋃
V and

hence there is V ∈ V such that p ∈ V , which is a contradiction. �

Pseudocharacter ≤ κ is not discretely reflexive, unless the space is compact
(see [2]). The following lemma shows that the pseudocharacter of a space never
exceeds its depth.

Lemma 3.9. Let κ be an infinite cardinal and X be a space where |D| ≤ κ
for every discrete D ⊂ X . Then ψ(X) ≤ κ. If in addition X is regular then
ψ(F,X) ≤ κ, for every closed F ⊂ X such that |F | ≤ κ.

Proof: Let F ⊂ X be a κ-sized closed set (or a point, if X is not regular). Now
let V = {V ⊂ X : V is open and V ∩ F = ∅}. Then V covers X \ F and hence
we can find a discrete D ⊂ X \ F and a subcollection U ⊂ V with |U| = |D| such
that X \F ⊂

⋃
U ∪D. So (

⋂
x∈D\F X \ {x})∩ (

⋂
U∈U X \U) = F , which implies

that ψ(F,X) ≤ κ. �

The following corollary is another improvement of Alas’ theorem.

Corollary 3.10. (2<c = c) Let X be a Lindelöf space such that F̂ (X) ·g(X) ≤ c.
Then |X | ≤ c.

Proof: This follows from Lemma 3.9 and Theorem 3.8. �

In the above corollary Lindelöfness can be removed, if one assumes the space
to be regular.

Theorem 3.11. (2<c = c) Let X be a regular space such that F̂ (X) ≤ c and
|D| ≤ c for every discrete D ⊂ X . Then |X | ≤ c.

Proof: LetM be an elementary submodel as before. By Lemma 3.9 every c-sized
closed subset of X has pseudocharacter ≤ c.

We claim that X ⊂ M . Suppose not and fix p ∈ X \M and suppose that for
some β < c we have constructed a free sequence {xα : α < β} ⊂M and open sets

{Uα : α < β} ⊂ M . We have p /∈ {xα : α < β}. Now use the claim to choose a

sequence G ∈M of open sets such that |G| ≤ c and {xα : α < β} =
⋂
G. We have

G ⊂M , so we can choose an open set Uβ ∈M with p /∈ Uβ and {xα : α < β} ⊂ Uβ.
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Now use < c-closed and elementarity to pick xβ ∈ (X \
⋃

α≤β Uα) ∩M . Thus

{xα : α ≤ c} is a c-sized free sequence in X , which is a contradiction. �

In Theorem 3.11 one can safely work in ZFC if free sequences are assumed
to be countable. So we have a common framework for Alas’ theorem and Dow’s
result about compact spaces of countable tightness mentioned in the introduction.
We have only one case left to exhaust all relationships between the four cardinal
functions we have defined and cardinality.

Theorem 3.12. (2<c = c) Let X be a regular space such that ŝ(X) · b(X) ≤ c.
Then |X | ≤ c.

Proof: Let F ⊂ X . We claim that ψ(F,X) ≤ c. Indeed, for every x /∈ F use
regularity to choose an open neighbourhood Vx of x such that Vx ∩ F = ∅. Then
{Vx : x /∈ F} covers X \ F , so we can choose a discrete D ⊂ X \ F such that
X \ F ⊂

⋃
{V x : x ∈ D} ∪ D. Now we claim that for every p ∈ D \ F we can

choose an E ⊂ D such that p ∈ E and E ∩ F = ∅. Indeed, simply use regularity
to find an open neighbourhood U of p such that U ∩ F = ∅ and set E = U ∩D.
So F =

⋂
{X \ E : E ⊂ D and E ∩ F = ∅} ∩

⋂
{Vx : x ∈ D}. This implies that

ψ(F,X) ≤ c since |D| < c and hence 2|D| ≤ c, by the set-theoretic assumption.
Now, an argument similar to the proof of Theorem 3.11 will finish the proof. �

Regularity can be replaced by Lindelöfness. We leave the details to the reader.

Question 3.13. Is there in ZFC a Hausdorff non-regular space such that free
sequences are countable (discrete sets are countable), |D| ≤ c for every discrete
D ⊂ X (for every free sequence F ⊂ X) and yet |X | > c?

Question 3.14. Is there, in some model of set theory, some (compact) regular
space X such that every discrete set has size < c, the closure of every discrete set
has size ≤ c and yet the space has size > c.

To find a Hausdorff counterexample to the above question, take a model of
ω1 < c < 2ω1 and let X = 2ω1 . Let τ = {U \ C : U is open in the usual topology
on 2ω1 and |C| ≤ ω1}. Then every discrete set in (X, τ) is closed and has size
ω1 < c.
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