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NON ADDITIVE ORDINAL RELATIONS 
REPRESENTABLE BY LOWER OR 
UPPER PROBABILITIES 

ANDREA CAPOTORTI, GIULIANELLA COLETTI AND BARBARA VANTAGGI 

We characterize (in terms of necessary and sufficient conditions) binary relations rep-
resentable by a lower probability. Such relations can be non-additive (as the relations 
representable by a probability) and also not "partially monotone" (as the relations repre-
sentable by a belief function). 

Moreover we characterize relations representable by upper probabilities and those rep
resentable by plausibility. In fact the conditions characterizing these relations are not 
immediately deducible by means of "dual" conditions given on the contrary events, like in 
the numerical case. 

1. INTRODUCTION 

A problem that often occurs in Artificial Intelligence is the following: the field expert 
(a doctor, for instance) is not actually able to give a reliable numerical evaluation of 
the degree of uncertainty on the relevant statements concerning a given problem. In 
this case one merely may state his degree of belief on a set of propositions (events) 
without exact quantification, but only by a suitable ordering relation. The main 
problem relating to ordinal relations, expressing a comparative degree of belief, is 
the restatement of a rule system assuring coherence of a relation, with respect to the 
idea translated by it (such as "not less probable than", "not less believable than" 
and so on). Usually such a problem is associated to the consistency of the ordinal 
relation with some (numerical) theoretical model. More precisely, given a numerical 
framework (probability, belief functions, capacity and so on), one seeks the necessary 
and sufficient properties for the existence of a such numerical assessment (related to 
the chosen framework) agreeing with the ordinal relation (see Section 2). 

In the literature ordinal relations representable by probabilities ([1, 5]), belief 
functions ([7, 10]) and possibility functions ([3]) have been characterized. 

In this paper we give a characterization (in terms of necessary and sufficient 
conditions) of relations agreeing with a coherent lower probability, that is a func
tion which can be obtained as lower envelope of some sets of (de Finetti) coherent 
probabilities. 
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Contrary to the numerical context (see [9]), relations agreeing with a lower prob
ability coincide with those agreeing with a 0-monotone function (see Proposition 2 
and Theorem 1), they strictly contain relations agreeing with a belief function (see 
Example 1), but the latter coincide with those agreeing with 2-monotone function 
(see Proposition 1 and Theorem 4 in [10]). Moreover we characterize relations agree
ing with an upper probability (a dual of a lower probability), those agreeing with a 
plausibility function (a dual of a belief function) and those agreeing with a necessity 
measure (a dual of a possibility measure).-

We note that the comparative context is different from the numerical one with re
spect to the dual framework. In fact, the rules characterizing relations representable 
by a function (lower probability, belief, possibility and so on) can not be directly 
deduced by those characterizing the relations representable by the respective dual 
function. Indeed, the request that the relations on the contrary events satisfy some 
rules is not informative. Moreover, we underline that if we have some comparative 
relations (given for instance by a field expert), we need to test if there is some func
tion agreeing with them, without transforming the relation into an other (completely 
changed with respect to the previous one). 

2. CHARACTERIZING AXIOMS 

Let A be a set of events containing the impossible event 0 and the sure event fi. If 
•< is a binary relation defined on A, and / is a function from A to JR, we say that 
/ represents (or is agreeing with) < if 

A < B <-> f(A) < f(B). 

We first introduce for a binary relation < the basic three axioms necessary for the 
existence of a capacity (not negative real function monotone with respect to C) 
representing it. 

(An) the relation ^ is a total preorder, (that is: < is reflexive, transitive and defined 
for every pair A, B G A); 

(AO 0 -< Q; 
(A2) ACB=>A^B. 

We note that the function / , which summarizes the framework chosen to manage the 
uncertainty (probability, lower probability, belief function and so on), has a property 
that characterizes it (additivity, 2-monotonicity, n-monotonicity and so on). 

If we consider the ordinal relation induced on a set of events by one of these 
functions by putting 

f(A) < f(B) ^A<B 

f(A) = f(B)^A~B 

then we can learn that it satisfies a qualitative property which is the "comparative 
translation" of that characterizing the (numerical) function. In literature it is well 
known the additivity axiom (P) (introduced by de Finetti in [4]), which characterizes 
in the above sense the comparative probability 
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(P) V J4, 5 , C e A : A A C = 0 = B A C we have A _ _ B ^ A V C _ _ f l V C . 

We note that axioms (P), (Ao) and (A_) imply (A2), in the case that A is an algebra. 
We recall that (Ao), (A_) and (P) are not sufficient to assure the representability 

of •< with a probability (as proved in [6]). In fact the necessary and sufficient 
condition for a relation __<, defined on any finite set of events T, is the following 
(CP) (see [1]), which is the comparative version of de Finetti coherence condition (if 
A is an algebra then (CP) is equivalent to the Scott condition [8]) 

(CP) for any n £ N and for any J4_, . . . , An, B\,..., Bn E T, with B( __< A{, if, for 
some r_, . . . , rn > 0 

n 

sup 2_\ ri(ai "" hi) < 0 then it must be A{ ~ B{ for every i = 1 , . . . , n 
t = i 

where a,-, 6,- are the indicator functions of At, B{ respectively. 

Indeed condition (P) does not characterize comparative belief relations, as proved 
in [10], where the following partial monotonicity condition (B) is introduced as 
characterizing axiom 

(B) V A, J5, C e A : A C B and B A C = 0 we have A •< B => AV C < BV C. 

In the same paper it is proved that axioms (Ao), (A_), (A2), (B) are also sufficient 
for the existence of a belief function agreeing with <. 

We recall that a function / is called 2-monotone if it satisfies the following con
dition: 

f(A V B ) > f(A) + f(B) - f(A A B). 

Proposition 1. Let A be an algebra of events and < a relation on A induced by 
a 2-monotone function / : A-+ JR. Then < satisfies condition (B). 

P roo f . To prove the above assertion it is sufficient to consider that if / is a 
2-monotone function representing __<, then we have f(B) — f(A) > 0 and 

f(B VC) = f(AVBVC)> f(A V C) + f(B) - f(A). D 

Condition (B) is not indeed necessary for the existence of a lower probability 
representing _<, as the following Example 1 shows. 

Example 1. Let A be the algebra generated by elementary events A, B, C, D and 
let us consider in A the following ordinal relation (elements in the same group are 
assessed equivalent) 

C A {AyC) (BVC) ( A V B ) 

c -< B x (AvD) •< ^ v c v o ) x (^vsvO) < n. 
(CVD) ^ V £ > ) ( ^ O V D ) ^ V C V T J ) (AS/BVD) 
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The above relation does not satisfy condition (B): in fact we have A C A V C and 
A •< (A V C), but (A V B) ~ (A V B V C). 

On the contrary, it is agreeing with a lower probability £ defined by putting 

£(0) = P(C) = P(D) = P(C V D) = 0 

P(A) = P(B) = P(B V D) = 0.1 

P(A V C) = £ ( 4 V o) = £ ( 4 V C V D) = 0.2 

£ ( 5 V C) = £ ( 5 V C V o) = 0.3 

P(A VB) = P(A V 5 V C ) = £ ( A V B V o) = 0.8 

£(fi) = 1. 

We note that the function £ is a lower probability, in fact it can be obtained as 
lower envelope of the set of probabilities induced by the following distributions P,-

A B C D 
E1 0.2 0.8 0 0 
E2 0.1 0.7 0.1 0.1 
EЗ 0.7 0.2 0.1 0 
E4 0.7 0.1 0.2 0 
Pь 0.4 0.4 0 0.2 

We propose the following condition (L) as a characterizing axiom for comparative 
lower probability on an algebra A of events 

(L) Vi4, B e A : 0 -< A and A A B = 0 we have B -< A V B. 

We recall that a function / is said 0-monotone if satisfies the following condition: 

i f , 4 A 5 = 0, then f(AVB)> f(A)+ f(B). 

It is immediate to prove the following Proposition 2. 

Proposition 2. Let A be an algebra of events and •< a relation on A induced by 
a 0-monotone function f : A —* M. Then < satisfies condition (L). 

We note that, as discussed in the previous section, it is not immediate to derive 
the condition characterizing the comparative plausibility (upper probability) from 
that characterizing the comparative belief (lower probability), like it happens in the 
numerical case. In fact, if we take, following suggestion of Wong [10], the definition of 
comparative upper probability (plausibility) ^* as the dual relation of a comparative 
lower probability (belief) <, we obtain 

A -<* B & Bc -< Ac. 
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Nevertheless these conditions do not give any explicit information about the condi
tions characterizing the comparative upper probability (plausibility). 

Therefore it should be very difficult to test if a binary relation is a comparative 
upper probability (plausibility). 

We introduce now the characterizing axioms for the comparative plausibility and 
comparative upper probability. 

(PL) V A, B, C e A : A C B and A ~ 5 , B A C = 0 we have A\/C~ BVC. 

A function / is said "2-alternanting" if it satisfies the following condition 

f(AVB)<f(A) + f(B)-f(AAB). 

Proposit ion 3. Let A be an algebra of events and < a relation on A induced by 
an 2-alternanting function / : A —* JR. Then •< satisfies condition (PL). 

P r o o f . If / is an 2-alternanting function representing -<, then, for A, B, C as 
in condition (PL), we have 

f(A V C) < f(B VC) = f{B V (A V C)) 

< f(B) + f(A V C ) - f(B A (AW O) = f(B) + f(A V C) - f(A). 

By noting that A ~ B and so f(A) = / (B) , we have f(A VC) = / ( B V C ) . • 

The previous condition (PL) does not characterize a comparative upper proba
bility, as the Example 2 shows. 

Example 2. Let A be the algebra generated by elementary events A, B> C> D and 
E) and let us consider the following relation in A: 

A B 
0 D AVB C AVD 
E * AVE X BVE * CVE < A\f DV E 

DVE AVBVE 

BVC BVD 
CVD AVC 
AVBVD AVBVDVE 
BVCVE AVCVE 
BVDVE CVDVE 

AVBVC 
AV BVCV E 

< 

BVCV D 
AVCVD BVCVDVE 
AVCVDVE "* AVBVCVD 

n 
This relation does not satisfy the condition (PL): in fact the event B is included in 

i A V B and B ~ (A V B), but (B V C) -< (A V B V C). 
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On the contrary it is agreeing with the upper probability P defined by putting 

P(0) = P(E) = 0 

P(A) = P(A V E) = P(D) = P(D VE) = 0.3 

P(B) = P(B VE) = P(A V B) = P(A VBVE) = QA 

P(C) = P(CV E) = 0.b 

P(A VD) = P(A V D V E) = 0.6 

P(B VC) = P(B VCV E) = P(A VC) = P(A VCVE) = P(B V D) = P(C V D) 

= P(B V DV E) = P(C V DV E) = P(A V BV D) = P(A V B V D V E) = 0.7 

P(A V BVC) = P(A V B V C V E) = 0.8 

P(A VCV D) = P(A V C V D V E) = 0.9 

P(B VCV D) = P(B VCVDV E) = P(A VBVCV D) = P(Q) = 1. 

Note that the function P is actually an upper probability: in fact we can obtain it 
as upper envelope of the set of probabilities defined by the following distributions 
Pi 

A в c D E 

Pl 0.1 0.2 0.5 0.2 0 

Pl 0.3 0.1 0.3 0.3 0 

Pз 0 0.4 0.3 0.3 0 

E4 0.3 0.1 0.4 0.2 0 

We propose the following condition (U) as characterizing axiom of comparative 
upper probability 

(U) V A, B eA:®~ .4 we have B - A V B. 

A function is said "0-alternanting" if it satisfies the following condition: 

if A A B = 0, then f(A V B ) < f(A) + f(B). 

It is immediate to prove the following Proposition 4. 

Propos i t ion 4. Let A be an algebra of events and •< a relation on A induced by 
an 0-alternanting function / : A —• M. Then •< satisfies condition (U). 

A separate description is needed for the necessity and possibility theory since 
they have not a characterizing property like additivity, n-monotonicity and so on. 
The possibility relation is usually determined by the following axiom (PO) (see for 
example [3]) 

(PO) VA, 5 , C eA we have A<B=> AVC <BVC. 
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Its numerical counterpart, that is a particular case of plausibility function, is under
stood as degree of possibility by means of 

U(A) — sup 7r(u) 
ueA 

where n is a possibility distribution (membership). 
In literature the following axiom (N) characterizing the dual relation (necessity) 

is also given (see [3]) 

(N) \/A,B, C EA we have A<B=>AAC < BAC. 

We note that, like for comparative probability, in the case that A is an algebra, 
axioms (Ao), (Ai) and (PO) (or (N)) imply (A2). Contrary to the probability (Ao), 
(Ai) and (PO) (or (N)) are also sufficient to assure representability of <y with 
possibility (necessity) function on a finite algebra of events (see [3]). 

We introduce here an equivalent axiom (N') involving logical sums, which permits 
an easier comparison with the previous characterizing properties (in particular with 
(P) ,(B)and(L)) 

(N') VA,B,H,KeA:(AVB)A(HV K) = 0 we have 

A<B^AVH<BVK. 

It is easy to check that a numerical counterpart of necessity relation is 

N(A)= inf (1 - «•(«)) 
u£A 

and it represents a particular case of belief function. 

3. REPRESENTATION THEOREMS 

The following theorems prove that conditions (L), (PL), (U) are also sufficient to 
represent a binary relation satisfying conditions (Ao), (Ai), (A2) respectively by 
comparative lower probability, comparative plausibility, comparative upper proba
bility. 

Before to show the theorems, we introduce a preliminary lemma. 

Lemma 1. Let A be an algebra of events and let •< be a comparative lower prob
ability on A. Then the following condition holds: for every pair Ai,Aj G A such 
that Ai C Aj and Ai ~ Aj, for every A C A• A Aj we have 0 ~ A. 

P roof. If there are Ai, Aj such that Ai C Aj and A C A* A Aj with 0 -< A, by 
condition (L) and monotonicity we have that Ai •< Aj. Therefore, if Ai C Aj and 
Ai ~ Aj then, for every A C A\ A Aj we have 0 ~ A. Q 
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Theorem 1. Let T be a finite set of events, and <* a binary relation on T. The 
following conditions are equivalent: 

i) there exists a binary relation < on the algebra A spanned by T, extending •<*, 
that satisfies (Ao), (Ai), (A2), (L) 

ii) there exist a coherent lower probability P : T —• M representing <*. 

P r o o f . The proof of the implication ii) => i) is in the Proposition 2. 

We have to prove the implication i) => ii). Let T — {A\,..., Am} and let 
{ C i , . . . , Ck} be the set of the elementary events generated by T, that is all possi
ble logical products between the events and their negations. Consider the algebra 
A — {A\,..., An} D T, obtained by making all the finite logical sums of d. 

Let < be a binary relation on A, extension of <* and satisfying (Ao), (Ai), (A2), 
(L). By (Ao) the symmetrical part ~ of •< is an equivalence relation, then we can 
consider the equivalence classes of (A, •<). 

Let £o,----£z be these classes, where the indexes are such that if s < k then for 
all Ai G £s and Aj G £k (so in particular Ai — 0 if Ai G £0, and Aj ~ fi if Aj G £i) 
we have Ai -< Aj. By condition (Ai) follows that / > 1. 

Now we can build a numerical lower probability agreeing with <, obtained as 
lower envelope of a set {-P,}i=i...n of probabilities. 

For every Ai G A we will define the probability P*} where r is the index of the 
equivalence class of Ai. If Ai G £0 we define PQ as follows: 

P&(Ai) = 0 

po(^) =rrT-Cr-- . - - -» * - Si^CjCA'AAh' 

where k is the total number of elementary events, s,- is the number of Cj C Ai and 
X is the characteristic function. If Ai G £\ we put 

Pj(At) = 1 

w = ££<«*«.«• 
If A,- G <?r with r = 1 , . . . , /— 1 we define 

Pr\Ai) = 2(2n-r+l)n 

p;(A/,) =0 VAhe£o 

PlMh) > -J- V.4fc g -4< and .4fc ^ ^o 

i 2(2n-r+2)n < P ^ ) < 2(2n-r-rl)n V.4* C ii , and il» * £ . 
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We will verify that the functions Pr* are (coherent) probability. The proof is trivial 
for Fo a n d -P/. Suppose r = 1,. . . , /—1. The quantity 2(2n-1r-n)n has to be distributed 
among elementary events Cj C Ah C -4, so as to respect the constraints imposed. 
That is possible since the number of incompatible events Ah is less than n — 1 and 

" _ 1 n - l 2" 1 У — J — _. 
L___j o(2n-r+2 )n 

< o(2n-r+2 )n 0(2n-r+2)n ^ o(2n-r-f2)n 9 (2n-r+ l )n ' 
h=l 

Now the quantity 1 — P*(A{) can be distributed on the Cj (£ _4t-, Cj ^ ^ , in a way 
that Pr(Aj) > ^r, for every Aj \% _4,. Since the maximum number of incompatible 
events satisfying the above condition, is n — 1, then we have 

i - p ; ( A ) = i - 2 ( 2 n - 1
r + 1 ) n l i 

n - l n - l 2 ( n - l ) 2n' 

We will show now that, if P = inf. {P.!}, then for every Ai 6 A 

P{Ai) = P.!(A.) 

for every r such that Ai G £r. To show this, it is sufficient to prove that, if _4; G £r, 
then for every s ^ r we have PJ(Ai) > Pr(-4 t) for every j . 

For Ai G £o the proof is trivial, since P^(Ai) = 0. For Ai G £\ it is sufficient to 
note that the Lemma 1 implies 0 ~ Ac. Therefore, since by definition PJ(AC) = 0, 
for every P / , then P}(A{) = 1. 

For events _4» G £r with r = 1 , . . . , / — 1, it is sufficient to prove that, for Ah ~ Ai 
the inequality Pr(-4li) > P^(Ah) holds. In fact if Ah <jL Ai then we have 

Pr^») >^> 2 ( 2 n - r + l ) n = ^ ( 4 . ) . 

While if Ah C Ai by Lemma 1 we have 0 ~ Ai A _4£ and so 

p ; ( ^ ) = p;L4,) = ^ _ = P r H ( ^ ) . 

By monotonicity of P,!, with respect to the index r, it follows that the lower envelope 
P agrees with the binary relation. • 

Lemma 2. Let A be an algebra of events and let _< be a comparative upper 
probability on A. Then the following condition holds: for every pair _4_, Aj G A 
such that Ai C Aj and _4, -< _4;- there exists an event A such that A C Ac A Aj and 
0 ^ A 

P r o o f . If there exists a pair of events _4t-,_4j such that _4, C -Aj, _4» -̂  _4j and 
for every event A C Ac A Aj it holds 0 ~ _4, then by condition (U) we have a 
contradiction, that is 0 — Ac A Aj, so _4, ~ _4j. • 
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Theorem 2. Let J7 be a finite set of events, <* a binary relation on T'. The 
following conditions are equivalent: 

i) there exists a binary relation < on the algebra A spanned by J2', extending <*, 
that satisfies (A0), (Ai), (A2), (U) 

ii) there exist a coherent upper probability P : T —» M representing :<*. 

P r o o f . The proof of the implication ii) => i) is in Proposition 4. 

We have to prove the implication i) => ii). The line of the proof is similar to that 
one of Theorem 1, regarding the comparative lower probability. In fact we build a 
numerical upper probability agreeing •<* as upper envelope of a class of probability 

{-*}.=! n-
Let {Ci}izzit...tk, F, £i (i = 0 , . . . , /) and A as in the proof of Theorem 1. 
Let < be a binary relation on A, extending <* and satisfying (Ao), (Ai), (A2), (U). 
First of all we put P*(Aj) = 0 if Aj G £0 for every r = 0 , . . . , / and i = 1,. . . , n. 
If Ai G £0 (so r = 0) for any Ah ^ £0 we define PQ as follows: 

Po(Ah) =-J2CjQAh Xj 

where s is the number of elementary events Cj $ £0. 
If Ai G £\ we define 

PJ(Ah) = 0 if Ah A Ai = $ 

PKA») = VT^^CA^XJ if Ah A Ai^ib 
Si CjtEo 

where s,- is the number of elementary events Cj £ £0 and Cj C Ai. 
It is trivial to prove that PQ and PJ are probability distribution. 
If Ai e£r with r = 1 , . . . , / - 1 

P;(Ah) < a (l - 2 ( i o ) if Ah C Ai and ^ i Sr 

Pr(
Ah) = 5 ^ 7 7 — r 2 ^ i " f c X j ifi4/ iAi4 i = 0 a n d i 4 f c ^ f r 

where a is a number such that i < a < %^±. 
2 n 

For the events Ah such that Ah A Ai = Ahx ^ 0 and Ah A A\ = .A/̂  ^ 0, -Pr
l(-4h) 

is given as the sum of Pl(Ahx) and P*(Ah2) according the previous definition. This 
is well defined by Lemma 2 that ensures the existence of Cj C Ah2 with Cj $ £0 . 

We will show now that, if P = sup,{Pr*}, then for every Ai G A it is P(^4t) = 
P*(Ai) for r such that Ai & £r. To show this, it is sufficient to prove that if Ai G £r 
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for every s -5c r we have P3(Ai) < P}(Ai) for every j . The proof is trivial for Ai E £n 
and for Ai G Si. 

Suppose that Ai G Sr (r = 1 , . . . , / — 1) and Ah G Ss with r ^ s. 
If A,- A Ah = 0 then we have 

pi(Ai) = 1 - ^ r > - L > * - J - £ Xj = p?(Ai). 

If -4,- C Ah, taking into account that ^- (~- - ~ ) < 1 - a, we have 

a ( 1 " 2 ^ ) < 1 - 2 ^ r -

If i4t- A Ah / 0 and A/! A A\ ^ 0 then to prove the inequality it is sufficient to prove 
this relation 

Pr(A') = l-^+F>P?(AiAAh) + P?(AiAAc
h) 

= " V1 ~ - ^ J + 2"+' 5 - sh S
 c i = ^ £ ^ 

which is equivalent to the following one: 

_ 1 a _ 1 1 y ^ 
> On+r ~~ ~~~+7 + <~~~~7<j _ «, /Ltcj£Ai*AC

h
XJ 

_ _ / _ _ _ _ _ . j _ _ _ l _ v ^ \ 
- 2 - ^ 2 - 2* + 2°s - 8h^

c**£* Xj) ' 

The last inequality is verified since the second term is less than -^ and 1 — a > -^. 
The monotonicity of Pr* with respect to index r assures that P is agreeing with 

_ and so P \T is agreeing with _*. D 

For comparative plausibilities we can prove a theorem analogous to Theorem 2. 

Theorem 3. Let T be a finite set of events, an _* a binary relation on T. The 
following conditions are equivalent: 

i) there exists a binary relation _ on the algebra A spanned by T, extending _*, 
that satisfies (A0), (Ai), (A2), (PL). 

ii) there exist a coherent plausibility P\:T' —• TR representing _*. 

P roof. To prove ii) -=> i) it is sufficient to note that if Ai C Aj and Ai ~ Aj then 
the subadditivity property of plausibility implies that for all Ar such that Aj AAr = 0 
we have 

Pl(Ai V Ar) < Pl(Aj V Ar) < Pl(Aj) + Pl(Ai V Ar) - P1(A{) = Pl(A{ V A r) . 

The proof i) => ii) follows the line of that one made by Wong in [10] for comparative 
belief, taking into account the following Proposition 5. • 
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P r o p o s i t i o n 5. Let A be an algebra of events. 

i) If A C B and A ~ B then for all D C Ac A B we have Dc ~ ft. 

ii) UACB,A~B and D = HVK with H C Ac AB and K C Bc then we have 

Dc ~ Dc V H. 

P r o o f . Let A, J3 be in the condition of proposition . If D C Ac AB then we have 
A C A V (B A Dc) C B and A V (B A Dc) ~ B. 

It implies the thesis 1 of the proposition, because Dc = A V (B A Dc) V Bc ~ ft. 
Moreover note tha t if I) is in the condition of par t 2 then we have, since A C 

BAHC, that BAHC ~ 5 , so F)c = (BAHc)y(BcAKC) ~ BW(BCAKC) = D c V / 7 . 

• 

4. CONCLUSION 

As a consequence of the results shown in this paper, we could stress tha t some 
numerical uncertainty measures "collapse" in the same comparative s tructure ( i .e. 
they are characterized by the same axioms). 

(Received November 7, 1997.) 
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