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K Y B E R N E T I K A — V O L U M E 34 ( 1 9 9 8 ) , N U M B E R 3, P A G E S 3 0 9 - 3 1 6 

EXTRAPOLATION IN FRACTIONAL 
AUTOREGRESSIVE MODELS 

JIŘÍ ANDĚL AND GEORG NEUHAUS 

The naive and the least-squares extrapolation are investigated in the fractional autore-
gressive models of the first order. Some explicit formulas are derived for the one and two 
steps ahead extrapolation. 

1. INTRODUCTION 

Let {et) t > 1} be i.i.d. random variables with a finite second moment (i.e., a 
strict white noise). Let A be a function and Xo a random variable independent of 
{ei,e2,...}. Define 

Xt = \(Xt-1) + etl t>l. (1.1) 

If A is a non-linear function then {Xtjt > 0} is called a non-linear autoregressive 
process of the first order, briefly NLAR(l). Let 7 = Eet. Assume that variables 
Ko, • •, XT are given and XT+m for some m > 1 is to be extrapolated. 

Define XTxT = XT and 

^T+m|T = KXT+m-\\T) + 7i ™ > 1. 

Then XT+miT is called the naive extrapolation of XT+m- It is based on an analogy 
with the extrapolation in linear AR processes. It is useful to introduce functions 

H0(x) = x, Hm(x) = \[Hm-i(x)] + 7 for m > 1. 

Then X^mlT = Hm(XT). 

On the other hand, the least squares extrapolation XT+m\T of XT+m is given by 

XT+m\T = E{XT+m\XT,.. .,-K0} = E{XT+m\XT} 

since the process {Xt} is Markov. Assume that et has a density h. Introduce 
functions 

/

oo 
Km-i(y) h[y - A(*)] dy for m > 1. (1.2) 

-OO 



310 J. ANDEL AND G. NEUHAUS 

It is known that -Kr+m|T = Km(XT). A proof can be found in Tong [3], p. 346 for 
the case that {Xt} is stationary. A modification of the proof without assumption of 
stationarity is straightforward. 

It can be easily verified that K\(x) = H\(x) = \(x) + ~f. It means that X£ + 1 i T = 

XT+I\T- However, Km(x) ^ Hm(x) generally holds if m > 2. The substantial 
difference between the naive and the least squares extrapolations is that the naive 
extrapolation depends on {et} only through the expectation j whereas the least 
squares extrapolation depends on the complete distribution of et-

Generally, it is very difficult to derive explicit formulas for Km(x) when m > 2. 
Such results are known only in very special cases (see Pemberton [2]). Usually, the 
calculation of least squares extrapolation is done only numerically. 

2. FRACTIONAL AUTOREGRESSIVE MODELS 

In the special case when 

A ( x ) = S ^ i (2.1) 

the model (1.1) is called the fractional autoregressive model of order 1, briefly 
FAR(l). In some special cases it was proposed by Jones [1] for non-linear extrapo
lation in meteorology (cf. Tong [3], p. 109 and p. 120). As for the choice (2.1), Tong 
[3] assumes that 0 < p < q +1 < co, ap / 0, bg ^ 0. The function \(x) used in (2.1) 
can be extended to include also terms Xt - , for s > 1. 

Jones [1] assumed that et ~ IV(0, a2) and investigated two choices of A(x), namely 

A(*) = TT^ and A(x) = TT^-
If et has a normal distribution then Xr+m\T must be calculated numerically if m > 2. 

But explicit formulas for -KT-fm|T can be derived for example when et has density 

hr(x) = cr(w
2 - x2)r~l, -w<x<w, r>\ (2.2) 

where w > 0 is a parameter and 
1 

cr = 22r~1w2r-1B(r,r) 

is the normalizing constant. Since hr is symmetric, 7 = Eet = 0 and skewness of et 

is zero. The kurtosis a$ = ^A/II2 = 3(2r + l) / (2r + 3) —• 3 as r —» 00. 
In this paper we present some explicit formulas for Km(x) in FAR(l) models. 

The results were derived using the program package Mathematica. 

3. THE FIRST MODEL 

In this section we investigate the model (1.1) with \(x) = x/(\ + x2). This function 
is plotted in Figure 3.1. Let et have a density h(x) such that h(x) = /i(—x) and 
h(x\) > h(x2) for all |xi | < |a:2|. 
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0.2 

Fig. 3.1. Function X(x). 

Theorem 3.1. For arbitrary x > 0 and m > .0 we have Km(—$) = —Km(x) and 
Km(x) > 0. 

P r o o f . I f m = 0 o r m = l then the assertion is clear. Further we use complete 
induction. Let m > 2. Then 

/

OO TOO g 

Km-i(y) h[y - A(-x)] dy = - / Km_i(-y) h[y + A(x)] dy 
-OO J —OO 

/

oo /»oo 

Km-i(y) !i[-y + A(x)] dy = - / Km_i(y) ft[y - A(x)] dy 
-OO J —oo 

= -Km(x). From Lemma A3 we obtain 

fOO 

/

OO ГOO 

#m-i(y)/г [y-A(x) ]dy= / X m - i [ г + A(x)]/г(г)d 2 >0. D 
-OO J —oo 

As a referee pointed out, the assertion of Theorem 3.1 can be generalized in the 
following way. Let the assumptions about e% hold and let the function A satisfy the 
condition A(—x) = \(x). We show that this condition also suffices for antisymmetry 
of Km. Denote by L(x, •) the conditional distribution of X% given X%-\ = x. It 
follows from (1.1) that 

L(x,A)= I h[t-\(x)]i 
J A 

I d ť . 

The conditional distribution of Xr+m given XT = x is the m-times convolution £„ 
of the kernel L, i.e. L\ = L and for m > 1 

Lm{x,Ä) = j Lm-X{t,Ä)L{x,dť), 
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From the formula for L(x, A) one can see that the Lebesgue density hm[- — j(x)] of 
Lm(xi •) satisfies the relations h\ = h and for m > 1 

hm[t - j(x)] = / hm-i[t - j(y)] h[y - j(x)] dy. 

Using the same arguments as in the proof of the first part in Theorem 3.1 it can be 
shown that 

hm[t-j(-x)] = hm[-t-j(x)]. 

The antisymmetry Km(—x) = —Km(x) then follows from the formula 

Km(x) = íthm[t-y(x)]dt. 

Theorem 3.2. For arbitrary x > 0 we have K2(x) < H2(x). 

Proof. We have 

K2(x) = I {\[\(x)-z] + \[\(x) + z]}h(z)dz 
Jo 

f°° 1 + \2(x) — z2 

• = 2A<*>/0 wm^wm^HW)h{2)i2-
Using Lemma Al we get 

K2(x) < 2A(x)^°° T-L^h(z)dz = A[A(x)] = H2(x). 

We have 

Я2(x) = x(l + x2) 
1 + 3x2 + x*' 

The function A2OO depends on h(x). Write I<2,r(x) instead of K2(x) when h(x) = 
hr(x). Further, write A instead of \(x). Then 

„ 1 1 + (A + w)2 

A2|i(-r) = — In J—J-: (r• 
Aw 1 + (A — w)2 

For simplicity, consider the case w = 2. Then we get 

*-.-(*) = ( 1 + ^ 2 ( M 1 + *2) ~ 4 a ; ( 1 + *2)[arctg(2 - A) + arctg(2 + A)] 

+(5 + 9x2 + 5 x 4 ) l n i + ^ ± | } I 

*2.»(-0 = ^ l ^ y 1 {8*(29 + 84x2 + 84x4 + 29x6) 

-24x(5 + 14x2 + 14x4 + 5x6)[arctg(2 - A) + arctg(2 + A)] 

+3(25 + 86x2 + 123x4 + 86x6 + 25x8) In ? + ^ + ^ ) . 
1 + (A — 2) J 
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These functions are plotted in Figure 3.2. In the legend the function K2yr(x) is 
denoted as K2r(x). Figure 3.2 confirms that H2(x) > K2)r(x) for x > 0 as proved 
in Theorem 3.2. 

H2(x) 

•K23(x) 

•K22(x) 

•K21(x ) 

0.4 

0.2 

0 .4 

Fig. 3.2. Functions H2(x) and K2%r(x). 

4. THE SECOND MODEL 

Here we consider again the model (1.1) but this time with \(x) = x3/(l + x2) (see 
Figure 4.1). Assume also here that h(x) = /i(—x) for all x and h(x\) > h(x2) for all 

M < \x2\-

1.5 / 

1 .,/ 

0.5 / 

-2 -Ӯšr^ - 2 
/ -0.5 

/ -1 

/ -1.5 

-2 

Fig. 4.1. Function A(x). 

Theorem 4.1. For arbitrary x > 0 and m > 0 we have .KVn(—x) = — Km(x) and 
/^m(x) > 0. 

Proof . The assertion can be proved in the same way as Theorem 3.1. It follows 
also from the remark to the proof of Theorem 3.1. D 
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Theorem 4.2. For arbitrary x > 0 we have K2(x) > H2(x). 

Proof. Similarly as in the proof of Theorem 3.2 we get 
0 0 A3(x) + 3A(x)z2 + A(x)[A2(x) - z 2] 2 

Lemma A2 implies that 

[A(x)-z]2}{l + [A(x) + z]2} 
dz. 

K2(x) < 2 Г 
Jo 

A= w + AV) d z = ^!íiL = A[AW] = J / ! W 

In this case 

[1 + A2(x)]2 

H2(x) = 

1 + A2(x) 

1 + 3x2 + 3x4 + 2x6 + x8 ' 
Write again A instead of A(x). Choosing h(x) = hr(x) and iu = 2we obtained 

K <r\ - A 4 - ^ n ! ± J - _ _ _ _ 
K2>1(x) - A + - l n i + (A + 2 ) 2 , 

K2,2(x) = n 0 ^ 2 ) 2 {40x3(1 + *2) + 1 2 x 3 ( 1 + x 2)[a r c t§(2 ~ A) + a r c tS( 2 + A)] 

+3(5+10x2 + 5 x W ) l n i + ^ } I 

„ . x 0.000976562 f 3 / ,„ r - r , 4 n 6 , r 8, 
^2,3(x) = —T- 5TT— { 8x3(-17 - 51x2 - 51x4 - 2x6 + 15x8) 

(1 + X-2)* ^ 

+120x3(5 + 15x2 + 15x4 + 4x6 - x8)[arctg(2 - A) + arctg(2 + A)] 
1 + (A - 2)2 

+15(25 + 100xJ + 150x4 + 86x6 - Зx8 - 14x10 + xiг) ln 
l + (A + 2)2 

The functions H2(x), K2>1(x), K2l2(x), and K2is(x) are plotted in Figure 4.2. 

}• 

2 

1.5 

1 

0 . 5 

Fig. 4.2. Functions H2{x) and K2tr(x). 
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APPENDIX 

Lemma A l . Let a G [—0.5,0.5]. Define 

1 + a 2 - x2 

д{x) = [1 + (a - x)2] [1 + (a + x)2]' 

Then g(x) < g(0) for all x / 0. 

P r o o f . The function g is symmetric. A straightforward calculation gives that 
g'(x) = 0 only for x = x\ = 0 and for x = £23 = ± v 1 + a2 + 2\ / l + a2. Since 
g"(0) = 2 ( -3 - 8a2 - 6a4 + a 8 ) / ( l + a2)6 < 0, g has maximum at x = 0. Similarly, 
g has minimum at x2 and £3. We have g(0) > 0, g(x2) = #(x3) < 0, \img(x) = 0 as 
x —• ±00. Thus 0(0) is the global maximum. • 

Lemma A2. Let a G (0,0.5]. Define 

a3 + 3 a x 2 + a ( a 2 - x 2 ) 2 

u(x) 
[l + ( a - * ) 2 ] [ l + (a + *) 2]• 

Then u(0) < u(x) for all x ^ 0. 

P roo f . We have u'(x) = 0 only for x = xi = 0 and for x = X23 = 
= ± v / l + a2 + 2Vl + a2. Further, u"(0) > 0, u"(x2) < 0, u"(x3) < 0, and 
limu(x) = a as x —> ±00. Since u(0) = a 3 / ( l + a2) < a, the global minimum 
of u(x) is u(0). • 

Lemma A3 . Let a > 0. Let L be a function such that L(x) > 0 and L(—x) = 
-L(x) for all x > 0. Let h be a density such that h(x) — h(—x) for all x and 
h(xi) > h(x2) for all |xi | < |x2 | . Then 

/ : 
L(x + a ) Л ( x ) d x > 0. 

P r o o f . We have 
poo 

/

oo roo 

L(x + a) h(x) dx = I L(t)h(t-a)dt 
-OO J —OO 

/

0 /»oo 

L(t) h(t -a)dt+ / L(^) h(t - a) dt 
-00 JO 

poo 

= / L(*)[ft(*- a) - M-* - a)ld^-
Jo 

The last integral is non-negative since for t > 0 we have L(t) > 0 and |t — cz| < 
I - t — a| = < + a. D 
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