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OPTIMAL CONTROL OF NONLINEAR DELAY 
SYSTEMS WITH IMPLICIT DERIVATIVE 
AND QUADRATIC PERFORMANCE 

K. BALACHANDRAN AND N. RAJAGOPAL 

The existence of optimal control for nonlinear delay systems having an implicit derivative 
with quadratic performance criteria is proved. The results are established by an iterative 
technique and using the Darbo fixed point theorem. 

1. INTRODUCTION 

The problem of optimal control of nonlinear systems with quadratic performance 
criteria has been studied by many authors [2, 3, 4, 5, 6, 8, 11] by means of fixed point 
principles. Malek-Zavarei [9] has established an iterative approach for obtaining the 
suboptimal control for linear systems with multiple state and control delays and with 
quadratic cost while Balachandran and Ramaswamy [5] have extended the iterative 
technique to nonlinear multiple-delay systems. 

Dacka [7] has introduced a new method of analysis to study the controllabil
ity of nonlinear systems with an implicit derivative, based on the measure of non-
compactness of a set and the Darbo fixed point theorem. This method has been 
extended to a larger class of nonlinear dynamical systems by Balachandran [2, 3]. 
In [3] he has proved the existence theorems for the optimal control of nonlinear 
multiple-delay systems by suitably adopting the techniques of Dacka [7] and Malek-
Zavarei [9]. In this paper we shall extend the procedure of [3] to prove the existence 
of optimal control for nonlinear delay systems having an implicit derivative with 
quadratic performance criteria. 

2. MATHEMATICAL PRELIMINARIES 

Let (X, || • ||) be a Banach space and E a bounded subset of X. In this work, 
the following definition of the measure of the non-compactness of a set E is used 
(Sadovskii [10]). 

fi(E) — inf{r > 0 : E can be covered by a finite number of balls 

whose radii are smaller than r} 
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The following version of the Darbo fixed point theorem being a generalization of 
the Schauder fixed point theorem shows the usefulness of the measure of non-
compactness. 

Theorem 1. If S is a non-empty bounded closed convex subset of X and P : S —• S 
is a continuous mapping, such that for any set E C S we have 

ti(PE) < bfi(E), 

where 6 is a constant, 0 < b < 1, then P has a fixed point. 

For the space of continuous functions C(I\ Rn) with norm 

\\x\\ = {\xi(t)\:i=l,2,...,n:te[t0,T] = I} 

the measure of non-compactness of a set E is given by 

fi(E) = $w0(E) = \ Wm w(E,h), 

where w(Et h) is the common modulus of continuity of the functions which belong 
to the set Ey that is 

w(E} h) = sup [sup \x(t) - x(s)\ :\t-s\<h] 
x£E 

and for the space of continuously differentiable functions Cl(I] Rn) with norm 

IkllCOrJ*'*) = IMIC(I;I*«) + \\Dx\\C(I-Rn) 

we have 
H(E) = $w0(DE), 

where 
DE = {x : x e E} . 

3. STATEMENT OF PROBLEM 

Consider the nonliner delay system of the form 

M 

x(t) = A(t) x(t) + £ fi(x(t - ŐІ)) + C(t) u(t) 
»=i 

N 

+ Y^9j(u(t-Tj)) + <r(x(ł)> *(<)><)> *>*o (la) 
i=i 

x(t) = (t), t0-A<t<t0 (lb) 
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u(t) = a(t), t0-r<t<t0i (lc) 

where x(t) and u(t) are respectively, state and control vectors. Here A(t) and C(t) 
are real continuous matrices of appropriate dimensions defined on the appropriate 
interval; / , , i = 1 ,2 ,3 , . . . , M, gj, j = 1,2,... , N are continuous functions defined 
on appropriate intervals; a is a continuous function; to is the initial process time; 6(t) 
and a(t) are specified initial functions; 6,-, i = 1,2,.. . , M, and r;-, j = 1, 2 , . . . , IV 
are given positive scalars, and 

A = max<5j and T = maxr, . 
* i 

Assume that the matrices A(t) and C(t) and the functions /,- and gi are bounded 
on I and IV* = sup ||C(t)||. Moreover, the continuous function a is bounded and for 
each z, J G Rn, and t G I we have 

K < > a r , z ) - c r ( < , a : l 2 ) | < 6 i | x - z | (2) 

where &i is a non-negative constant such that 0 < &i < \. 
The cost functional to be minimized is 

rp 

J = ix ' (T)Fx(T) +l-J [x'(t)Q(t)x(t) + u'(t)R(t)u(t))dt, (3) 

where the prime denotes transposition; the matrix F is symmetric positive semi-
definite; the matrix Q(t) is symmetric positive semi-definite and continuous; and 
the matrix R(t) is symmetric, positive definite and continuous. The problem is to 
find a control u(t)y to < t < T, which for fixed final time T and free final state x(T) 
minimizes the cost functional J in equation (3). 

4. EXISTENCE THEOREMS 

The following theorem is important in obtaining an optimal control scheme for the 
problem under consideration. 

Theorem 2. Consider the sequence of nonlinear state equations 

M 

xk(t) = A(t) xk(t) + J^ fi (**_i(* - «,-)) + C(t) uk(t) 
t= i 

N 

+ ^2gj(uk.1(t-Tj)) + a(xk(t),xk(t),t), k = 1 ,2,3, . . . (4a) 

with 

x0(t) = <t>(t,to)6(to), t>*o (4b) 
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«o(0 = P(t), t > to (4c) 

xk(t) = 0(t), t0-A<t<t0, k = 0 ,1 ,2 ,3 , . . . (4d) 

uk(t) = a(t), t0-T<t<t0, k = 0 ,1 ,2 ,3 , . . . (4e) 

and the sequence of associated cost functionals 

Jk = ±x'k(T)Fxk(T)+l-J [x'k(t)Q(t)xk(t) + u'k(t)R(t)uk(t)]dt, (5) 

4 = 0 ,1 ,2 , . . . , 

where /3(t) is an arbitrary continuous function and <j>(t,s) is the state transition 
matrix corresponding to the matrix 

A(t) - S(t) K(t)y where S(t) = C(t) RTl(t) C'(t) (6) 

and A'(^) is a symmetric positive definite solution of the matrix Riccati equation 

K(t) + K(t) A(t) + A'(t) K(t) - K(t) S(t) K(t) + Q(t) = 0 (7a) 

with the terminal condition K(T) = F. (7b) 

Suppose that for the Arth optimization problem the optimal state trajectory is 
x*k(t) and the optimal control is ul(t). If the sequences {-c£(0} ar-d {^£(0) converge 
uniformly to x*(t) and u*(t) respectively, then these are the optimal state and control 
for the optimal control problem given by equations (1) and (3). 

Since the system is nonlinear we can not obtain the results directly from (4). 
Hence for each fixed A:, {zk} C Cl(I\Rn), we shall consider the following fixed 
sequence of linear delay systems 

M 

ik(t) = A(t)xk(t) + ^2fi(xk^(t-6i)) + C(t)uk(t) 
t = i 

Iv 

+ ^2gj(uk^1(t-rj)) + cr(zk(t),ik(t))t). (8) 
i= i 

For the linear optimal control problem (8) and (5) we have from [11] 

uk(zk)t) = -K*(t)xk(t) - q*k(zk, J*, t) 

= -R-l(t)C'(t)K(t)xk(t) - R-l(t)C'(t)qk(zk, zk) t) (9a) 
where 

K(t) + K(t) A'(t) + A(t) K(t) - K(t) S(t) K(t) + Q(t) = 0 (9b) 
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with the terminal condition 

K(t) = F (9c) 

qk(zk, zkt t) = -[A(t) - S(t)K(t)]'qk(zkt zkt t) - K(t)hk^(zkizktt) (9d) 

?*(**, ifc,T) = 0 (9e) 

here 
M N 

hk-i(zk, ijfc, t) = ^Tfi(xk-i(t - Si)) + ^2gj(uk_i(t - r.,)) + <r(zki zk)t). (9f) 
i= i i = i 

For this linear optimal regulator problem, if there exists a solution xk(t) which 
agrees with a predetermined function zk(t), then this function is also recognized as 
a solution for the problem in Theorem 2. From this point of view, the controllability 
problem for nonlinear systems has been studied by several authors (see survey article 
by Balachandran and Dauer [4]), 

Next we shall prove the following main theorem. For this we fix i . 

Theorem 3. If the nonlinear delay systems (4a) with quadratic performance (5) 
satisfied the condition (2), then the optimal control exists and is given by 

uk(xktt) = -K*(t)xk(t)-q*k(xk) xki t) 

= -R-X(t) C'(t) K(t) xk(t) - R-\t) C'(t) qk(xk, xfcl t) (10a) 

where K(t) satisfies (9b), (9c) and 

qk(xkt xkt t) = -[A'(t)-S(t)K(t)]'qk(xktxkt t) - K(t)hk-X(xkt xk} t) (10b) 

qk(xk,xktT) = 0. (10c) 

P r o o f . The solution of (8) with condition (4d) is given by 

xk(t) = *(ttto)0(to)+ I $(t,s)C(s)uk(s)ds+ f $(t}s)hk-1(zk,zkts)ds, (11) 
Jt0 J-o 

where $(tf, s) is the fundamental matrix solution for the homogeneous linear equation 
of (8). If we substitute (9a) into (11), we get 

**(*) = *(ttt0)9(t0)- I $(tts)C(s)K*(s)xk(s)ds 
Jto 

- J $(t}s)C(s)q*k(zkj zkt s)ds+ J *(tts)hk-i(zkt zkt s)ds.(12) 
Jto Jto 
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As (12) represents a nonlinear relation between Zk(s) and Xk(s) on I, it is sufficient 
for the existence of optimal control (10a) that at least one fixed point exists for the 
nonlinear map. Hence (12) is equivalent to (13) for the existence of fixed points 

xk(t) = * ( M o ) 0 ( t o ) - / *(t,s)C(s)K*(s)zk(s)ds (13) 
J-o 

- I $(t1s)C(s)ql(zk,ik,s)ds+ <_>(*, s) hk-i(zkl h, s) ds. 
Jt0 Jto 

If the nonlinear function a(zk) zk}t) satisfies the condition (2) then from (9d), 
Qk(zkj hi t) also satisfies the same condition (Balachandran and Somasundaram 
[6]) and there exists some positive constant 62 such that 

\9k(Vk, zk, 0 - lUVk, zk, 01 < ih/N*) \yk-Vk\, (14) 

where the positive constant IV* is already defined and 0 < 62 < £. Now the equation 
(13) can be written in the operator form 

x t ( 0 = E(-*)(0. (15) 

where P is a nonlinear operator on Cl(I; Rn). This operator is continuous, since all 
the functions involved in the operator are continuous. Consider the closed convex 
subset 

H = {zk e Cl(IiIT) : | M | < _Vlf \\Dzh\\ < N2) , 

where IVi and N2 are certain positive constants depending on the bounds of _4, /,-, C, 
<7j, _r, K* and q*. The operator P maps II into itself. As can easily be seen, all 
the functions P(zk) (t) with Zk G II are equicontinuous, since they have uniformly 
bounded derivatives. We shall now find an estimate for the modulus of continuity 
of the functions DP(zk) (t) for t, s £ I. Observe that 

±(P(zk)(t)) = A(t)$(t,t0)6(to)- f A(t)$(t,s)C(s)K*(s)zk(s)ds 
dt Jto 

-C(t)K*(t)zk(t)- I <b(t,s)C(s)q*k(zk,zk,s)ds 
Jto 

-C(t)q*k(zk(t), zk(t),t)+ / <&(t,s)hk_1(zk, zk, s)ds + hk-i(zk, zk, t) 
Jt0 

= A(t) P(zk) (t) - C(t) K*(t) zk(t) - C(t) q*k(zk(t), zk(t), t) + hk.x(zk(t), zk(t), t). 

Now, 

\DP(zk) (0 - DP(zk)(s)\ < \A(t) P(zk) (t) - A(s) P(zk) (s)\ 

+ \C(t) K*(t)zk(t)- C(s) K*(s) zk(s)\ 

+ \C(t)q*k(zk(t), zk(t), 0 - C(s)q*k(zk(s), ik(s), s)\ 

+ |/ijt_i(^(0, zk(t), t) - fit-fa^), z\(s), s)\. (16) 
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Following Balachandran [2], for the first two terms of the right-hand side of (16) 
we may give the upper estimate as /3o(\t — s|), where /?n is a non-negative function 
such that lim/l_>0+ Po(h) -= 0. Similarly, for the last two terms we have the upper 
estimate as 

b2\h(t)-h(s)\ + l3i\(t-s)\ and h\zk(t) - zk(s)\ + 02(\t - s\) 

respectively. Letting /? = PQ + (3\ + fc and 6 = b\ + 62, then 

\DP(zk) (t) - DP(zk) (s)\ < b \zk(t) - zk(s)\ + f3(\t - s\) 

and we infer that 
w(DP(zk), h) < bw(Dzk, h) + /3(h). 

Hence we conclude that for any set E C H 

li(PE) < b„(E). 

Thus, by the Darbo fixed point theorem the operator P has at least one fixed point: 
therefore there exists a function z*k 6 Cl(I\ Rn) such that 

xt(t) = zt(t) = P(zt(t)). (17) 

This xl(t) satisfies the condition given in (10). O 

P r o o f of T h e o r e m 2. Thus from (10) for the Hh optimization problem, 
the optimal control is 

ut(xt,t) = -R-1(t)C'(t)K(t)xt(t)-R-1(t)C'(t)qk(xt,ilt) (18a) 

qk(xt,xt,t) = -[A'(t)-S(t)K(t)}' q^xt^t^-KWh^xt^lt). (18b) 

The optimal state trajectory xl(t) is the solution to 

±2(0 = M O ~ S(t) K(t)] x*k(t) - S(t) qk(xlxt,t) + hfc- i to , it ,0i (18c) 

t0 <t < T. 

From (18b) we observe that qk(x*kl xk,t) depends on a known function and 
hk_i(x*k, xk,t). Also observe that the homogeneous parts of equations (18b) and 
(18c) are adjoint. The solution to equation (18c) with boundary condition (4d) is 

*2(O = ^ (Mo)0( ' o )= / c/>(t,to)[-S(s)qk(xlxls) + hk.1(xlxls)]ds,(lSd) 
Jto 

t0<t<Ty ib = 1 ,2 ,3 , . . . , 

where <f>(t,s) is the state transition matrix corresponding to the matrix A(t) — 
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S(t)K(t). By observing the equation (4b) and (18d) with the hypothesis of The
orem 2, we find the sequences {*/*.(*)} a n d {Qk(xl)xl^)} converge, because these 
sequences are related to {£*(*)} and { i^(0} by continuous transformations. Hence 
the limit of the sequence {z*.(0} ls ^e solution to 

x*(t) = [-4(f) - S(t) K(t)} x*(t) - S(t) q(x*(t), x'(t), t) + J2 fi(x'(t - Si)) 

t = 1 

IV 

+ £#("*(* - ri)) + *(**('). **(*). 0, * > to (19a) 
7 = 1 

x*(t) = 0(t), t0~A<t<t0 (19b) 

u*(t) = a(t), t0-r<t < / 0 , (19c) 

where x*(t), u*(t) and g(x*,x*, J) are respectively the limits of the sequence {£*.(<)}> 
{ul(t)} and {qk(xl,zl,t)}. From (18a), 

ti*(x*,t) = -R'l(t)C'(t) K(t)x*(t) - RT\t)C'(t)q(x\x\t), t > t0. (20) 

Substituting tz*(x*,/) in (20), for u(t) in equation (la) and comparing the result 
with equation (19a) shows that x*(t) and u*(x*,t) are the optimal state trajectory 
and the optimal control respectively for the optimization problem given by equations 
(1) and (3). This completes the proof of Theorem 2. • 

5. COMPUTATIONAL PROCEDURE 

The Riccati differential equation (7) must first be solved. Using the terminal condi
tion (7b), equation (7a) may be solved backward in time to obtain K(t). Choosing 
an arbitrary function (3(t) in equation (4c), ho(t) can then be determined from equa
tion (9f). As equation (10b) for q\ is a differential equation with a final time end 
condition, a future value of the state x\ is required for the numerical value of <ji. 
This can be obtained from equation (13). Now by using the boundary condition 
(4d), x\(t) can be calculated. The optimal control u\ can be determined from (18a). 
This procedure is repeated for consecutive integral values of k. An mith order opti
mal state trajectory xmi(t) and optimal control umi(xmi',t) can be obtained if the 
procedure is continued up to k = mi . 

Remark . The optimal control scheme obtained in the above theorems is not easy 
to implement and hence further research is required in this direction. 

(Received June 17, 1996.) 
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