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K Y B E R N E T I K A — V O L U M E 35 ( 1 9 9 9 ) , N U M B E R 3, P A G E S 3 3 3 - 3 5 2 

THE RENYI DISTANCES OF GAUSSIAN MEASURES 

JIŘÍ MICHÁLEK 

The author in the paper evaluates the Renyi distances between two Gaussian measures 
using properties of nrclear operators and expresses the formula for the asymptotic rate of 
the Renyi distances of stationary Gaussian measures by the corresponding spectral density 
functions in a general case. 

I N T R O D U C T I O N 

This paper deals with the calculation of the Renyi distances of Gaussian measures 
defined by random processes with a continuous time. In the case of stationary 
measures the asymptotic rate of the Renyi distances is evaluated by the use of the 
corresponding spectral measures in a very general case. 

The Renyi distances of probability measures are important information-theoretical 
measures of similarity between probabilities, often used in mathematical statistics. 
The Renyi distances are parametrized by a real parameter a. For us the case 
a E (0,1) will be of the main interest. The limit cases a = 0 and a = 1 are 
very closely connected with the Kullback-Leibler divergences. Generally speaking, 
the Renyi distances are derived from the Hellinger integrals. They are defined as 
follows 

a(a — 1) 
for a z/L 0, a ^ 1, where , , x a\ 

Ha(P\Q) = E„ | ( j j | 

is the Hellinger integral with p = ^ , q = ^- and /i is an arbitrary cr-finite domi­
nating measure. For a = 1 we put on the basis of continuity 

for a = 0 

RÍ(P\Q) = limRa(P,Q) = h(P\Q), 
a [ l 

Ro(P\Q) = \imRa(P,Q) = I0(P\Q), 
a|0 

1This work is supported by the Grant Agency of the Czech Republic through Grant No. 
201/96/0415 and the Grant Agency of the Academy of Sciences of the Czech Republic through 
Grant No. K 1075601. 
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where 

Evidently, 

Һ(P\Q)= [plnïdџ, Io(P\Q)= íqìn^dџ=h(Q\P). 
J Ч J P 

Һ(P\Q) = EP | l n ^ } , I0(P\Q) = E Q | l n í | . 

There are many papers and books describing properties of the Renyi distances and 
other /-divergences. We will quote here the monograph due to Vajda [14]. 

Generally speaking, the Renyi distance is meaningful for each real a if we accept 
the value +00, too. The Renyi distances are very exceptionally metrics because they 
do not fulfill the triangular inequality, in general. 

1. ABSOLUTE CONTINUITY OF GAUSSIAN MEASURES 

A Gaussian probability measure is in a unique way determined by its mean and 
covariance function. A main advantage of Gaussian measures with respect to their 
absolute continuity is the fact that two particular cases can be analyzed separately. 
The first case is that both measures have different means but the same covariance, 
the other one is that means are zero and covariance functions are different. The 
case with different means is more transparent than the other one and some results 
concerning the Renyi distances in this situation can be found in Michalek [8]. In 
that paper the case with different covariances is solved too, but not in full generality. 
The existence of the Renyi distances of Gaussian measures was proved in Michalek 
[8] under the assumption of a strong equivalence of measures. This notion will be 
mentioned later. 

Let two covariance functions -R(-,) and £(•,•) be given on (0,T). Let PT, QT 
be the corresponding Gaussian measures with vanishing means and covariances 
#(•,•), £(•,•) respectively, i.e. 

EpT{x(s)x(t)} = ^(s>0> E Q T { X ( S ) Z ( / ) } = S(s>t) respectively. 

The question of absolute continuity of Gaussian measures is in detail answered, e.g. 
in the monograph of Rozanov [13]. For a better understanding it is necessary to 
introduce the following basic notions. 

Let LT be a linear hull over all the observations z(£), t £ (0,-T), i.e. 

n 

£ G LT <=> £ = ^ v x(U), U e (0-T). 
1 

As we have two Gaussian measures PT, QT we must consider also two closures of 
LT with respect to the convergence in the quadratic mean. In general, the closures 
LT(PT), LT(QT) can be different although the linear hull LT is everywhere dense 
in both topologies. It is easy to show that the case L(PT) i=- LT(QT) leads to the 
orthogonality of PT and Q T , for details see Rozanov [13]. Then a necessary condition 
for the equivalence between PT and QT sounds 

LT = LT(PT) = LT(QT)> 
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This means tha t both the topologies generated by the convergences with respect the 
quadratic mean must be equivalent, i .e . tha t the relation 

" '" ° < Ci < MTiT^1 < C2 < +00 
K\\QT 

must be valid on LT- If we wish to s tudy conditions for the equivalence between PT 

and QT we must begin with two Hilbert spaces, namely 

( I T , ||-ll/v) , (LT,\\-\\QT)-

At this moment we will define an operator AT on LT C LT(QT), ie- D o m ( A r ) = 
FT and Range (AT) = LT C LT(PT)- In other words, AT is a linear mapping from 
( I T , II • \\QT) into ( L T , || • | |PT) defined by 

ATZ = Z 

for every f G LT- AT must have the adjoint operator A* defined in the unique way 

b y (IIATQPT = ( - 4 T ^ , 0 Q T -

Surely, D o m ( ^ ) C TT(PT), Range (A?) C LT(QT) and rj E Dom(.A^) if and 
only if (77, AT OPT is a bounded linear functional on (LT, || • WQT)- F ° r e a c h c o u P i e 

c;, Tj G LT the operator A*T AT is then well defined because 

(A} AT rj, £)QT = (AT 77, AT OPT = (»/, OPT • 

Hence this operator can be extended onto the whole space LT- Let us denote it by 

BT-
The operator BT can be defined by a simpler way, namely using the relation 

connecting the scalar products on LT- Thanks to the equivalence between the norms 
II ' IIQT) II ' IIPT the scalar product (77, OPT m u s t be a linear bounded functional on 
the space (L T , | | -\\QT), i .e . 

(BTri> O Q T = (̂ 7, OPT-

We immediately see tha t BT is positive because 

(Br *?, V)QT = fa rj)pT > 0. 

It is well known (see Rozanov [13]) tha t the measures PT, QT are mutually equivalent 
if and only if the operator / — BT, where I is the identity on LT, is of the Hi lber t -
Schmidt type and B^1 exists and is bounded. This condition of existence and 
boundedness of B^1 is equivalent to tha t of equivalence between (•, -)pT and (•, -)QT} 

which implies the coincidence of LT(PT) and LT(QT)- In other words, the operator 
I — BT must not have 1 as its eigenvalue. 

As known from the theory of Hilbert-Schmidt operators such an operator is 
totally continuous and it possesses at most a countable number of proper values 
{ a i}iSi tha t satisfy oo 

]Ta?<+oo. 
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In our case it means for the operator I — BT that 

oo 

£ ( 1 - a,)2 <oo, (1) 
1 

where {a t}£ii are the proper values of the operator BT- The convergence of the 
series (1) immediately gives, as a* —> 1 when i —• oo, that the series 

fi(-a" 
is convergent, too. But this fact says that the operator / — BT

l is of the Hilbert-
Schmidt type, too and this property proves the mutual equivalence of the measures 
PT and QT- If a stronger condition about the convergence of series (1) is valid, 
namely if oo 

5^| l -ar i | < oo, 
1 

then in accordance with Hajek [4] we speak about the strong equivalence of Gaussian 
measures. Then the series 

£ QCi 
1 

is also convergent and hence this type of equivalence of probability measures is 
mutual, too. It is important to notice that all the proper values of BT must be 
strictly positive so that their reciprocals l/ax- are proper values belonging to the 
inverse operator B^1. The condition of strong equivalence says that the operators 
I — BT and I — BT

l are nuclear because their traces are finite. 
Let {&}£Li be the proper vectors of BT in the space LT- Then the corresponding 

Radon-Nikodym derivative of PT with respect to QT equals 

in the sense a. s. [QT], for details see Hajek [4]. If the measures PT, QT are strongly 
equivalent then the infinite product YiT a« ls convergent because it is nothing but 
the Fredholm determinant of the operator I — BT and the corresponding Radon-
Nikodym derivative can be expressed in a more closed form, namely 

d ^ T , , , , , , , - x - - . si, x &(->=(n-.)" - H g ^ ř * 
Some conditions ensuring the strong equivalence of Gaussian measures can be found 
in Hajek [4]. But in general, the Fredholm determinant need not exist and we can 
use the properties following only from the convergence of the series 

D' 1 - a t )
2 < +oo. 
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As was said earlier this convergence ensures the finiteness of the series 

because a, —* 1 as i —• oo. One easily sees that for each n £ Af 

i^i a« £? ^a»' 1 ^l^0*' ai' 

As In x < x — 1 for every positive x ^ 1, the last series have positive terms.Since the 
original series having positive numbers too was split into two positive series, they 
must be convergent too. Hence the proper values of BT must satisfy 

oo OO .. .. 

7 c*i — In ai — 1 < -foo, V^ In 1 < +oo. 
f-f f-f ai a{ 
t = i » = i 

Using these facts, the Radon-Nikodym derivative can be rewritten into the form 

^".^{(^•'-^"^^{-jt-^efM-a--.)}}. 
Since 

n n n 

In J J a i C 1 - ^ = ^Infae1-**) = -£<* , - -Ina,- - 1, 
: = 1 » = 1 i = l 

it follows the convergence of the infinite product 

1 

Due to the properties of martingales the other part of the Radon-Nikodym derivative 
must be also convergent and hence we finally reach the following expression 

d P т 

dQт" (W) = .or1/aexp | - ^ E ~ T #(") " í1 " a«)} 

The quantity D\ = rL*=i(l ~" 0- ~~ <*i))e1~ai is called the regularized Fredholm 
determinant of the operator I — BT, see, e.g. Gohberg and Krein [1]. This form of 
a determinant substitutes the Fredholm determinant for operators of the Hilbert-
Schmidt type. 

Now we will present several notes about the proper vectors {£i}i^i of the operator 
BT. These vectors belong to the space LT and are Gaussian with respect to both 
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the probability measures PT and QT- Thanks to the orthogonality with respect to 
both the scalar products, they are independent and satisfy 

fc ~ AT(0, ai), & ~ N(0, 1). 
fT QT 

These facts follow from the spectral decomposition of the operator I — BT in 
(LT, II • Ik-.) 

(I-Br)T, = Yl(l-°i)(ri,ti)ti. 
t = l 

The construction of the proper vectors £,-, i = 1, 2 , . . . is enabled by the simultaneous 
"diagonalization" of covariance functions or covariance operators generated by them, 
which is a generalization of a famous fact of matrix calculation, for details, see 
Kadota [6]. 

2. THE RENYI DISTANCES 

Now we are ready to evaluate the Renyi distances in the case of two Gaussian 
measures PV, QT on (0,T) with different covariance functions. We start with the 
expression of the Radon-Nikodym derivative using the proper values of I — BT- We 
have 

^=>*.-ig{i^- ( .-4 
RI(PT,QT) = E P T { - n ^ } = -™-nD i = i f > . - I n a . - 1), 

because EpT{£?} = a t and the series in the expression of In —^ is convergent in the 
quadratic mean, too. 

In a quite analogous way we can obtain 

RO(PT\QT) = RI(QT\PT) = \ J2 (~ ~ I n - ~ 0 
2 i^\ ^ a i a i ' 

which is the regularized Fredholm determinant of the operator / — B^1. 
Now we will express RQ(PT\QT) for a G (0,1). We must calculate the expected 

value with respect to the measure QT 

Hence 

= Dr^nexp^l-^^e^-f^fí?}} 
oo OO i 

= n( t t ' e i~a <)"a / 2n e" f ( a '" i \ /— ,v x 
ti L\ y<Xi + {l-ai)a 
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because 

Цe""' ; :H=\/« i +(ГU)<. 
Due to the convergence of the regularized Fredholm determinants of I — BT al1d of 
I — By1 we finally obtain 

-Qт {(з.Ш=Ч-îÊ'-("Г,+<l-->f)} 
Using the last formula expressing the corresponding Hellinger integral the Renyi 
distance between PT and QT equals 

1 °° 
Ra(PT\QT)=2{l_a)aY.]"(™r1 +(!-«)<>?), 

where { a t } ^ are proper values of the operator BT-
One immediately sees that for each a G (0,1) 

\n(axa~1 + (l-a)xa) > 0 

for each x > 0, x -/ 1, as 

In (a xa~l + (1 - a) xa) > a In x a _ 1 + (1 - a) In x a = 0. 

Hence the infinite series standing in the formula for RCL(PT\QT) consists of positive 
members and its sum is always meaningful if we accept the value +oo, too. Let us 
prove that in the case of absolute continuity of the pair P T , QT the Renyi distance 
is finite for each a G (0,1). 

T h e o r e m 1. Let two covariance functions -R(-,) and 5(- , ) be given on (0,T). 
Let P T , QT be the corresponding Gaussian measures with vanishing means and 
covariances -R(, •), 5(-, •), respectively. The measures P j , QT a re mutually absolute 
continuous when there exists at least one an G (0,1) with 

Ra0(PT\QT) < +00. 

Then for others a G (0,1) the corresponding RG(PT\QT) exists and is finite, too. The 
converse is also true, i.e. P T , QT a re absolutely continuous then R<I(PT\QT) < oo 
for alia G (0,1). 

P r o o f . Let us denote by 

, x \n(axa~1 + (l-a)xa) 

^ ( X ) = <T^) l 

for a G (0,1). We know that <pa(x) > 0 for x > 0, x ^ 1, <pa(l) = 0. Let us calculate 
<p;

a(l), <p'a(l). After it we immediately see that in a neighbourhood of the point 1 

^(X) = i ( x - 1 ) 2 + 0(|X-I|2). 
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This fact gives the following conclusion: when the series _C*.=i(- ~ ^t)2 is convergent 
then the series Y^i <pa(^i) -s also convergent for each a £ (0,1) and for a = 0, a = 1 
as was proved above. Now we prove the opposite conclusion. If there exists a_ G 
(0,1) such that the series 

oo 

2_<Л.0(A.)<+oo 
. = 1 

then 5Zi=i(l — ^ t ) 2 is convergent, too and the operator I — _3T is of the Hilbert-
Schmidt type. • 

R e m a r k . The value of RQ(PT\QT) can be expressed in a somewhat different form, 
namely using directly the operator BT- The operator BT is bounded with the 
spectral decomposition 

t = i 

where sup i G Ar a. < -f-co because lim^oo _*. = _. Hence we can consider the operator 

CO 

<Pa(BT)n = ]>_]<pa(oti) (l?, &)&. 
» = 1 

The operator <P_(-9T) is bounded if and only if 

sup<pa(ai) < +oo. 
te-V 

But, we will prove even more using the fact that the series $3f=i ^ ( ^ i ) is con­
vergent if PT, QT are equivalent. Then we can assert that the operator <PQ(BT) is 
even nuclear and 

MP^Q^-^^^tKMBr)), 

where tr means the trace of an operator. Further, we can also prove that there exists 
a limit in the nuclear norm 

_i-Br*-ii-.)Bt= _, 
a/\ a[a — 1) 

and symmetrically 

_ I-.Bf>-(>-.)Bt = . _ , _ L I-aBa

T-
l-{\-a)Ba

T _ . 
iTo _(_=_) ~BT ~UlIJT 

These facts are based on the following 
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Theorem 2. For each a G (0,1) the operator 

MBT) = a B^T1 + (1 - a) B£ - I 

is positive and nuclear. 

P r o o f . If {ax}J_1 are proper values of BT then the operator V>a(-9r) has its 

aa^x+(l-a)al 
proper values of the form a - 1 

Using the inequality x — 1 > In x one can state that with a,- > 0, i = 1,2,... and 
a . - ^ l , i = l , 2 , . . . 

aa,a-1 + ( l - a X > 0 , 
which proves the pcsitiveness of ^pa(BT)^ To prove the property of a finite trace we 
must study the infinite series 

oo 

^ [ a a r ' + ( l -a )«?- l ] . 
1 = 1 

The convergence of this series immediately follows from the local behaviour of the 
function ^pa(') in a neighbourhood of 1 because ax- —• 1 as i —> oo. By a simple 
calculation we obtain the relation 

^ ( x ) = ^ ^ ( x - l ) 2 + o ( | x - l | 2 ) . 

Due to the absolute continuity of Pp and QT the series 

D 1 - Q«) 
1 

is convergent and hence the series 
oo 

. = 1 

is convergent, too. This fact shows that the operator ^ ( - ^ T ) is nuclear for each 
a £(0 ,1) . • 

Till now we have considered evaluating RCL(PT\QT) for a G (0,1) only. Now we 
will make some remarks about a £ (0,1). First, a < 0. In order to be able to speak 
about the finiteness of RQ(PT\QT) it is necessary to ensure the existence of the mean 
value 

_ r , i p - i ) ( ? | I / + °° - i ( ' H i ) . n u ^ 

Me " \=w*Lc ( - ' dI 

figuring in the formula for EQT < (57^-) } = -^ ( -PTIQT)-
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The integral on the right hand side is convergent if and only if 

a(l — a t) 
— - + 1 > 0 . 

a t 

As at- > 0, then this inequality is equivalent to another one, namely 

a(l - a i ) + at- > 0 

for each i = 1, 2 , 3 , . . . But, it means that the inequality 
a 

<*i>— 

I — a 

must be valid simultaneously for each i = 1, 2 , . . . . When there exists at- < 1 and as 
the sequence {a t} has the only limit point equal to one, there exists an index z'o E M 
such that 

0 < a t 0 = mina,-. 
i'6-V 

As a t 0 > 0, one can find ao < 0 such that 

Cti > 
1 - a 0 

for each i = 1,2, — In the case of at- > 1 for every i = 1,2,... the inequality 
at- > — 73"- holds for every a < 0. This choice is, of course, dependent on the 
character of the operator I — BT> Therefore we can assert that in the case of 
absolute continuity between PT and QT there exists a left neighbourhood of 0, let 
us say (ao,0) where the Renyi distance is still finite. 

A similar situation occurs in the other case with a right hand neighbourhood of 
1. For finiteness of Ra(PT, QT) w e must demand that for each i = 1,2,... 

a 
a,- < 

a - l 

As the sequence {a i}?^ is convergent to 1 and this is the only limit point of this 
sequence there exists a t l = maXi^N ®i under the assumption that at least one at- > 1. 
But then there exists such an ai > 1 that 

ai 
at- < 

ai — 1 

for each 2 = 1,2,..., because l i m a \ i ẑ~r = +oo. When at- < 1 for every i = 1,2,... 
the previous inequality is valid for each ai > 1. 

We have just proved that for every absolutely continuous pair of Gaussian mea­
sures PV, QT there exists a right neighbourhood ( l , a i ) of the point 1 where the 
Renyi distance is still finite. This result will be summarized in the following 
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Theorem 3. Let two covariance functions R(-,-) and S(-,-) be given on (0,T). 
Let FT, QT be the corresponding Gaussian measures with vanishing means and 
covariances R(-,), 5 ( - , ) , respectively. If PT ~ QT there exist two positive real 
numbers an, ai depending on the pair (PT, QT) such that the corresponding Renyi 
distance Ra(PT, QT) is finite in an open interval (-an, 1 + ai) . 

P roo f . See above. ---

The interval (—an, 1 + ai) described in the Theorem 2 is maximal in the following 
sence* 

lim Ra(PT, QT) = +oo and lim Ra(PT, QT) = +oo. 
a\-a0 afl+ax 

The next theorem uses the behaviour of the Hellinger integral HQ(PT, QT) in 
(0,1) and leads to an interesting property of the proper values of the operator I—BT. 

Theorem 4. Let the Gaussian measures PT, QT considered in Theorem 3 be 
strongly equivalent. Then | | -3T| | > 1 and also H-By1!! > 1. 

Proo f . On the basis of the previous result we know that in the case of equivalence 
between PT and QT there exists finite RCL(PT\QT) in (0,1) and hence the Hellinger 
integral exists also because the sum 

oo 

^ l n ( a a r 1 + (l-a)a,a) 
1 = 1 

is convergent. At the first sight Ho(-Pr|QT) = HI(PT\QT) = 1. At this moment, we 
can use a result given in Vajda [14] about the existence of the derivative of any order. 
Hence the function HQ(PT, QT) in the parameter a is differentiable in (0,1) and we 
can calculate its derivative. We will immediately see why the strong equivalence for 
the calculation of this derivative must be assumed. Namely, 

dM(P\n\-H(P \n„\ 1 V t1 - <».-] [<*»• + <a - 1)] 
YaHa(PT\QT) - Ha(PT\QT) • ^ Z . a i[a + ( l - a ) a , ] ' 

t=i L v ' J 

From this formula we see why we demand the strong equivalence between PT, QT-
The convergence oo 

^ | l - a , - | < +oo 
i = i 

ensures the existence of an absolutely convergent major ant and thus we can in­
terchange the infinite summation and differentiation. Now, let us suppose that 
suPtGN ai < 1- Then a,- < 1 for each i G Af because 1 is not a proper value of BT and 
| | 5 T | | < 1 would be. But in such a case 1 - at- > 0 and the derivative of Ha(PT\QT) 
would be positive, i.e. the function Ha(-Pr, QT) would be in (0,1) strictly increas­
ing. This of course contradicts the fact H\(PT, QT) = 1 = H0(Pr, QT)- Similarly 
we can continue under the assumption H-Bf1,! < 1- A s B

T
l has the proper values 

---}-, we would reach the a,- > 1 for each i G N and the derivative ^ ( - P T I Q T ) would 
be negative in (0,1). We would come to a contradiction again. • 
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Remark . The previous theorem says that the proper values of I — BT by the 
strong equivalence between PT and QT must be situated on both sides of the limit 
point 0. 

In the next part of the paper we will study the asymptotic behaviour of Ra(PT, QT) 
when T —> oo under the stationarity of PT and QT- For this reason we must men­
tion in detail some notions and relations, which concern the asymptotic behaviour of 
proper values of Toeplitz operators. Here we use mainly results given in Grenander 
and Szego [3]. 

3. TOEPLITZ OPERATORS 

The Toeplitz matrices play a very important role in the theory of weakly stationary 
random sequences because they present covariance matrices. The Toeplitz operators 
are in a certain sense a generalization of the notion of Toeplitz matrices in the case 
of a continuous time. 

Let (X, X,fi) and (S,cr,v) be two spaces with measures. We do not exclude the 
case X = S and /i = v. Let a kernel (p(x, s) be such that the integral operator given 
on X x S r 

(Tu)(x)= / (p(x,s)u(s)dv(s) 

is defined for each u(-) £ L2(S,<r,v). We demand Tu() E L2(X,X,fi) and T 
preserves a norm, i.e. 

\\Tu\\x = \\u\\s. 

If the range of the operator T is everywhere dense in L2(X), then the operator T 
can be enlarged into a unitary mapping T : L2(-5) —• L2(X). Under fulfilling these 
conditions the kernel <p(-, •) is called an orthogonal kernel. 

Let /(•) be an integrable function on (X, X), let A be a real number and let us 
defme ex = {x: f(x) <\} = rl{(-oo, A)}) 
e\ E X for each A £ R\ and for each u(-) E L2(S) let us define a decomposition 

(Tu)(x) = (Tu)(x)^(x) + (Tu)(x)(l-^ex(x)), 

where tpex(x) = 1 for each x € e\ and tpex(x) = 0 otherwise. As T is unitary, there 
exists T""1 and let us put 

EAu(-) = r - 1 ( ( r t i ) ^ x ) = - r - 1 ^ A r l 

where the transformation rpex means a linear mapping presented by multiplying by 
the function ipex(') on the space L2(X,^,/i). One can prove that the system of 
operators {EA} on the space L2(S, <r, v) forms a resolution of identity, i. e. {EA} is a 
collection of projectors __ _ - - -

EA E^ = t^ _A = tmin(A,/i) 
a n d lim EA = / , lim EA = 0. 

A->+oo A—-00 
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Using this resolution we can define a new operator A', namely 
r+oo 

-Ĺ ЛdEл 

If we prove that the definition domain of K will be dense everywhere in L2(-5) then 
the operator K will be well defined. In general, K need not be bounded. If the 
generating function /(•) is bounded then K is also bounded. The definition domain 
Dom(A') is determined by all u G £2(5) for which the following integral exists 

/

+00 r-t-00 r 

A 2 d( t / ,E A U )= / A 2 d / \(Tu)(x)\2dn(x) 
•00 J —00 J e\ 

/

+00 

\(Tu)(x)ff(x)dn(x). 
-CO We will consider the case /(•) > 0 only. Then obviously, the operator K is positive 

and its definition domain contains all the functions u(-) E L2(S) for which (Tu) (•) 
are bounded on X a. e. [/i] and X-measurable. Then the operator K will be self-
adjoint, but unbounded in general. The bilinear form (Ku, v)s on L2(S) can be 
expressed as 

/

+ OO r+OO r 

Xd(ExU)v)= A d / TuTudfi(x) 
-00 J —00 Je\ 

= / TuTvf(x)dfi(x). 
Jx 

As r r 
Tu— / (p(x} s) u(s)dv(s), Tv— 1 <p(x,s)v(s)dv(s), 

Js Js 
then 

(Ku}v)s = / ( / <p(x,s)u(s)dv(s) / ip(x,t)v(t)dv(t) \ f(x)d/i(x) 

= / / ( / p(x)s)v(x>t) f(x)dfJ>(x)) u(s)v(t)dv(s)di/(t). 

This relation provides a formula for the operator K, namely 

(Kuy v) = / / K(s,t)u(s)v~(t)dv(s)dv(t) 
Js Js 

where / 
(Ku)(t)= / K(s}t)u(s)di/(s). 

Any operator defined in this way will be called a Toeplitz operator. 
At this moment for a better understanding we will present some examples, which 

will be useful in the sequel. 
Let (X,;f , / i) = (S,o-,i/) = (f t i ,#i ,Leb) and let 
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Then T is nothing but the well known Fourier-Plancherel transformation defined on 
M R i . L e b ) 

{Tu){x) = -j=j ei"u(s)ds. 

Then the kernel K(,) expresses a stationary covariance function as follows from 
the Bochner theorem 

*(*><)= 2 W ei{'~t)Xf(*)dx-

In the other example we will consider a kernel </?(•, •) on X x 5 satisfying the condition 

/ <p(z,s)v?(x,*)d/i(x) = 6ai, 
Jx 

where 8st is the Kronecker symbol. Then one can easily prove that the kernel </?(•, •) 
is orthogonal, because the mapping T defined by 

(Tu){x) = / <p{x,s)dv(s) 

is unitary and the mapping K is surely a Toeplitz operator defining a covariance 
function 

Kf(s,t) = / <p{x,s)tp{x,t)f{x)dџ(x) 
Jx 

belonging into the Karhunen class of covariance functions. In fact, we obtained a very 
interesting subclass of the Karhunen class. Some properties of random sequences 
having covariance functions of this type, i.e. S = Z (integers) can can be found in 
Michalek and Ruschendorf [9]. Another information about Toeplitz operators one 
can find in Grenander [2] or in Kac [5]. 

Using the operators of the Toeplitz type we can say something about the asymp­
totic behaviour of their proper values. Let us formulate now the problem of asymp­
totic behaviour of proper values distribution of a Toeplitz operator. 

Let Kf(-}') be a kernel of a Toeplitz operator on L2(-S, <x, j/) generated by a 
function /(•) defined on (X)X^) as described earlier. For simplicity, let | / ( ) | < 
const on X, then the corresponding operator K(f) is bounded. Let in (5, <r) be 
given a nondecreasing family of measurable subsets Sa, a G A such that Sa /* S 
and let the orthogonal kernel y>(-, •) defining a unitary mapping T be bounded on 

5 a , 1 C ' \<p(*,s)\<Ca 

on X x Sa. Let us denote by Ta the set of (.r-measurable functions bounded on 
Sa and vanishing outside of Sa in S. It is clear that | J a Ta is everywhere dense in 
L2(-5)« Further, we require that 

< Tu : tx(-) G M Ta > is dense everywhere in L2(^0-IЦІ 
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Now, for each a G A (index set) we can define an operator Ka on L,2(Sa) by the 
relation f 

(Ka(f)u)(t)= / Kf(s,t)u(s)dv(s). 
JsQ 

It is clear that Ka(f) is an operator of the Hilbert-Schmidt type when u(Sa) < -foo. 
Let {\j }f^i be proper values belonging to Ka(f) and the problem is to find 

an asymptotic distribution of {Aj- J j l j on the real line if Sa /* S. As we see 
that Ka(f) —• K(f) in some sense it is suitable to use the behaviour of proper 
values {\j }fLx for describing proper values { A j } ^ of the operator K(f) that 
cannot be attainable in a usual way, e.g. due to computation problems. Using this 
approach we immediately see how we could utilize asymptotic properties of proper 
values belonging to a Toeplitz operator: proper values are included in the formula 
for Renyi distances Ra(PT, QT)-

In the rest of paper we will be interested in Toeplitz operators with orthogonal 
Fourier kernels and their suitable approximation by operators of the Hilbert-Schmidt 
type. 

Let <p(x}s) = -X-eixs and /(•) be a real nonnegative function, /(•) < M and 
integrable in R\. Then the covariance function 

1 I+oc> 

Kf(s,t) = Kj(s-t) = -J ^ e'-('-')*/(*)d* 

can be called as a Fourier kernel. In our case S = fcf and we put ST = (0,T) 
(it is possible, of course, to consider S = H\ and ST = (— y, y))* ^ e w ^ study 
asymptotic behaviour of proper values of an integral operator K(f) generated by 
the integral equation T 

/ Kf(s-t)<p(t) = \<p(s) 
Jo 

for T / +00, i. e. for large T. 
The kernel Kf(s — t) will be approximated by a periodical kernel that generates 

a Hilbert-Schmidt operator whose proper values and functions can be found in an 
easy way and their asymptotic behaviour is very close to the asymptotic distribution 
of proper values of K(f). For this purpose, let A > 0 and define a function 

''M- r̂pT )̂'*)*-
This function is bounded, /A(X) < M, nonnegative and integrable. Using this 
function let us define an approximating covariance function 

As well known 

1 I " 1 - 0 0 

KA(s-t)=±J_ eť<-ł>» fA(x)dx. 

Kл(r) = (--Ş)ВД f o r И<Л 

= 0 for \r\>A. 
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The similarity between the operators K(f) and KA(f) can be measured by the 
Hilbert-Schmidt norm 

-\\K{f)-KA{f)\\2<=frJo \K(s)\2ds + 2j^ \K(s)fds. 

Now we define a periodic kernel LA}T(S)) 

LA,T(S) = KA(s) for - I T < s < ±T, 

with the period T. Then, similarly as above, 

i 0 4 r°o 

L\\KA(f)-LA>T\?<~ J^ \K(s)?As. 

Combining the last two inequalities under A < ^T we can assert that 

i | |A ' ( / ) - LA i T | |2 < [0(T"2) + 2E]1/2 + 0(T-'l% 

where e is chosen such that J^° |Ii (s)|2 ds < £. 
In this way we have constructed a suitable approximation of the original Toeplitz 

operator K(f) by a sequence of Hilbert-Schmidt operators with periodic kernels. 
Let us consider the integral equation with the periodic kernel LA}T(')'-

L 
T 

LAiT{s-t)f{t)åt = Xф). 

One can prove that under the choice ¥>j,T(t) =-- exp{27rtij/T}, j G Z we obtain 
proper functions of this equation with proper values 

rp 

Aiit = / L , ,T (<)e -^ ' / T d í . 
JO 

As well known, the system of functions {¥>J,T(0} *S complete in £2(0, T) and hence 
no other proper functions and values exist. Using properties of Fourier transform 
we easily find that 

Л,-,T = / A ^ ) , j = 0 , ± l , ± 2 . . . . 

Let p G JV\ It is possible to prove (using the Poisson summation formula) that 

+00 1 r + 0 0 

1 Ą-_њ Л->oo Z 7 Г J-OO 
Ј = —00 

This convergence proves the asymptotic behaviour of the moments belonging to the 
distribution of { A ^ T } for T —• 00. The obtained result, very important in the sequel, 
can be summarized as follows. 
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Theorem 5. (Grenander and Szego [3]) Let / be a bounded real function in-
tegrable over 72.1, let K(•, •) be a Toeplitz kernel (covariance function) defined by 
Fourier kernel 

+oo 1 I+00 

Kfis~ł) = ~~j ^"t)xf(x)dx-
Then the proper values of the integral equation 

rT 
K(s - t) ip(t) dt = X <p(s), 0<x<T I 

J0 
have an asymptotic distribution equal to that of a random variable /(-K), where the 
random variable X has an improper probability density function equal to j-- all over 
the real line. 

This theorem will be extensively used in the next chapter in evaluating the asymp­
totic rates of the Renyi distances between two Gaussian and stationary probability 
measures. 

4. ASYMPTOTIC RATE OF THE RENYI DISTANCES 

Let two covariance functions I?(-,-). -?(•,•) be given on (0,T). Let PT, QT be the 
corresponding Gaussian measures with vanishing means. 

In Chapter 2 we introduced necessary and sufficient conditions under which PT 
and QT are mutually absolutely continuous and we evaluated the corresponding the 
Renyi distances using proper values of the operator I?j. This operator is defined on 
a somewhat abstract space constructed from the observations x(t), t £ (0,T). It is 
possible, of course, to construct a similar Hilbert-Schmidt operator connected with 
two covariance functions I2(-, •) and 5(-, •) defining the measures PT and QT. This 
situation describes the following 

Theorem 6. (Pitcher [12]) Let two continuous covariance functions I2(-,-) and 
S(-, •) be given on (0,T). Let I?(-, •) be strictly positive and both belong to L2(0,T). 
Let It and S be the corresponding integral operators defined on L2(0,T). Then the 
Gaussian measures generated by It!(-, •) and 5(-, •) are equivalent if and only if the 
operator 

I - R-1'2 S R-1'2 

is of Hilbert-Schmidt type. 

We obviously see that the role of the operator I — BT is played here by I — 
R--I-SR--I-, which is defined on L 2 (0,T). We have 

rp rp 

(Rf)(t)= [ R(s,t)f(s)ds, (Sf)(t)= I S(s,t)f(s)ds. 
Jo Jo 

As we assume positive definiteness of R(-, •), the corresponding operrator R must be 
positive, too, and it is possible to consider its inverse R~l which however need not 
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be bounded, in general. The operator R'1 is also positive and hence its square root 
is well defined. PT and QT are mutually absolute continuous and this fact implies 
that 5 " 1 must exist, too. The nonexistence of an inverse operator to S would lead 
in such a situation to perpedicularity of Gaussian measures. 

Let us start with the formula for ROL(PT\QT) and properties of the operator 
aB^T1 + (1 - a) B% where BT = R'1/2 S R'1/2 on L2(0,T). The Renyi distance 
can be written in the form 

Ra{Pr\Qr) = 7T7! r - t r l n f l a j 

z(l — a) a 

where Ba = a 5 T
_ 1 + (1 — a) By. As the operator J5T — I is nuclear according to 

Theorem 2, the distance RCL(PT\QT) can be also expressed as 

Ra{Pr\Qr) = ^ r - In det Ba, 
2(1 — a) a 

where det Ba = f]i° (aai~l + (̂  "~ a ) <*i) *s convergent. 
For the boundary points a = 0 and a = 1 the operators 

B0 = BJl - In Bfx - 7, Bi = £ T - l n £ T - 7 

have also finite traces. Let {u«}£2.i be an orthonormal system of proper functions 
corresponding to proper values { a . * } ^ of the operator BT> Then using a result of 
Hajek [4] we can approximate the Fredholm determinant of BT by a sequence of 
matrix determinants, namely 

det BT = lim det {(BT Ui, t i t ) } ? - . . 
n—>oo • " - ' M — -

i i n c e y\ 

(BTUi, UJ) = (Sui, R~xuj) = (RT1 Sui, UJ), 
we obtain 

det{(BTUi, UJ)} = det{(i?-1w i, t/y)} det{(5ti,-, Uj)}. 

This easily yields 
n 

In det {(BT t*,-, t i j ) } ? ^ = J > ( w ) - ln(A,-)i 
i = i 

where {/ii}£ii are proper values of S and {A,}?^ are proper values of R. In this 
way we established the possibility to express Ra(PT> QT) by means of proper values 
of 5 and R, 

^^=2ra|1"(°fe)" + (1-)fe)°)-

Now it is natural to apply Theorem 5 about asymptotic behaviour of proper values 
belonging to Toeplitz operators with Fourier kernels. 
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Theorem 7. Let Gaussian stationary measures Py, QT be absolutely continuous 
for each T > 0. Let / p , / g be their corresponding spectral density functions. We 
need / p , / Q to be bounded. Then there exists the asymptotic rate of the Renyi 
distance in the form 

.in. ±*.<Wr> = ^ ^ f -> (• (WW*^ ( W ) «' 
T-.00T 47r( l -a)a j_ 0 0 y \fp(x)J \fp(x)J J 
but we must accept the value +00, too. 

P roo f . We have shown that det BT can be approximated by determinants of 
covariance functions I2(-, •) and S(-, •). Therefore 

In det BA = lim (a In det nBT + In de t (a n 5f x + (1 - a) En)) , 
n—>oo 

where nI?r 1s an n-dimensional approximation of the operator BT, which can be 
expressed by using a matrix form. In this way we get to the formula 

*<*-« = ^g-(-fer+<'-->fe)')-
where {K,T} and {mj} are proper values of R and S operating only on L2(0,T). 
At this place we need the following properties of Toeplitz operators. Let / 1 , / 2 be 
two real functions generating Toeplitz operators A'(/i), I-~(/2). Then 

K(ah + bh) = aK(f2) + bK(f2), K(h h) = K(h)K(f2). 

On the basis on this fact we can easily prove that if {A,-,T} and {/i»,T} are proper 
values of the operators K(fi), A'(/2) operating on L2(0,T) then for any polynomial 
//v(-c,2/) of two variables 

^y]/Iv(Ai,T,/i»,T) —> — / fN(fi(x), f2(x))dx. 
Tfr{ T-+°° 2* J-00 

As every continuous function g(x, y) can be approximated by a sequence of polyno­
mials, we can conclude that 

j °° 1 r+00 
J;Y^9(KT,ЏІ,T) ^ --;/ g(h(x), h(x))ài 

provided the infinite sums and integral are convergent. Hence we get the formula 
for the asymptotic rate of the Renyi distance 
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R e m a r k . Unfortunately, the absolute continuity of two stat ionary Gaussian mea­
sures PT and QT for each T > 0 does not ensure the convergence of the integral 
figuring above. There is an example, even with rational spectral density functions 
where PT ~ QT for each T > 0 but 

7tii~(P, Q) < -foo and R+(Q\P) = +oo , 

see Pisarenko [11]. 
In Pinsker. [10] are given formulae for the asymptot ic rate of the Renyi distances 

only for the boundary cases a = 0 and a = 1, claimed to be valid even for multidimen­
sional Gaussian processes. Unfortunately these results were stated without proof. 
Analogous result concerning the one dimensional case was given later in Kullback, 
Keegal and Kullback [7]. But the proof presented there is also incomplete. 

(Received December 11, 1997.) 
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