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SLIDING MODE CONTROL 
IN THE PRESENCE OF DELAY 

J E A N - P I E R R E RICHARD, FREDERIC GOUAISBAUT AND WILFRID PERRUQUETTI 

This paper provides an overview of recent results for relay-delay systems. In a first 
section, simple examples illustrate the problems induced by delays in the synthesis of 
sliding mode controllers. Then, a brief overview of the existing results shows the present 
advances and limits in this domain. The last parts of the paper are devoted to new results: 
first, for systems with state delay, then for systems with input delay. 

1. INTRODUCTION TO SLIDING MODE CONTROL 

1.1. A shor t and basic recall on S M C for sys tems wi thout delay 

Variable structure systems (VSS) theory and practice have a deep historical back­
ground: the major part of the studies were concerned with Ordinary Differential 
Equations (ODE's) which means, with systems without time-delay. In variable struc­
ture controllers, the control law commutates between d different values in order to 
force the system flow to behave as "a nonsmooth contracting map", which means 
the motions converge to the origin with some discontinuity in the time-derivatives of 
the state variables. One of the historic reasons that made VSS popular is that many 
physical systems naturally present discontinuity in their dynamics, as for mechani­
cal systems with Coulomb friction, electrical systems with ideal relays . . . This has 
led control theorists to begin (mostly in eastern countries) with the study of these 
relay-based control systems. 

Sliding mode control (SMC, [37]) is a particular case of variable structure system 
control (d = 2). Roughly speaking, it is based on the design of an adequate "sliding 
surface" {x,s(x) = 0} (or "sliding manifold") which includes the origin (state to be 
reached, s(0) = 0) and divides the state space (vector x) in two parts: each of them 
corresponds to one of the two controls, which commutate from one to the other when 
the state crosses the surface. For systems with single input1, this simply corresponds 

*For multi-input systems, u G Km, m manifolds S{(x) = 0 are to be defined, and all variables 
have indices i in the formula. Two strategies are then possible: use a discontinuous control u\ so 
to reach remain on surface si, then use U2 so to reach and remain on s\ D52, and so on... until s m 

and then, 0. In the second strategy, control discontinuities appears only on Hi mS*' ^ r s t solut-on 
is simple since it is solved as m single-input problems, but in practice it can lead to undesirable 
constraints on the system. 
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to 

( u+ if s(x) > 0, 
u = < 

{ u~ if s(x) < 0. 

Sliding mode control techniques are therefore based on a two-stage behavior: 

1. Hitting phase (or reaching phase): the state is driven in finite time onto the 
surface. Roughly speaking, condition 

s(x(t))s(x(t)) < 0 

is expected in this phase, which condition depends on the control design 
{u+,u~}. During this phase, boundeness of x(t) must be guaranteed. 

2. Sliding phase: the state remains on the surface and, if surface is adequately 
designed, the state tends to the origin. In sliding phase, control reduces to an 
equivalent control ueq [37]: since the state remains on s(x) = 0, ueq is defined 
by mixing equation s(x) = 0 with the state equation (see Example 1). It was 
shown that for single input systems, 

+ u~ < ueq < u 

is a NSC for existence of sliding phase. 

This second phase may be imperfect: if the actuator does not exhibit ideal com­
mutations (for instance, if there is some inertia or, worst, some delay), or if the 
control is not adequately designed (for instance, if does not respect the "natural 
tendencies" of the process), then a vibrating phenomenon appears: it is known as 
"chattering" (in French, reticence) and may have some bad consequences (among 
them, premature wearing of the actuators). In the major part of the situations (ex­
cept input delays, as we shall see) this chattering phenomenon can be reduced or 
avoided. 

Both phases are concerned with stability and attractivity concepts since: 

- In the first step, the condition ensuring the sliding motions is a contraction 
property (at least locally around the sliding manifold). 

- In the second phase, the choice of the surface ("shaping procedure") is mainly 
related to stabilization: one has to compute (or "tune") the parameters involved in 
the shape of the sliding surface such that the sliding motions achieve some conver­
gence and/or stabilization problem. 

Example 1. For instance, let us consider the very basic, second-order system 

( xi(t) =x2(t), 

\ x2(t)=x1(t)x2(t) + d(t)+u(t). 

Suppose the system is expected to converge toward x = 0 with exponential rate 2 
(e~2*). Define the sliding surface as s(x) = ax\ + x2. Now, examine its design: in 
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the sliding phase, the state remains on s(x) = 0, then the first state variable satisfies 
i\(t) = X2(t) = —ax\(t). One deduces that a necessary condition for asymptotic 
stability of the origin is a > 0, which provides admissible surfaces. Tuning a = 
2 achieves the exponential convergence as soon as system remains on the surface 
s(x) = X2+ 2x\. 

Concerning the hitting phase, let us define the control u+ = —x\X2 — 2x2 — k, 
u~~ = —x\X2 — 2^2 + &, this means, 

u(t) = — X\(t)x2(t) — 2x2(t) — k sign s(t). 

It is easy to check that: 

s(t)s(t) = -k \s(t)\ + s(t) d(t). 

In other words, if gain k is high enough (here, k > sup |d(£)|)j then 

(1.2) 

s(t)s(t) < 0 

and the motions converge toward the surface s = 0 in finite time. The equivalent 
control 

ueq = -2x2(t) - xi(t)x2(t) - d(t) 

is obtained from equation s(x) = 0, thus s(x) = +2x2 + xi(t) X2(t) + d(t) +u(t) = 0. 
Note that condition u~ < ueq < u+ holds. 

Moreover, the state converges to the surface in finite time (see Figure 1, with 
gain k = 10 and d = 0). 

5 10 
Time (sees) Time (sees) 

Fig. 1. SMC without delay. 
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1.2. Some advantages of S M C 

Designing such sliding mode controllers is a necessity for systems with naturally dis­
continuous actuators. But, even for systems with continuous actuators, introducing a 
nonsmooth control algorithm may benefit the behaviors: it enlarges the possibilities 
of other continuous controllers, and examples were provided of systems stabilizable 
by means of discontinuous control, which were not verifying the Brockett's necessary 
conditions of C-stabilization2. 

Another advantage of SMC is its robustness with regard to input and parameter 
disturbances: SMC is known to provide an efficient way to tackle challenging robust 
stabilization problems for finite-dimensional dynamic systems. For instance, as soon 
as a complex system can be stated with a normal form (see [11]) as equation 

ii = xi+i, Vi = l , . . . ( n - 1), 

in = /(*, x) + g(t, x)u(t) + d(t), (1.3) 

it is known that an appropriate sliding mode strategy can achieve stabilization for a 
wide class of disturbances: the nonlinear terms and the disturbances d(t) (generally 
modelling the unknown dynamics) can be "dominated"3 [7, 35]. Such "domination" 
was illustrated in Example 1, corresponding to the choice of a sufficiently high gain 
A;. The controllability-like conditions allowing such rejection of d(t) for more general 
systems are known as "matching conditions" [24]; they are satisfied in the particular 
case of (1.3). 

Lastly, let us mention that commutation strategies also provide a way of obtaining 
finite-time convergence properties, since equations reaching s -= 0 within a time 
T(s(0)) < oo, as 

s(t) = -fcsigns(t), T = fc~ ^(O), 

can also be worked out. 

1.3. Two introducing examples to the problem "relay-delay" 

However, the modelling of many physical systems has to take into account an ir­
reducible influence of the past: time-delays are natural phenomena in numerous 
engineering devices [20, 32] and the modelling phasis cannot neglect them anymore 
when increasing the dynamic performances is aimed at. Consequently, specific mod­
els, analysis and controllers (see survey by the authors in [31]) have to take into 
account the infinite dimensional nature of such systems. Even for linear models, the 

2For instance, the completely controllable system 

{ xi = til, 
x2 = u2, 
X3 — X2U\ — X\U2\ 

has no stabilizing C1 state feedback. 
3Note that, in continuous time, a discontinuity in the control law can be interpreted as a high-

gain effect. 
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design of controllers is not obvious, mainly because applying the existing necessary 
and sufficient stability conditions is very tricky. 

The combination of delay phenomenon with relay actuators makes the situation 
much more complex. For instance, we recall here first an investigation of the notion 
of steady modes resulting from the relay-delay combination and concluded to the 
possible existence of a countable set of oscillation periods. Then, we reconsider 
Example 1 with an additional delay. 

Example 2. [12, 13] Let the prototypical equation 

x(t) = — signx(t — 1). 

For adequate initial conditions, it has the 4-periodic solution 

t for - 1 < t < 1, 
9o{t) = дo(t + 4k) = 

2 - t foг 1 < t < 3, 

but also exhibits any of the ^py-periodic solutions 

9n{t) = 
4n + l 

5o((4n + l ) í) . 

Example 3. [6] Consider again Example 1, but now with an additional input 
delay r = 0.1. The model becomes 

ii(t) = x2(t), 

X2(t) = Xx(ť)x2(ť) + u(t-т), 
(1.4) 

while the control law u(t) is still defined by (1.2). Simulation Figure 2 shows the 
resulting oscillations. Note that for k = 1000, r = 0.08, the oscillation exhibits 
a triple limit cycle (Figures 3,5) instead of a single one (Figure 4). This simple 
example points out behavioral changes (bifurcations) arising in relay-delay systems, 
and motivates the study of specific SMC design for systems with state and/or input 
aftereffect4. 

Time (secs) 

s(x) 

o .ІШШШШІ 3 iPllllllllШffl 
•2 f x2 

. 1 1 'l » 5 1 
Tkлe (secs) 

10 
ueq 

íl • %vwшwш 

Time (secs) 
5 10 
Time (secs) Time (sees) Time (secs) 

Fig. 2. SMC with input delay r = 0.1. Fig. 3. fc = 1000, r = 0.08. 
4The question is also related to the "real sliding behaviour", taking in account both the sampling 

period and the inertia of the switching devices, by opposition to the "ideal sliding behaviour" that 
was presented in the introduction. On this question, see for instance [30]. 
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Fig . 4. Phase portrait, k = 10, r = 0.L Fig. 5. k = 1000, r = 0.08. 

2. AN OVERVIEW OF SMC FOR DELAY SYSTEMS 

Despite some extension of SMC to infinite dimensional systems [28] [29] and of 
differential inclusions to aftereffect systems [20], the concrete control results are not 
so numerous. We shall divide them into two classes: systems with or without input 
delay. 

Most of the papers we found in the literature are considering systems without 
input delay5: 

- [1, 3, 4, 9, 16, 25, 26, 34, 36, 38] are directly concerned with SMC. The models 
involve delayed state variables (input and sensors are not submitted to delay). [3] 
was not directly related to SMC, but turned out to join this class for high gain 
values. Other ways of designing variable structure controllers still yield computa­
tional difficulties: [38] relies on the Fiagbedzi-Pearson approach, with the connected 
difficulties6. In [15], SMC design with unknown time-varying delay is considered, 
and [14] generalizes the approach to a class of nonlinear systems. 

- Lastly, [36] obtained relay-delay identification with application to the control 
of chemical processes. In this interesting result, relay is involved in the only identi­
fication procedure, then replaced by a finite spectrum assignment control [27]. 

In what concerns systems with input or sensor delay, the question is still more 
challenging. For instance, we speak here about systems as 

x(t) = A0x(t) + Adx(t -h) + Bu(t) + Biu(t - h), (2.1) 

for which the pairs (A0, B) or (A0 + Ady B) are not controllable (for instance, B = 0), 
which means one must use the B\u(t — h) term so to obtain an efficient control. 
To our best knowledge, few results leading to concrete SMC design of have been 
published in this case: 

- In [2], the considered systems have output delay and relay actuators, but the 
study is limited to the first order processes. 

5 Such "inner delay" phenomenon appears in several cases as in chemical transformations (re­
action lags), epidemiology (germ incubation time), population dynamics (average life duration) 

6This theory aims at transforming retarded systems into ordinary ones, as in [10]. The problem 
is that one has to know the unstable eigenvalues and eigenvectors of a characteristic equation such 
as A = J eA9&K(Q) and, then, to implement distributed controls. 
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- In [5], the aim was to reduce the chattering induced by delayed sensors: a 
combination with observer-based control was achieved on a concrete process, but 
without providing the theoretical proof of convergence. 

- In [33, 38], the considered systems have an input delay, but no state delay. They 
use an observer-like control, which will be recalled in the last section of this paper. 
Note that [33] may need some complementary proofs.7 

- In a case study [6], the authors considered the above Example 3. We used a 
Lyapunov-Razumikhin approach leading to overestimation of the chattering am­
plitude (i.e., the determination of an attracting neighborhood around the sliding 
manifold). This preliminary result, concerned with the sensitivity of SMC with re­
spect to time-delay effect, was completed by the estimation of its asymptotic stability 
domain. 

- In [17], we recently proposed a control design ensuring a robust convergence of 
SMC under state-and-input delay. This was achieved by combining the Lyapunov-
Krasovskii method with a normal form as (1.3) for delay systems. Such results allow 
taking into consideration the presence of a delay affecting sensors (observation of 
x(t — T) instead of x(t)) or actuators (control u(t — r) instead of u(t)). Note the 
chattering phenomenon was avoided by using nonlinear gains. But, because of the 
delay, the additive disturbance [d(t) in (1.3)] could not completely rejected, which 
implies (in the best case) ultimate boundedness instead of asymptotic convergence. 

To give a first conclusion on the possible SMC strategies for LTDS, let us sum­
marize the situation as follows: 

1) for systems with state deiay, situation is the same as for ODEs, even if design 
and computations are more complicated; 

2) the presence of input delay under perturbations still leads to open problems. 
Concerning the stability study (see generally [8, 19]), the methods than can be 

used in SMC are mainly based on the time-domain Krasovskii's approach (for linear 
systems the results are then expressed in terms of Ricatti equations [22] or, equiv-
alently, of LMIs [21]), Razumikhin's approach, and comparison approach (results 
in terms of matrix norms and measures [18]). They allow handling nonlinear sys­
tems, whereas the frequency-domain and complex-plane methods (generally leading 
to diophantine polynomial equations) need the delays to be constant. But, in sliding 
control, their use has to be chosen in relation to the phase under consideration: 

1. In hitting phase, it is not necessary to study the convergence of a Lyapunov 
functional v(xt) concerning the whole state xt, since only the distance from 
state to the surface (say, v(xt) = s2(xt)) has to be involved8. However, the 
method has to be able to guarantee finite-time reaching of the surface. It is 
important to note that, up to now, only Krasovskii's approach can ensure 

7In [33], the input is delayed and a state predictor [27] is defined. But, some ambiguity arises 
in the proof of this result since the finite time convergence to the sliding manifold is not ensured: 
the proof relies on a Razumikhin's approach. 

8For nonlinear systems, one must additionally check that the state remains bounded within 
finite time. 
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the finite time convergence. Razumikhin's method9 has never been shown to 
be admissible and its combination with Filipov's theory has not been deeply 
studied. The question is illustrated in Figure 6: if finite time convergence 
is proven under Razumikhin's relaxing conditions (i.e., for trajectories com­
ing out from the set v(s) = cte), finite time is ensured for other trajectories 
(regularly converging, for instance). 

Fig. 6. Can Razumikhin's principle be applied to hitting phase? 

2. For the sliding phase: once on the surface, all stability methods can be used. 
Comparison techniques as well as Razumikhin's approach may be more suitable 
for invariant domains estimation, constrained control properties, varying delay. 
Krasovskii's functional are interesting for linear systems with constant delays, 
since optimization LMI algorithms are well fitted for this case. 

3. If sliding regime cannot be reached (because of input delays and perturba­
tions, for instance), then Razumikhin-like techniques can provide interesting 
information about amplitude of the chattering (see below). 

9Razumikhin's theorem statement: Let w(p), v(p), w(p), p(p) be scalar, continuous, positive, 
nondecreasing functions, with u(0) = v(0) = 0 and p(p) > p for p > 0. If there is a continuous 
function V(t, x) such that 

u(\\x\\)<V(t,x)<v(\\x\\)i 

V(t,x(t))<-w(\\x(t)\\) 
for states xt verifying V0 G [-/i,0], V(t + 0,x(t + 6)) < p[V(t,x(t))], then 0 is uniformly 

asymptotically stable for x(t) = f (xtyt). 
What we call "relaxing condition" is the sentence "for states xt verifying...". 



Sliding Mode Control in the Presence of Delay 285 

3. NEW RESULTS FOR DELAYED STATE, MEMORYLESS INPUT 

3.1. Preliminary results 

We consider linear time delay systems of the form 

f x(t) = Ax(t) + Adx(t -h) + Bu(t) + fi(t,xt), t > 0, 
{ (3.1) 
\ x(t) = <j>(t), t e [ - r , o ] , 

where x(t) G ]Rn; xt is the function defined for 0 G [—h,0] by xt(0) = x(t + 0), A 
and Ad are constant n x n matrices; B is an n x m matrix of rank m; the control 
vector u(t) belongs to lRm ; and / i , which represents neglected dynamics and/or 
external disturbances, is a signal satisfying the classical matching conditions, i. e. 

Mx(t),t) = Bf(x(t),t). (3.2) 

We define the following assumptions: 

Al) The pair of matrices (A + Ad, B) is controllable. 

A2) The perturbation vector f\ satisfies an inequality of the form 

< *(xt). (3.3) 

where * is an a priori known functional of Xt (possibly non vanishing). 

Throughout the paper the following notations are used. 

- || • J| denotes both the octahedral norm of an n-vector e defined by: ||e|| = 
I C i ^ k i l and its induced matrix norm, i.e. ||.A|| = sup||e | |=1 *w- for A G 
RnXn. 

- Sign is the map defined by Sign(z) = [sign(zi),. . . ,sign(zm)] for all z = 

[ 2 i , . . . , * m ] e R m . 

- A > 0 means that the matrix A is positive definite. 

3.2. Regular form 

The following results aim at transforming the original system into an appropriate 
form for the design of a sliding mode controller. This form constitutes an extension 
of the regular form introduced in [24] to the class of time-delay systems. 

Defin ition 4. System (3.1) is said to be in a regular form if B = 

D is a nonsingular, mxm matrix. 

0 
D 

, where 

Existence of a regular form for linear time-delay systems may be obtained using 
strictly the same way than for delay-free system (see for instance [37]): 
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Lemma 5. There exists a regular coordinate transformation T G K n x n such that 
system (3.1), written with the new variables z(t) = (z1,z2)

T = Tx(t), z1 G R ( n " m ) , 
z2 G ] R m , takes the following regular form: 

j ii(«) = Anz i ( t ) + A12z2(t) + Adnz^t -h) + Adl2z2(t - fc), 

1 z2(t) = A2lZl(t) + A22z2(t) + Ad2lZl(t -h) + Ad22z2(t -h) + Du(t) + Df. ^A) 

Lemma 6. Under Assumption Al), the pair of matrices (An + A12,Adll + Adl2) 
is controllable. 

Until the end of the paper, we assume that the initial system (3.1) has already 
been set in regular form and that matrices A,Ad,B are partitioned into: 

A = 
Aц A12 

A21 A22 
Ad 

Adll Adl2 

Ad21 Ad22 

Б = 
0 
D 

where i n , Adll are (n — m) x (n — m) matrices, D is a regular m x m matrix. 

3.3. Slid ing mode synthesis 

3.3.1. Case of a finite-dimensional sliding surface 

We consider here the choice of a sliding surface s(x) =0 of the form 

s(x) = x2(t) + KXl(t) (3.5) 

where K G R m x ( n ~ m ) . The aim of this section is to design a sliding mode controller 
steering vector x(t) toward the hyperplane s(x) = 0. 

An equivalent representation can be obtained using variable 5: 

xi(t) = (An - A12K)Xl(t) + (Adll - Adl2K)Xl(t - h) 

+A12s(x) + Adl2s(x(t - h)), (3.6) 

s(x(t)) = * ( x t ) + D2u(t) + D2f, 

where functional $ is defined by: 

*(xt) = (A21 + KAX) Xl(t) + (A22 + KA12) x2(t) 

+(Ad21 + KAdll) xx(t -h) + (Ad22 + KAdl2) x2(t - h). 

Let X G R m x m b e a Hurwitz matrix, and denote P2 the (positive definite) solution 
of the Lyapunov equation 

X P2+ P2X — — Im. 

We consider the control law 

„(() = - C - > ( * + M(*,)^m-*,(*«))), 
where M(xt) = mx + \\D\\ V(xt) for mx > 0. 

(3.7) 

(3.8) 
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T h e o r e m 7. Under above assumptions Al) and A2), the control law (3.8) makes 
the surface s(x) = 0 attractive and reached in finite time. The equilibrium x = 0 
is then globally asymptotically stable for all delays h G [0, /imax) where /imax is the 
solution of the following optimization problem: 

/ i" 1 = min / i - 1 

max s w 

for matrices S G ]Ry( r i-m)x(n-m) symmetric positive definite matrix and W G 
umx(n-m) s u c h t h a t 

h-'T eAT (SAdll-W
TAT

12) \ 
eA -ES 0 < 0 (3.9) 

(AdllS - Adl2W) 0 -eS J 

where e > 0, A = (An + Adll)S - (A12 + Adl2)W, T = A + AT. 
The sliding surface (3.5) is then defined by K = WS~l. 

P roof . In a first step, we prove the convergence of the solution x(t) of (3.4) onto 
the surface s(x) = 0 in finite time. Let us choose the following function: 

V(t) = s(x(t))TP2s(x(t)). (3.10) 

Its derivative along the solution of (3.4) is: 

V(t) = 2s(x(t))TP2($(xt) + Du(t) + Df). (3.11) 

If u(t) is given by (3.8), then 

V < -s(x)Ts(x) - 2m1yJ\mm(P2)y/V < -2m1^/\~J^2)y/V 
(3.12) 

which proves that s(x) = 0 is a sliding surface, reached in finite time. 
On this surface, we get s(x) = s(x) = 0 and the reduced system is governed by 

the following differential equation 

xi(t) = (Au - A12K)x,(t) + (Adll - Adl2K)Xl(t - h). (3.13) 

The second step is then to prove the stability of the subsystem (3.13). As the pair 
(An + Adll,Adl2 + A12) is controllable, there exists some K such that the reduced 
system (3.13) with h = 0 is asymptotically stable. We now intend to maximize the 
delay / i m a x for which system (3.13) is asymptotically stable (with h < hma>x). With 
this aim in mind, we consider the Lyapunov-Krasovskii functional: 

V(xt) = zT(t)Pz(t)+e-1 f f xT(9)(Adll-Adl2K)T 

Jt-h Js 
PQP(Adll - Adl2K) Xl (6) dflds 

where E = An + Adll - (A12 + Adl2)K, z(t) = x(t) + ft_h(Adll - Adl2K) Xl(0) d9, 
P,Q € ] R ( n - r ) x ( n - r ) are positive definite matrices, and e > 0. V < 0 is ensured by 
LMI (3.9). • 
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3.3.2. Case of a functional surface 

Another solution is to design a controller steering the solutions of the system (3.1) 
on the surface tt(xt) = 0, where the functional U is given by: 

n(*t) = x2(t) + KlXl(t) + K2xx(t - ft), (3.14) 

K1 and K2 being matrices of appropriate dimensions. 
Using (xi, Cl(xt)) as new state coordinates, an equivalent representation of system 

(3.4) is obtained, given as follows 

£i(t) = (-An - A12Kx)Xl(t) + (Adll - Adl2Kx - A12K2)xx(t - h) 

-Adl2K2xx{t - 2h) + A12Q(x) + Adl2Ct(x(t - /i)), 

fl(x(t)) = £(x<) + Du(t) + Df(t), ( 3 ' 1 5 ) 

where functional I! is given by: 

£(x*) = (A21 + KAX)Xl(t) + (A22 + KA12)x2(t) + (Ad21 + KAdll)Xl(t - h) 

+ (Ad22 + KAdl2) x2(t -h) + K2xx(t - h). 

As in the previous section, we consider a control law of the form 

u(t) = -D-^(xt) + M(xt) | j § ^ | j | " Xn(xt)]9 (3.16) 

where M(xt) =m1 + \\D\\ ^(xt) for m1 > 0, and, again, X G R m X m and P2 denote, 
respectively, a Hurwitz matrix and the solution of the Lyapunov equation (3.7). 

The design of the gain matrices K\> K2 can be done using the following theorem. 

T h e o r e m 8. Under assumptions Al) and A2), the control law (3.16) makes the 
surface tt(xt) = 0 attractive and reached in finite time. The equilibrium x = 0 is 
then globally asymptotically stable for all delays h G [0,/zmax] where / i m a x is the 
solution of the optimization problem 

/&"!.„ = min h~l 
m a x S.Wi.tt^ 

for matrices S G ] R ( n - m ) x ( n _ m ) a symmetric, positive-definite matrix and Wi, 
W2 G E m x ( n " m ) such that 

h-*r 7 A T 7W2TAJi2 © \ 
7A - 7 5 o o 

7Adl2W2 0 -=2£ 0 
0 T 0 0 -=2-- ) 

< 0, (3.17) 

where A = AduS-Adl2Wx -A12W2, © = ( A n +Adn)S- (A12 + Adi2)(W1 +W2), 

r = 0 + eT. 
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The sliding surface is then given by: K\ = W\S~1,K2 = VV2<S'~1-

P r o o f . Let us first prove that the solutions of (3.1) reach and remain on the 
surface ft(xt) = 0 within a finite time. For this, let us consider the functional V 
defined by 

V(xt) = n(xt)
TP2tl(xt). (3.18) 

The expression of the derivative of V along the solutions of (3.15) is: 

V(t) = 2n(xt)
TP2(E(xt) + Du(t) + Df(t)). (3.19) 

If the input u(t) is given by (3.16), then one obtains the inequality 

V(t) < -Q(xt)
Tn(xt) - 2m\^J\mm(P2)^V(xt) < -2m\yJ\mm(P2)yfV(xt). 

(3.20) 

This proves that there is an ideal sliding motion on the surface fl(xt) = 0 after a 
finite time. 

It remains to be demonstrated that the solution x(t) = 0 of (3.1),(3.16) is globally 
asymptotically stable. The ideal sliding dynamics is obtained by writing that Q(x) = 
Cl(x) = 0 which means: 

x\(t) = (A\\ - A12K\)x\(t) + (Adn - Adl2K\ - A12K2)x\(t - h) 

-Adl2K2x\(t - 2h). (3 2i) 

Introducing the intermediate variable 

z(t) = x\ (t) + Ed x\ (s) ds + Ep / x\ (s) ds, (3.22) 
Jt-h Jt-2h 

where Ed = Adll - Adl2K\ - A12K2 and Ep = -Adl2K2, we get 

i(í) = (An + Adn - (A12 + Adl2)(Ki + K2))x1{t) = EXl(t) 

We choose the following Lyapunov-Krasovskii functional 

V(xt) = zT(t)Pz(t) + 7 / / x\ (s)TEjPR\PEdx\ (s) dsdv 
Jt-h Jv 

(3.23) 

Jt-2h Jv 
+ 7 / l xx (ay Ep PR2PEPX! (s) dsdv 

Jt-2h Jv 

where 7 > 0, and P, Bi, R2 are positive definite matrices of appropriate dimensions 
Writing V < 0 leads to LMI (3.17). • 
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3.4. Example 

Consider the system 

x(t) = Ax(t) 4- Adx(t -h) + Bu(t) + Bf, (3.24) 

with 

/ 2 0 1 \ / -0 .3 0 0 
A = 1.75 0.25 1 , Ad = -0 .1 -0.25 0.1 

\0 2 3 / \ 1 - 2 - 1 / \ 1 / (3.25) 

To simulation purpose, we considered the disturbance function / = 0.8sin(2£) and 
the initial function x(t) = [0.5,1, - 2 ] T for t G [-/i,0]. 

Since the system is in regular form, we can apply the method directly. Imple­
menting the control (3.8) and using Theorem 4 makes certain that the system (3.25) 
is asymptotically stable for h < hmaLX = 1.31. By convex optimization, we find the 
coefficient of the surface 

K = ( 2.86 -0.4486 ) . 

For control (3.16), we obtain by LMI optimization the following gains 

Kx = ( 2.21 -0.116 ) , 

K2 = ( -0.30 0.084 ) . 

Asymptotic stability of the zero solution is now guaranteed for h < hm3iX = 3 which 
demonstrates the additional possibilities offered by the functional surfaces as (3.14) 
compared to (3.5). 

The simulation results are shown in Figures 7 - 8 . They were obtained using a 
first order integration scheme with a step size of 0.01 and taking X = —2. 

In the first and second simulation, we use control (3.8) with mi = 2, and X = —2, 
with a delay h = 1.31. 

In the third simulation, we use the control (3.16), with a gain mi = 2, and 
X = - 2 , with a delay of h = 1.31. 

4. RESULTS FOR DELAYED INPUT 

We now consider the following model 

x(t) = Ax(t) + Bu(t - h) 4- / , (4.1) 

where / is a perturbation which has to be rejected. Define a linear transformation 
Toy : 

z(t) = x(t) + / eA^-h-s^Bu(s) ds. (4.2) 
Jt-h 

The motion of z(t) is governed by the ordinary differential equation: 

z(t) = Az(t) + e~AhBu(t) + f. (4.3) 



Sliding Mode Control in the Presence of Delay 291 

T h e o r e m 9. Asymptotic stability of z(t) implies asymptotic stability of x(t). 

Using transformation T (which is in fact a predictor, since x(t + h) = z(t)), and 
Theorem 9, several authors [23, 33, 38] have developed sliding mode control, which 
show a robustness equivalent to a classical variable structure control. Note that this 
kind of control is infinite dimensional, since the the manifold used is of the form: 

Q, = Sz = S (x(t) + í eA^-h-^Bu(s) ds) (4.4) 

э.s 

V-fí" 
0.8 

0.S 

0.4 

0.2 л 0 

-o.s 

-1 

-1.Í 

1 1 

' — ' 1 . 
1.4 

3.3 

3.2 

3.1 

0 V-fí" 
0.8 

0.S 

0.4 

0.2 л 0 

-o.s 

-1 

-1.Í 

pГ^_ 1.4 

3.3 

3.2 

3.1 

0 

Л ŠC : 

0.8 

0.S 

0.4 

0.2 л 0 

-o.s 

-1 

-1.Í 

pГ^_ 

- I- - + - н - -
I I I 

_ L . 1 _ J _ _ 
i i i 
i l i 
i i î  
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Fig. 7. Simulation of (4.2), (3.8) with mi = 2,_Y = -2, h = 1.31. 
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5. CONCLUSIONS 

The presence of delay within a sliding mode control can induce oscillations around 
the design surface: the opening case study has pointed out possible behavioral 
changes (bifurcations) arising in such relay/delay systems. This motivates the study 
of specific SMC design for systems with state and/or input aftereffect. 

Here, the main contribution lays in the analysis of delay/relay motions (ampli­
tude of the possible oscillations around the sliding manifold and admissible initial 
conditions10) and the design of SMC for systems with state delay. Calculable control 
laws are provided, together with upper bounds of the delay values preserving the 
asymptotic stability. 

T h e control implementation is rather simple, even if the proofs may appear as 
complex: the control law assures the existence of a Lyapunov-Krasovskii functional. 

Some extensions are possible: 

1. relax constraint of a linear model, 

2. introduce parameter uncertainties, 

3. consider multiple delays with some computation. 

(Received November 22, 2000.) 
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