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STABILIZATION OF FRACTIONAL EXPONENTIAL 
SYSTEMS INCLUDING DELAYS 

CATHERINE BONNET 1 AND JONATHAN R. PARTINGTON 

This paper analyzes the BIBO stability of fractional exponential delay systems which 
are of retarded or neutral type. Conditions ensuring stability are given first. As is the 
case for the classical class of delay systems these conditions can be expressed in terms 
of the location of the poles of the system. Then, in view of constructing robust BIBO 
stabilizing controllers, explicit expressions of coprime and Bezout factors of these systems 
are determined. Moreover, nuclearity is analyzed in a particular case. 

1. INTRODUCTION 

Systems with scalar transfer functions which involve polynomials and exponentials 
of fractional powers of s combined with delays are considered in this paper. Many 
examples of fractional differential systems can be found in the literature. Simple 
examples such as G(s) = exP(~av*) - ^ h a > o arising in the theory of transmission 
lines are given in [12]. Several examples linked to the heat equation which leads to 
transfer functions such as G(s) = ™^% (with 0 < x < 1) or G(s) = ^ ' 1 ^ 
can be found in [4] and [9] for example. Also, we can find in [8] a fractional delay 
system with transfer function of the type G(s) = a^+b+(c^+d)e-2s that arises in the 
study of pressure signal transmission in a tube with viscous perturbation presented 
in [10]. 

The stability properties of such fractional systems have been studied in [8, 9], 
[3] and [2]. Reference [9] and [3] consider transfer functions with polynomials and 
exponentials in fractional powers of s (reference [9] considering the particular case of 
the heat equation) as reference [8] and [2] analyze transfer functions with polynomials 
in fractional powers of s and delay terms (reference [7] considering the particular 
case of transfer functions of the type G(s) = a aa. 6 . ( c | a+ d ) e - i»> a, 6, c, rf, h real). 

We consider here a larger class of fractional systems, that is systems with transfer 
function which contain polynomials and exponentials of fractional powers of s as 
well as delay terms. These systems may model for example the behaviour of a 
delayed heat equation. The main result of this paper is the characterization of their 
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BIBO stability through a condition given in terms of the location of their poles. 
This condition is necessary and sufficient in the case of retarded systems and only 
sufficient in the case of neutral systems. The analysis of retarded systems continues 
with the determination of explicit expressions of their coprime factorization and 
associated Bezout factors which are of use when constructing robust BIBO stabilizing 
controllers. Finally, we give a necessary and sufficient condition for nuclearity in a 
particular case. 

2. PRELIMINARIES AND DEFINITIONS 

For x G E, [x] denotes the integer part of x and {x} the fractional part, so x = 
[x] + {x}. 

E~ denotes the negative real axis {x G E : x < 0}. 

L°° denotes the complex-valued measurable functions on the nonnegative real axis 
such that esssup t e R + \f(t)\ < oo. 

L 1 (E + ) or L1 denotes the complex-valued measurable functions on the nonnega­
tive real axis such that /0°° \f(t)\dt < 'oo, and LX(E) denotes the complex-valued 
measurable functions on the real axis such that f™ \f(t)\ dt < oo. 

A denotes the space of distributions of the form h(t) = ha(t) + ~Ci_o hiS(t - U) 
where U G [0, oo), 0 < to < h < • • •, S(t — U) is a delayed Dirac function, hi G C, 
ha G L1 and X)i_o IM < °°-
The norm on A is defined by \\h\\^ = ||/ialU- + Z ^ n l̂ »l-

A denotes the space of Laplace transforms of functions in A. 

We recall that BIBO-stability of a system P with convolution kernel h (with van­
ishing singular part) is defined as supxGLoo)a.^0 "iujij.tr < °° which is equivalent to 
\\h\\A = \\P\\A < °°- K ls w e h known that this implies that P lies in iiIoo, the space 
of bounded analytic functions on the right half plane {s G C : Res > 0}. 

P is said to have a coprime factorization (N,D) over A if P = ND~X, D ^ 0, 
N, D eA and there exists X, Y eA such that -NX + DY = 1. 

P analytic in {Re s > 0} and continuous on zE is said to be strictly proper on 

{Res > 0} if limp_+00 (sup{ R e s>0 > M>„} |-P(s)|) = 0. 

P analytic in {Res > 0} and continuous on zE is said to have a limit at infinity in 
{Re 5 > 0} if there exists a complex constant P^ such that 

l imp^oo (sup { R e s> 0 > M> p } \P(s) - Pool) = 0. 

Let P be a function that is meromorphic in C \ E_ and has a branch point at s = 0. 
The point s = 0 is defined to be a pole of fractional order a > 0 of P if there is a 
non-zero constant c such that f(s) = s~a(c + o(l)) as s -> 0 in C \ E_. It is easy to 
see that this definition is independent of our choice of a branch of s~a in C \ E_. 
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Remark 2.1. The function e~sr where r is a real number, 0 < r < 1, has a branch 
point at s = 0. To study this function we make a cut in the complex plane at M~ 
and consider the domain C \ E~. In this domain, we can extend the function by 
continuity at s = 0, so that the function is analytic in {Re s > 0} and continuous on 
iIR. In fact the domain of analyticity is even bigger than {Re s > 0} and it will be 
useful to exploit the fact that the function can be defined to be analytic and proper 
in V -= {5 G C, 8^0, such that | args | < air} with \ < a < 1 and ar < | . 

A system is said to be nuclear if its sequence (an) of Hankel singular values 
satisfies ^an < 00 (see, for example [5]). 

We recall three theorems due respectively to Wiener, Hardy and Littlewood, and 
Peller as they will be of use later: 

Theorem 2 .1 . ([7], theorem 4.18.6) Let / be in A, f has an inverse in A <^=^ 
1nf {Re s>o} 1/(8)1 > 0 . 

Theorem 2.2. [6] Let r G L}oc have a Laplace transform f(s) that is defined (as 
an absolutely convergent integral) in the open half plane {Res > 0}. Moreover, 
suppose that f is bounded and has a bounded continuous extension to the closed 
right half plane {Res > 0}, and that the boundary function f(u) — lim^ n̂ f(a-\-iu) 

is locally absolutely continuous and satisfies f' G L1(E). Then, r G L 1 (R + ) , and 

IMIL-(R+) < IIHILMlR)-

Theorem 2.3. [11] Let G be an iiIoo transfer function. Then G is nuclear if and 
only if 

\G"(s)\dA(s)<oo, 
J JCA 

where the integral is with respect to standard plane measure. 

3. STABILITY ANALYSIS 

We consider the class of fractional systems with scalar transfer function given by 

712 n2 

qo(s) + £ ф)e-^ + £ ф)e-^ 
P(s) І = l І = l 

Til Ti l 

Po(s) + X > ( S ) e - ^ + X>(s)e-
Ui<s> 

Í=l 2 = 1 

h2(s) 
h!(s) (1) 

where 0 < 7i • • • < 7ni, 0 < /?i • • • < /3n2, the p;, ft, pi, qi being polynomials of the 
form J2k=o aksak with ak G E + and ui, V{ being polynomials of the form J2k=i ^sSle 
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with 0 < Sk < 1 and bk > 0. We suppose of course that U{ and V{ are not of the 
form a s that is, are not standard polynomials of degree one. 

We will assume throughout that h2 and h\ have no common zeroes in 
{ R e s > 0 } \ { 0 } . 

Note that, for s ^ 0 and S E M, we define s6 to be exp(£(Iog|s| + iargs)) , and 
a continuous choice of args in a domain leads to an analytic branch of s5. In this 
work we shall normally make the choice — n < args < 7r, for s G C \ 1R_. 

We shall consider two different classes of systems. The first one, satisfying Con­
dition 1 below will be referred as the class of fractional exponential delay systems 
of retarded type, and the second one, satisfying Condition 2 below, as the class of 
fractional exponential delay systems of neutral type. 

Condit ion 1. deg po > deg pi for i = 1, • • • ,n i and deg po > deg qi 
for i = 0, • • • ,n2. 

Condition 2. deg po > deg pi for i = l ,--- ,ni (with equality for at least one 
polynomial pi) and deg po > deg qi for i = 0, • • • , n2. 

Those conditions imply that we deal here with strictly proper systems. 

We will need later to characterize the behaviour of hi and h2 at zero and infinity, 
so let us remark that for s £ {Res > 0} 

hx(s) = sQ(ci -F o(l)) at zero with a > 0, (2) 

h2(s) = sp(c2 -F o(l)) at zero with /3 > 0. (3) 

Let us write also 

7 = degpo > 0, and S = max: deg (ft > 0. 
1=0 , ...U2 

By Conditions 1 and 2 we have that 7 > S. 
The stability of systems described by (1) has been studied in some particular 

cases. We recall here the results previously obtained as they will be of use proving 
the general case. 

We begin with results concerning systems such as G(s) = exP\~avsl o r G(s) = 
2 e - a y r j 

6 ( l _ e - 2 a - / 7 ) -

Theorem 3.1. [3] Let P be defined as in (1). In the particular case where 

P(s) = , ^ V ^ i - , x - , • . - > w e h a v e : 

Po(sR2^.=1
1Pi(s)e ^' 

P is BIBO stable if and only if P has no poles in {Res > 0} (in particular, no poles 
of fractional order at s = 0). 

The next theorems concern respectively fractional delay systems of retarded and 
neutral type. 
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Theorem 3.2. [2] Let P be defined as in (1) and satisfying Condition 1. In the 
V v n 2 qi(s)e~Pia 

particular case where P(s) = ^JJT0 \ \ — — , we have: 
l^i=oPi^e l 

P is BIBO stable if and only if P has no poles in {Res > 0} (in particular, no poles 
of fractional order at s = 0). 

Theorem 3.3. [2] Let P be defined as in (1) and satisfying Condition 2. In the 
V™2 qi(s)e~/3i" 

particular case where P(s) = £<kl0 % ,\ , we have: 
.Lt=0

p'(s)e~ { 

If there exists o < 0 such that P has no poles in (C \ R_) n {Res > a} U {0} (in 
particular, no poles of fractional order at s = 0) then P is BIBO-stable. 

We can see that in the retarded case, we obtain the same necessary and sufficient 
condition as in Theorem 3.1 (which is the 'usual' condition that P has no poles 
in {Res > 0}) whereas in the neutral case the condition on the location of poles 
ensuring stability is stronger and moreover is only a sufficient condition. Prom what 
we can see about standard delay systems, we cannot hope for a stronger general 
result like in Theorem 3.3. In fact, let us consider P\(s) = s+1+se-a • We have that 
Pi has no poles in {Res > 0} but is not BIBO-stable so that we cannot hope to 
obtain a sufficient condition of the type 'no poles in {Res > 0}' in the neutral case. 
Considering now P2(s) = (H-i)5(H-i+ge-«) which is BIBO-stable but has poles zn 

satisfying Re z n < 0 and Rez n w-4oo) 0, we see that we cannot hope that the 
condition ' 3a < 0 such that P has no poles in (C \ R_) n {Res > a} U {0}' is 
necessary (see [2] for further details). 

We now state the main results of this section which naturally extend the previous 
theorems. 

Theorem 3.4. The system P defined as in (1) and satisfying Condition 1 is BIBO 
stable if and only if P has no poles in {Re s > 0} (in particular, no poles of fractional 
order at s = 0). 

P r o o f . The 'only if part is obvious. 
For the 'if part, let us write 

((s + l)M(si°} + l)h2(s)\ I ((S + l)W(s^ + l)hx(s)\ - -

The proof of Theorem 3.2 can be extended to the present case. 
The fact that hi and h2 are in A is not immediate due to the presence of the 

term sa in both denominators. Moreover we cannot directly use the derivative test 
in Theorem 2.2 on h = hi or h2 because we need more than h being proper at infinity 
to prove that h is in A so we decompose h into the sum h(s) = * ffla + *v^for ^ = 
hi -f hij and now consider the derivative test in Theorem 2.2 for /i/ . 

We have that /i'7(s) = $$- + j j ^ . As h = c i+o( l ) and h2 = s^a(c2 + o(l)), 
we have that each h is bounded near zero and this ensures that the integrals of both 
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terms in the sum converge at zero. Now, as h is proper (in fact hi is proper and h2 

is strictly proper) it is easily verified that the integrals of /g+1ja and r^rfra converge 

at infinity. We can conclude that hj is in A. Now, the second term hji(s) has one 
more zero at zero than h so may now be in A, otherwise we decompose hu (which 
is still proper or strictly proper as h\ or h<i) according to the same algorithm until 
we eventually find an hjj in A. • 

Theorem 3.5. Let P be defined as in (1) and satisfying Condition 2. If there 
exists a < 0 such that P has no poles in (C \ R_) D {Re s > a} U {0} (in particular, 
no poles of fractional order at 5 = 0) then P is BIBO-stable. 

P r o o f . This theorem can be proved in the same way as the previous one. The fact 

that inf{ R e s > 0 } («+i)t t tV t t>+i)M«) 
* в («+l)M(«{*>+l) 

> 0 relies on a straightforward modification of 

the proof of Theorem 3.3. • 

4. ROBUST STABILIZATION AND NUCLEARITY 

In the view of constructing robust stabilizing controllers for our systems using the 
well-known Youla parametrization, we consider now the determination of a coprime 
factorization (IV, D) of P and associated Bezout factors X and Y which satisfy 
—NX + DY = 1. We address here the case of fractional exponential delay systems 
of retarded type. The next results extend the corresponding result of [1, 2, 3]. They 
are given without proof as this goes as in [3]. We will just give some hints to the 
reader. 

Proposit ion 4.1. A coprime factorization (N,D) in A of P defined as (1) and 
satisfying Condition 1 is given by 

_ (s + l)M(sM + l)h2(s) _ (s + 1)M(8M + l)h(s) 
W " ^ ( * + l)M(*{7> + l) ' W " 5M(S + 1)[7](5{7} + 1) " 

S k e t c h of p r o o f . We construct IV and D satisfying the necessary and suf­
ficient condition of coprimeness in A which is inf{R e s > 0}(|iV(s)| + |-D(s)|) > 0 (see 
[4]). Prom the BIBO stability characterization of Theorem 3.4, we look for functions 
IV and D which have no poles in {Re s > 0} and no problem of boundedness at 
zero and infinity. Taking IV(s) = ^ ( , + 1 ^ ^ } + ! ) a n d D(s) = ^ ( 5 + 1 ^ ( ^ 1 + 1 ) 
we avoid problems of boundedness at zero and infinity and then taking IV(s) = 

<1$$l$ffl> - d D(s) = ^ T ^ T ^ , ™ - s u r e moreover that one 
term is proper while the other is strictly proper and this together with the fact that 
IV and D are not zero at the same time around zero and have no commun zeroes in 
{Res > 0} gives the result. 

The case of neutral systems is much more difficult to handle. To verify that 
functions IV, D are in A is easy when the condition is 'no poles in [Res > 0}' as it 
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requires, as we have seen above, to verify that there is no poles in {Res > 0} and 
no problem of boundedness at zero and infinity. It is much more difficult to verify 
that 3 a < 0 such that N (or D) has no poles in (C \ R_) D [Res > a} U {0} as it 
requires an explicit calculation of zeroes of transcendental functions. • 

T h e o r e m 4 .1 . Let or, • • • ,crm be the m nonzero unstable zeroes of h\ and let 

Tx(s) = ^ ( s + l)M(s^> + l ) , 

T2(s) = (s + l)M(SM + l)h2(s), 

T3(s) = (s + l ) ^ ( 8 ^ > + l)^i(8). 

Now, let us define 

Л + hг SXl+--- hn SX" , fM-m+lSM-m+1 + • • • fMS M 

* ( * ) = \„.\,м * + (s + l)M (s + l)M 

where An G K and M G N is chosen such that M > An + ra, the coefficients 
/o, /AI j • • • > /An are chosen in order to satisfy that T\(s) + T2(s)X(s) is of fractional 
order a at zero, and the coefficients fM-m+ij • • • >/M are chosen so that T\(ai) + 
T2(<Ti)X(ai) = 0 for 1 < i < m. 

Then (X,Y) are Bezout factors associated to the coprime factors N and D of P. 

S k e t c h o f p r o o f . We choose X in A such that the unstable zeroes of 1 + NX 
are also those of D so that Y = 1 ^ x is analytic in {Res > 0}. We handle 
separately unstable zeroes at the origin and those in the right half plane, so that X 
contains fractional polynomials (to deal with zeroes of fractional order at the origin) 
and classical polynomials (to interpolate the remaining unstable zeroes). • 

Example. We shall consider here a retarded version of the heat equation consid­

ered in [3], that is, the transfer function P(s) = 2 ^ ,y~e_^/\ 

Of course, the coprime factors are easily deduced from those of the standard heat 
equation, however, applying the formulae of Proposition 4.1 we find that N(s) = 

2 g " v S l + i ) V ? ) a n d D(s) = ^ £ + 1 ) " ^ i s a c ° P r i m e factorization of P. 

Using now the algorithm described in Theorem 4.1, we take X(s) = ——1J^p^-—— 

and Y(s) = ^ ( j + 1 ) 2 + e ^ ( - e
i ; ( ^ ^ 1 / 2 V ? + / l 8 ) w h e r e I". -V- a n d h have to be 

chosen such that Y is bounded near zero, that is, /n = —1/2, fi/2 = —1/4 and 
h = -37 /24 . 

We now continue the analysis of our systems by characterizing their nuclearity 
properties. Here again, a similar study was done in the case of fractional delay 
systems. Recall that nuclearity is an important notion when considering model 
reduction: nuclear systems always possess a balanced realization and truncations of 
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these realizations have been proved to produce good approximations of the initial 
system in the tfoo-norm [5]. 

We begin with a technical lemma, which together with Theorem 2.3 allows to 
characterize the nuclearity of systems with transfer function involving polynomial 
and exponential in fractional powers of 8. The case of systems which also involve 
delay terms appears more complicated to describe. 

Lemma 4.1. Suppose that / G tf°°(C+) and | / ( s ) | = 0 ( s ~ a ) as \s\ -r oo in C+. 
Then 

(i) I I \f(8)\dA(s)<oo i f a > 2 ; 

(ii) / / \f(s)\e~sr dA(s) < oo for all 0 < r < 1, a e E. 

P r o o f , (i) This is a simple calculation in polar coordinates. See [2]. 
(ii) Switch to polar coordinates. We observe that, writing s = Re%e for s in the 
right-hand half plane, we have 

R e ( - 5
r ) = -Rrcosr0 < -Rrcosr^/2. 

Thus | exp(—5r)| < exp(—Rr) exp(cos T7r/2) and now it is easy to see that if 0 < r < 1 
then the double integral 

/•oo r7r/2 

/ / Ra exp(-Rr cos rvr/2) dO dR 
JR=1 J0=-7r/2 

converges for any Q G K , and this implies the result. • 

Corollary 4.1. Let P be defined as in (1). In the particular case where 

P(s) = — i^izi, 7, we have that P is nuclear if and only if P has no 
Po(*)+jL,i=i M*)e~liS 

poles in {Re > 0}. 

P r o o f . The 'if part is obvious. 
The 'only if part. We have that / " = h^/h1-2hf

2h
,
1/h1

2+2h2h
,
1h

f
1/hl-h2h

t{/h2
1. 

As the terms in h2 and h\ with no e~*r factors are of degrees deggo and degpn with 
degqo < degpo? the orders of the non exponential terms in P" at infinity are each 
deggo — deggo — 2 < —2. Now, the result follows from Theorem 2.3, Theorem 3.1 
and Lemma 4.1. • 

5. CONCLUSION 

We have handled the robust stabilization of fractional exponential delay systems of 
retarded type generalizing the study of [2] on the robust stabilization of fractional 
delay systems of retarded type. The determination of coprime and Bezout factors 
in the case of neutral systems is under study in both cases. 

(Received November 22, 2000.) 
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