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STABILIZATION OF FRACTIONAL EXPONENTIAL
SYSTEMS INCLUDING DELAYS

CATHERINE BONNET! AND JONATHAN R. PARTINGTON

This paper analyzes the BIBO stability of fractional exponential delay systems which
are of retarded or neutral type. Conditions ensuring stability are given first. As is the
case for the classical class of delay systems these conditions can be expressed in terms
of the location of the poles of the system. Then, in view of constructing robust BIBO
stabilizing controllers, explicit expressions of coprime and Bézout factors of these systems
are determined. Moreover, nuclearity is analyzed in a particular case.

1. INTRODUCTION

Systems with scalar transfer functions which involve polynomials and exponentials
of fractional powers of s combined with delays are considered in this paper. Many
examples of fractional differential systems can be found in the literature. Simple
examples such as G(s) = ‘”‘—p(—_;—‘/gl with a > 0 arising in the theory of transmission
lines are given in [12]. Several examples linked to the heat equation which leads to

transfer functions such as G(s) = —\5—%(3-‘/(;;—% (with0 <z <1)or G(s) = ,)(12_;:;:77)-

can be found in [4] and [9] for example. Also, we can find in [8] a fractional delay
system with transfer function of the type G(s) = - 75T +("c:/'§ P that arises in the
study of pressure signal transmission in a tube with viscous perturbation presented
in [10].

The stability properties of such fractional systems have been studied in [8, 9],
[3] and [2]. Reference [9] and [3] consider transfer functions with polynomials and
exponentials in fractional powers of s (reference [9] considering the particular case of
the heat equation) as reference (8] and [2] analyze transfer functions with polynomials
in fractional powers of s and delay terms (reference [7] considering the particular
case of transfer functions of the type G(s) = =33 e L T & b, ¢, d, h real).

We consider here a larger class of fractional systems, that is systems with transfer
function which contain polynomials and exponentials of fractional powers of s as
well as delay terms. These systems may model for example the behaviour of a
delayed heat equation. The main result of this paper is the characterization of their
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BIBO stability through a condition given in terms of the location of their poles.
This condition is necessary and sufficient in the case of retarded systems and only
sufficient in the case of neutral systems. The analysis of retarded systems continues
with the determination of explicit expressions of their coprime factorization and
associated Bézout factors which are of use when constructing robust BIBO stabilizing
controllers. Finally, we give a necessary and sufficient condition for nuclearity in a
particular case.

2. PRELIMINARIES AND DEFINITIONS

For z € R, [z] denotes the integer part of z and {z} the fractional part, so z =
[z] + {=}.
R~ denotes the negative real axis {z € R: z < 0}.

L denotes the complex-valued measurable functions on the nonnegative real axis
such that esssupyeg, |f(2)| < 0.

LY(R*) or L' denotes the complex-valued measurable functions on the nonnega-
tive real axis such that [;°|f(t)|d¢t < 'oco, and L'(R) denotes the complex-valued
measurable functions on the real axis such that f |£(t)| dt < oo.

A denotes the space of distributions of the form h(t) = ha(t) + Y ioq hid(t — ;)
where t; € [0,00), 0 < tg < t; < ---, 0(t — t;) is a delayed Dirac function, h; € C,
he € L* and Y 2, |hi| < oo.

The norm on A is defined by ||h||4 = [|RallLr + X oop |Ril-
A denotes the space of Laplace transforms of functions in A.

We recall that BIBO-stability of a system P with convolution kernel h (with van-
ishing singular part) is defined as sup,ege 40 u-ﬁ%ﬁ"{% < oo which is equivalent to
[IRll.a = |IP]l 4 < co. It is well known that this implies that P lies in He, the space
of bounded analytic functions on the right half plane {s € C: Res > 0}.

P is said to have a coprime factorization (N, D) over Aif P=ND™', D # 0,
N, D € A and there exists X, Y € A such that —-NX + DY =1.

P analytic in {Res > 0} and continuous on R is said to be strictly proper on
{Res > 0} if lim, o0 (sup{Re 50,15>0} |P(s)|) =0.

P analytic in {Res > 0} and continuous on :R is said to have a limit at infinity in
{Res > 0} if there exists a complex constant P, such that

lim, ;o0 (Sup{Re 5>0,|s|>p} |P(s) - P°°|) =0

Let P be a function that is meromorphic in C\ R_ and has a branch point at s = 0.
The point s = 0 is defined to be a pole of fractional order o > 0 of P if there is a
non-zero constant c such that f(s) = s~%(c+o0(1)) ass - 0in C\R_. It is easy to
see that this definition is independent of our choice of a branch of s~ in C\ R_.
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Remark 2.1. The function e~*" where r is a real number, 0 < r < 1, has a branch
point at s = 0. To study this function we make a cut in the complex plane at R~
and consider the domain C \ R™. In this domain, we can extend the function by
continuity at s = 0, so that the function is analytic in {Res > 0} and continuous on
1R. In fact the domain of analyticity is even bigger than {Res > 0} and it will be
useful to exploit the fact that the function can be defined to be analytic and proper
in D ={s€C, s#0, such that |args| < ar} with § <a <1landar < 1.

A system is said to be nuclear if its sequence (o,) of Hankel singular values
satisfies ) o, < 00 (see, for example [5]).

We recall three theorems due respectively to Wiener, Hardy and Littlewood, and
Peller as they will be of use later:

Theorem 2.1. ([7], theorem 4.18.6) Let f be in A, f has an inverse in A <=
inf(Res>o0y | f(s)| > 0.

Theorem 2.2. [6] Let r € L} _ have a Laplace transform 7(s) that is defined (as

loc
an absolutely convergent integral) in the open half plane {Res > 0}. Moreover,

suppose that 7 is bounded and has a bounded continuous extension to the closed
right half plane {Re s > 0}, and that the boundary function 7(w) = lim, o 7 (0 +iw)
is locally absolutely continuous and satisfies #/ € L'(R). Then, r € L}(R*), and

Irllo w4y < 3721 (w)-
Theorem 2.3. [11] Let G be an H, transfer function. Then G is nuclear if and

only if
[ [ 16" 1446) < o,
cy

where the integral is with respect to standard plane measure.

3. STABILITY ANALYSIS

We consider the class of fractional systems with scalar transfer function given by

na ﬁz
qo(s) + Y ai(s)e™ + ) Gi(s)e™ ()
' i=1

P(S) = 11—1_—11 -
po(s) + Z;Di(s)e‘"’” + Ziji(s)e—ui(s)
i=1 i=1
hz(S)
hi(s) (1)

where Ot <M <Yny, 0< B+ < PBry, the pi, gi, Pi, §; being polynomials of the
form Y p—o ars®* with ax € Rt and u;, v; being polynomials of the form E;c":l by s%%
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with 0 < 0x < 1 and b; > 0. We suppose of course that u; and v; are not of the
form as that is, are not standard polynomials of degree one.

We will assume throughout that he and h; have no common zeroes in
{Res > 0} \ {0}.

Note that, for s # 0 and § € R, we define s to be exp(d(log|s| + iargs)), and
a continuous choice of args in a domain leads to an analytic branch of s?. In this
work we shall normally make the choice —m < args < 7, for s € C\ R_.

We shall consider two different classes of systems. The first one, satisfying Con-
dition 1 below will be referred as the class of fractional exponential delay systems
of retarded type, and the second one, satisfying Condition 2 below, as the class of
fractional exponential delay systems of neutral type.

Condition 1. deg po > deg p; fori =1,--- ,n; and deg po > deg ¢;
fori=0,---,ns.

Condition 2. deg po > deg p; for i = 1,---,n; (with equality for at least one
polynomial p;) and deg po > deg ¢; for i =0,--- ,ns.

Those conditions imply that we deal here with strictly proper systems.

We will need later to characterize the behaviour of h; and hy at zero and infinity,
so let us remark that for s € {Res > 0}

hi(s) = s%(1 +o(1)) at zero with a > 0, (2)
ha(s) = sP(ca+0(1)) at zero with 8 > 0. 3)

Let us write also

v =degpo > 0, and 0= max degg; > 0.
1=0,...n2
By Conditions 1 and 2 we have that v > 4.
The stability of systems described by (1) has been studied in some particular
cases. We recall here the results previously obtained as they will be of use proving
the general case.

We begin with results concerning systems such as G(s) = e_)ﬂ%\/_?) or G(s) =
2e”2V*

Theorem 3.1. [3] Let P be defined as in (1). In the particular case where

i=fg - —B;a"
P(s) = qo(s)+) i=1 gi(s)e :
) = e S e

P is BIBO stable if and only if P has no poles in {Res > 0} (in particular, no poles
of fractional order at s = 0).

we have:

The next theorems concern respectively fractional delay systems of retarded and
neutral type.



Stabilization of Fractional Exponential Systems Including Delays 349

Theorem 3.2. [2] Let P be defined as in (1) and satisfying Condition 1. In the
"2 a.(s)e"Pi*
particular case where P(s) = %—‘ﬁ“i—"i%, we have:
i=0
P is BIBO stable if and only if P has no poles in {Res > 0} (in particular, no poles
of fractional order at s = 0).

Theorem 3.3. [2] Let P be defined as in (1) and satisfying Condition 2. In the
n2 . —Bjs
particular case where P(s) = %ﬁ%, we have:
i=0 " s)e *
If there exists a < 0 such that P has no poles in (C\ R-) N {Res > a} U {0} (in
particular, no poles of fractional order at s = 0) then P is BIBO-stable.

We can see that in the retarded case, we obtain the same necessary and sufficient
condition as in Theorem 3.1 (which is the ‘usual’ condition that P has no poles
in {Res > 0}, whereas in the neutral case the condition on the location of poles
ensuring stability is stronger and moreover is only a sufficient condition. From what
we can see about standard delay systems, we cannot hope for a stronger general
result like in Theorem 3.3. In fact, let us consider P;(s) = m. We have that
P, has no poles in {Res > 0} but is not BIBO-stable so that we cannot hope to
obtain a sufficient condition of the type ‘no poles in {Res > 0}’ in the neutral case.
Considering now P(s) = m(;‘_—l_’_“—_,) which is BIBO-stable but has poles z,
satisfying Rez, < 0 and Rez, ___, 0, we see that we cannot hope that the
condition ‘Ja < 0 such that P has no poles in (C\ R_) N {Res > a} U {0} is
necessary (see [2] for further details).

We now state the main results of this section which naturally extend the previous
theorems. '

Theorem 3.4. The system P defined as in (1) and satisfying Condition 1 is BIBO
stable if and only if P has no poles in {Re s > 0} (in particular, no poles of fractional
order at s = 0).

Proof. The ‘only if’ part is obvious.
For the ‘if’ part, let us write

_ [ (s+ 1)["‘] (s{"‘} + Dha(s) (s + 1)[0!](3{&} + 1)hy(s)
P(s) = ( s%(s + 1)DI(si7} +21) )/ ( s%(s + 1) (s{7} +11)

) = fzg(s)/ﬁl(s).

The proof of Theorem 3.2 can be extended to the present case.

The fact that h; and hy are in A is not immediate due to the presence of the
term s® in both denominators. Moreover we cannot directly use the derivative test
in Theorem 2.2 on h = h; or he because we need more than h being proper at infinity

to prove that h is in A so we decompose h into the sum h(s) = (%%1 + ﬂ%:—f)l-?éﬁ =

hr + hrr and now consider the deriyative test in Theorem 2.2 for hj.
We have that h}(s) = 3’41-18 +(sﬂ+15)25. As by = ¢;+0(1) and hy = sP~%(c2+0(1)),
we have that each h is bounded near zero and this ensures that the integrals of both
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terms in the sum converge at zero. Now, as h is proper (in fact hy is proper and h;

is strictly proper) it is easily verified that the integrals of (i’l(l"))g and (:11’))2 converge

at infinity. We can conclude that hy is in ./i.ANow, the second term hyy(s) has one
more zero at zero than h so may now be in A, otherwise we decompose hy; (which
is still proper or strictly proper as hj or hz) according to the same algorithm until
we eventually find an hyy in A. ]

Theorem 3.5. Let P be defined as in (1) and satisfying Condition 2. If there
exists a < 0 such that P has no poles in (C\R_-) N {Res > a} U {0} (in particular,
no poles of fractional order at s = 0) then P is BIBO-stable.

Proof. This theorem can be proved in the same way as the previous one. The fact

SPRTS!
’:;1( . +l)s or s+l :’_‘1)’ > 0 relies on a straightforward modification of
the proof of Theorem 3.3. m]

that inf{Re 5>0}

4. ROBUST STABILIZATION AND NUCLEARITY

In the view of constructing robust stabilizing controllers for our systems using the
well-known Youla parametrization, we consider now the determination of a coprime
factorization (NN, D) of P and associated Bézout factors X and Y which satisfy
—NX + DY = 1. We address here the case of fractional exponential delay systems
of retarded type. The next results extend the corresponding result of [1, 2, 3]. They
are given without proof as this goes as in [3]. We will just give some hints to the
reader.

Proposition 4.1. A coprime factorization (N, D) in A of P defined as (1) and
satisfying Condition 1 is given by

(s+ 1)[“] (s{"} + 1)ha(s)
st(s+ 1)M(strr +1)

_ (s + D) (stEY 4 1)hy (s)
De) = e T DG 1 1)

N(s) =

Sketch of proof. We construct N and D satisfying the necessary and suf-
ficient condition of coprimeness in A which is inf(ge 5503 (|V(s)| + |D(s)]) > 0 (see
[4]). From the BIBO stability characterization of Theorem 3.4, we look for functions
N and D which have no poles in {Res > 0} and no problem of boundedness at

zero and infinity. Taking N(s) = s”(s_H;'f, zs 77y and D(s) = s“(s_H;’l, ?s Sy

we avoid problems of boundedness at zero and infinity and then taking N(s) =

(s+1)b‘](s(“)+l)h2(s) _ (3+1)[F1(3{H)+1)h1(3)
S (TFIGTI41) and D(s) = i (sT1)FI(s (a8 1) » W€ ensure moreover that one

term is proper while the other is strictly proper and this together with the fact that
N and D are not zero at the same time around zero and have no commun zeroes in
{Res > 0} gives the result.

The case of neutral systems is much more difficult to handle. To verify that
functions N, D are in A is easy when the condition is ‘no poles in {Res >0} as it
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requires, as we have seen above, to verify that there is no poles in {Res > 0} and
no problem of boundedness at zero and infinity. It is much more difficult to verify
that 3a < 0 such that N (or D) has no poles in (C\ R-) N {Res > a} U {0} as it
requires an explicit calculation of zeroes of transcendental functions. O

Theorem 4.1. Let 01,---,0, be the m nonzero unstable zeroes of h; and let

Ti(s) = s*(s+ )00 41),
Ta(s) = (s+ 1M +1)ha(s),
Ts(s) = (s+1)M (sl 4+ 1)hy(s).

Now, let us define

Ti(s) + T»(s) X (s) n

Y(s) = To(s) and
_ ot st st fempasMT 4 s
X)) = s+ )M + G+ )M

where A\, € R and M € N is chosen such that M > )\, + m, the coefficients
fo, frss---» fr, are chosen in order to satisfy that T1(s) + T>(s)X (s) is of fractional
order a at zero, and the coefficients fpr—m+1,--. , far are chosen so that Ti(o;) +
T2(0:)X(0;) =0for 1 <i <m.

Then (X,Y) are Bézout factors associated to the coprime factors N and D of P.

Sketch of proof. We choose X in A such that the unstable zeroes of 1+ NX
are also those of D so that Y = +JX is analytic in {Res > 0}. We handle
separately unstable zeroes at the origin and those in the right half plane, so that X
contains fractional polynomials (to deal with zeroes of fractional order at the origin)
and classical polynomials (to interpolate the remaining unstable zeroes). 0O

Example. We shall consider here a retarded version of the heat equation consid-
—8(1_o—V3
ered in (3], that is, the transfer function P(s) = 2\;_—”(%7)2

Of course, the coprime factors are easily deduced from those of the standard heat

equation, however, applying the formulae of Proposition 4.1 we find that N(s) =
2e”*(1—e”V*

-V A
—\/%Wl and D(s) = %r—l is a coprime factorization of P.
Using now the algorithm described in Theorem 4.1, we take X (s) = fotfiyavVoths

s+1
—s(1_.—V7
and Y(s) = ‘/;(s+1)2+i/§s((t+i)(lli‘i";’;‘/"/ﬂf‘s) where fo, fi/2 and fi have to be

chosen such that Y is bounded near zero, that is, fo = —1/2, fi = —1/4 and
f1 = —37/24.

We now continue the analysis of our systems by characterizing their nuclearity
properties. Here again, a similar study was done in the case of fractional delay
systems. Recall that nuclearity is an important notion when considering model
reduction: nuclear systems always possess a balanced realization and truncations of
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these realizations have been proved to produce good approximations of the initial
system in the Hoo-norm [5]. :

We begin with a technical lemma, which together with Theorem 2.3 allows to
characterize the nuclearity of systems with transfer function involving polynomial
and exponential in fractional powers of s. The case of systems which also involve
delay terms appears more complicated to describe.

Lemma 4.1. Suppose that f € H*(C4) and |f(s)| = O(s™®) as |s| = o0 in C;..
Then

o) / /C+ 1£(s)] dA(s) < oo ifa>2
(it) //c+ |f(s)le™® dA(s) < oo  forall0<r<1, a€R

Proof. (i) This is a simple calculation in polar coordinates. See [2].
(ii) Switch to polar coordinates. We observe that, writing s = Re® for s in the
right-hand half plane, we have

Re(—=s") = —R" cosrd < —R" cosrm/2.

Thus | exp(—s")| < exp(—R") exp(cos rm/2) and now it is easy to see that if 0 <7 < 1
then the double integral

oo n/2
/ / R* exp(—R" cosrm/2)df dR
=1J0=—7/2
converges for any o € R, and this implies the result. a

Corollary 4.1. Let P be defined as in (1). In the particular case where

()41 % de(s)e™ P
P = %0 i=1 ,
(s) po(s)+) i ! Bi(s)e™i*"
poles in {Re > 0}.

we have that P is nuclear if and only if P has no

Proof. The ‘if’ part is obvious.

The ‘only if’ part. We have that f" = hlf /hy —2h4h, /hy2 4+ 2hoh) B} /B3 —hohl /B3
As the terms in hy and h; with no e=*" factors are of degrees deg go and deg po with
degqo < degpo, the orders of the non exponential terms in P" at infinity are each
deggo — degqgo — 2 < —2. Now, the result follows from Theorem 2.3, Theorem 3.1
and Lemma 4.1. O

5. CONCLUSION

We have handled the robust stabilization of fractional exponential delay systems of
retarded type generalizing the study of [2] on the robust stabilization of fractional
delay systems of retarded type. The determination of coprime and Bézout factors
in the case of neutral systems is under study in both cases.

(Received November 22, 2000.)
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