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K Y B E R N E T I K A — VOLUME 3 7 ( 2 0 0 1 ) , NUMBER 4, P A G E S 3 8 1 - 3 9 6 

NONLINEAR BOUNDED CONTROL 
FOR TIME-DELAY SYSTEMS 

GERMAIN GARCIA AND SOPHIE TARBOURIECH 

A method to derive a nonlinear bounded state feedback controller for a linear continuous-
time system with time-delay in the state is proposed. The controllers are based on an 
e-parameterized family of algebraic Riccati equations or on an e-parameterized family of 
LMI optimization problems. Hence, nested ellipsoidal neighborhoods of the origin are de­
termined. Thus, from the Lyapunov-Krasovskii theorem, the uniform asymptotic stability 
of the closed-loop system is guaranteed and a certain performance level is attained through 
a quadratic cost function. 

1. INTRODUCTION 

When dealing with the control design problem, several constraints have to be taken 
into account in order to obtain a control which operates in practice. Among them, 
the limitations of actuators are particularly important because they have a direct 
incidence on the closed-loop system stability and it is not surprising that this prob­
lem concentrated the attention of many researchers. See for example [1, 14] and 
bibliography therein. 

The presence of delays in the system is also a source of closed-loop system insta­
bility. Some recent results on the control of linear systems with delayed state and 
bounded inputs have been obtained, see [3, 6, 7, 10] (for independent delay size) or 
[4, 15] (for dependent delay size). To derive these results, matrix measures, complex 
Lyapunov equations or Razumikhin-type theorems were used. To have an overview 
of the more recent results, see [4, 9, 11, 12] or the papers published in this field in 
the last international conferences as Conference on Decision and Control 2000 or 
American Control Conference 2000. 

This paper presents a method to derive a nonlinear bounded state feedback con­
troller for a linear continuous-time system with time-delay in the state. The idea 
is based on the existence, under some conditions, of an e-parameterized family of 
bounded linear state feedbacks which asymptotically stabilize the closed-loop sys­
tem. These controllers are designed from the solutions to an e-parameterized family 
of algebraic Riccati equations or an e-parameterized family of LMI optimization 
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problems. From these solutions, it is possible to define invariant ellipsoidal neigh­
borhoods of the origin such that inside them, the control does not saturate. For 
a Riccati equation approach, when e = 1, the ellipsoid corresponds to a region for 
which the system exhibits a satisfactory behavior. When e -» +00, the ellipsoid 
tends to a subset of 5ftn. Then it is possible to build a state dependent function e(x), 
which is used to derive the controller. For the LMI approach, when e = 1 we obtain 
an ellipsoid in which the system has a good behavior, and when e - - 0 w e obtain a 
subset of 5ft n in which the size of the control gain is low. 

It is important to note that this approach is based on a Lyapunov-Krasovskii 
theorem for analyzing the uniform asymptotic stability of solutions to functional 
differential equations. A certain performance level for the closed-loop system is taken 
into account through a quadratic cost function. Modifying slightly the obtained 
results, it is also possible to deal with model uncertainties. The paper is organized 
as follows. In the next section, the problem is stated. Section 3 introduces some 
preliminaries used in Section 4 which addresses the case of the Riccati equation 
approach. Section 5 presents the Linear Matrix Inequalities method and Section 6 
proposes an illustrative example. Finally, a conclusion ends the paper. 

No ta t ions . 5ft denotes the set of real numbers, 5ft+ is the set of non-negative real 
numbers, 5ftn denotes the n dimensional Euclidean space, and 5ftnXm denotes the set 
of all n x m real matrices. The notation X > Y (respectively, X > F ) , where X and 
Y are symmetric matrices, means that the matrix X — Y is positive semi-definite 
(respectively, positive definite). For any real matrix A, A' and A^ denote the 
transpose and the ith row of matrix A, respectively. I denotes the identity matrix of 
appropriate dimensions. Amax(P) and Amm(P) denote respectively the maximal and 
minimal eigenvalue of matrix P. CT = C([—r, 0], 5Rn) denotes the Banach space of 
continuous vector functions mapping the interval [—r, 0] into 5ftn with the topology 
of uniform convergence. The following norms will be used: ||- || refers to either the 
Euclidean vector norm or the induced matrix 2-norm. ||</> \\c= s u p _ r < a < 0 \\(j)(t) \\ 
stands for the norm of a function (/> € CT. When the delay is finite then "sup" can 
be replaced by "max". Moreover, we denote by Cv the set defined by Cv = {(/) G 
Cr 5 IMIc 5.* W> where v is a positive real number. 

2. PROBLEM STATEMENT 

Consider the time-delay linear system described by: 

x(t) = Ax(t) + Adx(t - r ) + Bu(t) (1) 

with the initial condition 

x(t0 + 9) = <f>(9), V0 e [-r-0], (t0,cj>) e 5ft+ x Cv 

x(t0) = x0 

where x(t) G Sftn is the state, u(t) E 5ftm is the control input, r is the time-delay of 
the system. A, Ad and B are constant matrices of appropriate dimensions and pair 
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(.A, B) is supposed to be stabilizable. We assume now that the control takes values 
in a compact set: 

U = {u G 5tm;-un(2) < u(i) < wo(»), u>o(i) > 0, i = l , . . . , m } . (3) 

Associated with system (l)-(2), let us define the following quadratic cost function 
which defines a performance criterion: 

r+oo 
J= (x(t)'Qx(t) + u(t)'Ru(t))dt 

Jo (4) 
Q = Q' > 0, R = R' >0. 

The problem addressed in this paper is to find a control u(x) such that for all t, 
u(x) G U and such that system (1) is asymptotically stable. Moreover, among 
all possible controls satisfying these properties, we want to select a control which 
minimizes J. In order to solve this problem, some preliminaries are introduced in 
the following section. 

3. PRELIMINARY RESULTS 

In [17], the problem of designing a linear state feedback which stabilizes system (1) 
is addressed. An important result stated in this paper is presented in the following 
lemma. 

L e m m a 1. Given symmetric and positive definite matrices Q and R, if there exist 
two symmetric and positive definite matrices P and S solutions to 

A'P + PA + PAdS-lA'dP - PBR~lB'P + S + Q = 0 (5) 

then system (1) closed by the state feedback 

u = Kx = -R'lB'Px (6) 

is asymptotically stable for all initial conditions (j) G B(cr) where B(a) is defined by: 

B{<r) = {4>eC^U\\l<<T} 

with a = —— --— 
Ama.x(P) + 7Amax(-->) 

7 > 0 corresponds to the largest ellipsoid 

V(P, j) = {xe Kn; x'Px < 7} (8) 

contained in U. 

The p r o o f is obtained by showing that 

V{xt) = x(t)'Px(t) + í x( )'Sx( ) d 
Jł-т 

P = P'>0 , S = S'>0 

(9) 
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where Xt,Vt >t0i denotes the restriction of x to the interval [t — T , t] translated to 
[—r, 0], that is, 

xt(9) = x(t + 6), V 0 G [ - r , O ] , 

is a Lyapunov functional for the closed-loop system. 
If the system satisfies Lemma 1, it is asymptotically stable and as described above, 

V(xt) defined by (9) is a Lyapunov functional for the closed-loop system. We can 
write: 

àV{xt) 

át 
= x(t)'[(A + BK)'P + P(A + BK)]x(t) + 2x{t)'PAdx(t - r) 

+x(t)'Sx(t) - x(t - T)'Sx(t - T) 

< x(t)'[(A + BK)'P + P(A + BK)]x(t) + x(t)'Sx(t) 

+x(t)'PAdS-1A'dPx(t) 

< -x(t)'[Q + K'RK]x{t) by Lemma 1. 

Then: 

/. + CO 

J = / x(t)'[Q + K'RK]x(ť)dt 
Jo 

r-\-oo 
< — I dV(xt) = V(x(0)) because the system is stable. 

Jo 

We have: 

J < x'0Px0 + J x(0)'Sx(6) d9. 

This inequality suggests the following optimization problem in order to minimize J. 

( min | trace(Px0x'0) + trace (s / x(0) x(O)'d0 j \ 

under P = P' > 0, S = S' > 0, and (5). 

We can note that the criterion is linear with respect to P and 5. But P and S 
appears nonlinearly in (5). 

A possibility to solve (5) by standard algorithms consists in fixing S or by using 
LMI formulation (see Section 5). In fact, a compromise has to be found between the 
value of J and the size of the initial condition domains (7) and (8). • 

As pointed out in the introduction, we can consider model uncertainties. For 
simplicity, consider uncertainty on matrix A such that 

AA = A0 + DFE (10) 
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where An, D and E are constant matrices of appropriate dimensions and F'F < I. 
In this case the Riccati equation (5) is replaced by [13]: 

A'0P + PAQ + PAdS-lA'dP + ePDD'P-PBR-lB'BP + S + e-lE'E + Q = 0 (11) 

where the unknowns are P , 5 and e > 0. 

4. RICCATI EQUATION APPROACH 

4.1. Single input case 

Recall that the control is constrained to belong to U. For the sake of simplicity, 
consider in a first time, the single-input case, i.e., u G [—u0,uo] and B E 5ftn. 

Define: 

g°{-eyi i"*-W .*%*-•-'}• <i2) 

Thus, we have the following result. 

L e m m a 2. S is the maximal ellipsoid defined by the quadratic form x'Px where 
the feedback u = —R~lB'Px is bounded by u$. 

P r o o f . See [5]. • 

The idea in this paper is to fully use the capabilities of actuators without allowing 
the control saturation. If that is possible, it is hoped that the performance of the 
system in terms of a speed response will be better. For that, suppose the optimization 
problem (PI) has been solved obtaining a good compromise between performances 
and size of initial conditions domains. Then there exist symmetric positive definite 
matrices P and S solutions to Riccati equation (5): 

A'P + PA + PAdS-lA'dP - PBR~lB'P + S + Q = 0 (13) 

where R and Q are symmetric positive definite matrices. Now the idea is to param­
eterize Riccati equation (13) in the following way: 

A'P(e) + P(e)A + P(e)AdS-1A'dP(e) - P(e)BR~1B'P(e) + S + - = 0 (14) 
e 

with 1 < e < oo. It is to be noted that S is maintained as constant, only P varies 
with e. For e = 1, we recover Riccati equation (13). The first step is to verify that 
if (14) has a positive definite solution for e = 1, it has also a solution for e > 1. 

L e m m a 3. Suppose that P ( l ) = P ( l ) ' > 0 and S = S' > 0 satisfy Riccati 
equation (13). Then for all e > 1, Riccati equation (14) has a positive definite 
symmetric solution P(e) > 0 and P ( l ) > P(e). 

P r o o f . See [5]. • 
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When e -» +00, Riccati equation (14) reads 

A'P(oo) + P(oo)A + P f o o M d S - 1 4 ^ ( 0 0 ) - P fooJ f iE-^ 'P foo) + 5 = 0. 

Recall that S is fixed. Then it follows that [5]: 

P ( l ) > F(oo) > 0. 

Define: 
£(e) = {xe Wl;x'P(e)x< c(e)} 

w i t h c(e) = ^ 1 -^,-^/ N ^ ^ . -v ; R-lB'P(e)BR~l 

L e m m a 4. £ (e) is the maximal ellipsoid defined by the quadratic function x'P(e) x 
where the feedback u = —R~1B'P(e) x is bounded by UQ. 

In the sequel, we normalize the ellipsoids (15) defining the positive definite matrix 
X(e) = | g , 1 < e < oo, 

E(e) = {xe Rn; x'X(e) x < 1}. (1G) 

L e m m a 5. de is negative definite and -^f- > 0. 

P r o o f . See [5]. • 

Following the same lines as in [16], we can prove the following lemmas. 

L e m m a 6. H(ei) C Int(H(e2)) whenever e\ < e2, where Int(E.(e2)) denotes the 
interior of the set S(e2). 

L e m m a 7. The e-parameterized family of ellipsoids E(e) is a nested family set, 
that is, 

H(ei) C Int(S(e2)) whenever ei < e2 

with a maximal element E = (Je E(e). 

Define the following set: 

B(e) = {<t>eC"T;\\<t>\\l<c(e)} 

c(e) (17) 
w i t h c ( e ) - A m a x ( p ( e ) ) + r A m a x ( 5 ) . 

It is clear that we have the following result. 
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Lemma 8. The e-parameterized family of sets B(e) has the following property: 

B(e\) C z3(e2) whenever ei < e2. 

P r o o f . The proof follows from the fact that c(e) is an increasing function and 
that P(e) is a decreasing function of e. • 

In order to derive the controller, we introduce the function e(x) which is the 
positive solution to the equation given by 

x(t)'P(e) x(t) + f x(6)'Sx(6) d0 - c(e) = 0 (18) 
Jt-T 

where P(e) is the positive definite symmetric solution to Riccati equation (14). First 
observe that for a fixed e, £(e) is the largest ellipsoid where the control is bounded 
by u0> and for all (f) G B(e), x(t) G £(e). 

On the other hand if we define: 

f(x, e) = x(t)'P(e) x(t) + / x(0)'Sx(9) d9 - c(e), 
Jt-T 

one gets | £ = x(t)'dP^ x(t) ^f- ^ 0 and this is a sufficient condition for the 
differentiability of e(x). The idea behind the definition of e(x) is to have a state 
dependent function e(x) which takes large values when the system trajectory is far 
from the origin and small values when the system trajectory is close to the origin. 
e(x) continuously changes for all x G 5Rn\{0}. e(x) can be interpreted as a distance 
from the origin. The condition e(x) < //, /i > 0 defines a set such that x satisfies 

/ ' 
Jt-т 

x(t)'P(fi) x(t) + / x(0)'Sx(9) d9 < c(n) 
Jt-T 

if 0 G B(fi). Also, if 0 G B(n) we can conclude that x(t) G E(j[/). 

We are now in position to introduce the controller. It is defined by: 

( -R-lB'P(e(x))x(t) if x(t)£E\E(l) 
u(x) — \ (19) 

[ -R^B'P^x^) if x(t)eE(l). 

Theorem 1. Suppose that Riccati equation (13) has positive symmetric solutions 
P = P' > 0 and S = S' > 0. Let P(e) the positive definite symmetric solution 
to Riccati equation (14) and E(e) the ellipsoid defined by (16). Then the controller 
defined in (19) satisfies the constraint —uo < u(x) < uo and stabilizes asymptotically 
the system (1) for all initial conditions (j) G B(\). 

P r o o f . To prove that system (1) is asymptotically stable, we have to show that 
E(l) is a finite attractor in S for the closed-loop system. For this, it suffices to show 
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that for all x in the closure of S\H(1), the time-derivative e is negative along the 
closed-loop vector fields. We have from (18) 

2x(t)'P(e)x(t) + x(t)' ^^-x(t)e(t) - ^ ^ e ( t ) +x(t)'Sx(t) - x(t - T)'Sx(t -T)=0 
de de 

and therefore 

2x(t)'P(e)x(t) + x(t)'Sx(t) - x(t - T)'Sx(t - T) 
è(t) = -

x(t)'d-^x(t)-d-^. 

But one gets 2x(t)'P(e)x(t) + x(t)'Sx(t) - x(t - T)'Sx(t - r) = -x(t)'Qx(t) -
x^yPBR^B'Px^-lx^-^-S^A^Px^YS^t-^-S^A^Px^)] < 0. Noting 
that ^p- < 0 and ^ - > 0, it follows that e(t) < 0. Now if e(x) < /i, we have 

x(t)'P(fi) x(t) + [ x(8)'Sx(9) d9 < c(ii) 
Jt-T 

provided that the initial condition (f> 6 B(n) and x(t) G S(/i). But from Lemma 8, 
one gets: 

B( l )CB( / i ) , V / i> L 

And then this fact with e(£) < 0 complete the proof of the theorem. • 

4.2. The multi-inputs case 

In this section, we move to the multi-inputs case. Matrix B G 5Rnxm is written 
as B = [ Bi . . . Bm ] with B{ G 5ft71, i = 1 , . . . ,ra, and we take for simplicity 
R = p~lI>0. 

Define also 

r.-(e\ = 
p2B[P(e)Bi 

U2 • 

°i(e) = Q P / П ) \ P ,Vг = l , . . . , m 

and 

C(e) = minci(e). 
i 

Note from the previous section that C{(e), i = 1, . . . , m, are increasing functions of 
e. Hence C(e) is also an increasing function of e. Nevertheless, C(e) is not necessarily 
differentiate for any e > 0, but its right-hand side derivative is well-defined as 

DCle) = Urn S i + J k ^ ) . 
C->o+ £ 

Using this definition and the previous notations, it is possible to extend the results 
of the previous section as follows. 
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Theorem 2. Let P(e) and S be the positive definite symmetric solutions to Riccati 
equation (14). Define the function e(x) in the following way: 

— For x(t) G S(l) and 0 G B(l) as the positive solution e(x) — 1. 

— For x(t) G S\S(1) and </> G B(l) as the positive solution to the equation 

~(t)'P(e) x(t) + í x(9)'Sx(6) d9 - C(e) = 0. 
Jt-T 

Then the control u(x) defined by 

( -R~1B'P(e(x))x(t) if x ( t ) G S \ S ( l ) 
u(x) = { i 20 

\ -R^B'P^x^) if x ( t ) e S ( l ) 

satisfies the constraints — „0(i) < w(i)(^) < %(i), i = 1,... ,m, and drives any point 
of S to the origin. 

Suppose now that e -> +00, Riccati equation (14) becomes: 

A'P(oo) + P(oo)A + P(cx))i4dS"1 A'dP(oo) - P(oo)BR~lB'P(oo) + 5 = 0. 

If the pair (S* ,A) is observable and if (A, B) is stabilizable, then -P(oo) is positive 
definite. Hence the set S is characterized by the following theorem. 

Theorem 3. Suppose that pair (-4,1?) is stabilizable. Then 

' p2B'iP(oo)Bi' x G 3řn;max 
ul(i) 

x'P(oo) x < 1 > , i = 1,. . . , m. 

P r o o f . The proof is a direct consequence of assumptions and elementary results 
on the behavior of the solutions to a Riccati equation. • 

From a practical point of view, it is not possible to solve equation (18). In 
practice, to implement the control it is possible to use the following algorithm. 

— Step 0. Choose N values of e such that en = 1 < ei < e2 < ... < eN < 00. 
For e = eN, solve Riccati equation (5). We obtain the corresponding ellipsoid 
S(e/v), the set i3(e/v) and the control i\"(eiv). Set 

H = {E(eN)}, B = {B(eN)}, K = {K(eN)}. 

— Step i. Take e = e/v-i- Solve Riccati equation (5) for e = e/v_i. We obtain 
S(ejv_i), B(eN-i) and K(eN-i). Set 

S = {S,S(e;v-i)}, B = {B,B(eN-i)}, K = {IT,#(_*-«)}-

Go to step i + 1 . 

At the end of the algorithm, we obtain a nested family of ellipsoids S, sets B and 
corresponding control gains. To apply the control, we measure x(t) and identify the 
outer ellipsoid in S, which contains x(t), and the corresponding control is applied. 
With this method, a piecewise control is obtained. 
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5. LMI APPROACH 

Another parameterization of the control gain matrix is possible using an LMI for­
mulation. From (5), it is easy to see that condition of Lemma 1 can be expressed as 
follows: 

Find matrices K and P = P' > 0, S = S' > 0 such that 

(A + BK)'P + P(A + BK) + PAdS-lA'dP + S < 0. 

Multiplying on the left and the right by P~] = W and denoting Y = 
KW, we obtain rearranging some terms 

AW + WA'+ BY + Y'B'+ [ AdS~l W] 
S 0 
0 5 

- i м S~lA. 
W 

< 0 . 

Introducing U = S we arrive at 

AW + WA' + BY + Y'B' AdU W 
UA'd 

W 
-U 0 

0 -u 
< 0 

We can deduce the following lemma which is similar to Lemma 1 in the context 
of the LMI formulation. 

L e m m a 9. If there exist a solution W = W > 0, U = U' > 0 and Y matrices of 
appropriate dimensions such that 

AW + WA' + BY + Y'B' AdU W 
UA'd 

w 

w Ч) 
Y(i) U 0( i ) 

-U 0 

0 -u 

> 0, i = 1,.. . , m 

< 0 (21) 

(22) 

then system (1) closed by the state feedback 

u = Kx = YW~l 

is asymptotically stable for all initial conditions (j) G B(a) where B(a) is defined by 

B(a) = {<f>eC^U\\2

c<a} 

with a = 

(23) 

(24) 

and 

Amax(W- 1) + TAmax(v- 1) 

v(w~\i) = {xe ^"^ 'W- 1 ^ < 1} (25) 
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is contained in U. 

The p r o o f follows from the previous manipulations and from Lemma 1. V(W~1^1) 
is contained in U from inequalities (22) [18]. • 

If the model is affected by norm bounded uncertainties, supposing that only 
matrix A is affected, we can replace (21) by: 

AW + WA' + BY + Y'B' + eDD' AdU 
UA'd 

W 
EW 

dU w WE' 

-u 0 0 
0 -u 0 
0 0 -el 

<0 . 

Now to deal with a quadratic cost as defined in (4), a similar development as 
previously leads to inequality 

AW + WA' + BY + Y'B' AdU W 
UA' 
W 
Y 
W 

AdU w Y' w 
-U 0 0 0 
0 -u 0 0 
0 0 -R-1 0 
0 0 0 -Q-1 

< 0 (26) 

with K = YW'1 and 

J < trace(W_1x0xó) + trace ( U'1 í x(0)x(6)'d6 (27) 

While (26) is linear with respect to the unknowns, it is not easy to minimize J 
because it is nonlinear in the unknowns. A way to obtain a linear problem consists 
in minimizing the following problem: 

min H(7,5) = 7trace(x0x'J) + 5 trace I / x(9)x(9)'d6 

(P2) { under relations (26), (22) 

> 0, | "; I 1 > 0. 7 / I 
/ W 

The main advantage is now that the problem is linear. Conditions 7 / / 
/ W >o 

and >o ensure that trace(W x) <nj and trace(U x) < n5, respectively. 61 I 
I U 

Problem (P2) is solvable by an LMI solver when a solution exists. We have the 
following lemma. 
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L e m m a 10. If Problem (P2) is solvable. Then for all initial condition belonging to 
B(a) defined in (24), the system is asymptotically stable by the control u = YW~xx, 
which belongs to U. 

The idea is to parameterize problem (P2) in order to obtain nested family of 
ellipsoids and sets B(a) as in the case of Riccati equation approach. For that, 
introduce the following optimization problem: 

min {eH(i,5) + (l-e)log(det(W-1))} 
W,t/,y,7 

(PЗ) 1 

under 
W 

Yu 
У(i) 
,2 

(») U 0 ( i ) 
> 0, i = 1,. . . ,m 

AW + WA' + BY + Y'B' AdU W eY' 
UA' 

eW 

0 < e < 1 

jl I 
I W 

W 
eY 
eW 

> 0 , 

-u 0 0 0 
0 -u 0 0 
0 0 -R'1 0 
0 0 0 -Q-1 

81 I 
I U > 0 . 

When e = 0, Problem (P3) reduces to the following problem: 

mmilogfdet tW- 1 ))} 

< 0 

under 
W 

) 
v 

ul{ì) 
> 0, i = 1 , . . . ,m 

AW + WA' + BY + Y'B' 
UA'd 

W 

AdU w 
-U 0 
0 -u 

< 0 . 

This problem, when a solution exists, solves the stabilization problem by a control 
belonging to U and maximizes the size of V(W~l, 1) . 

When e = 1, we obtain Problem (P2) in which performances are taken into 
account by minimizing H(7, J), the size of V{W~l, 1) being not a priori maximized. 

When 0 < e < 1, we obtain a problem which gives a compromise between the size 
of V(W~1

J1) and performances taken into account through H(7, S). The control 
gain depends on the parameter e and is written 

K(e) = Y(e)W(e) - 1 (28) 

where Y(e) and W(e) are the solutions obtained by solving (P3). 
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Now the idea is to let e vary from 0 to 1. When ei < e2, since constraints (22) 
are satisfied, the size of K(e\) is lower than the one of K(e2). To be sure that the 
domains V(W~l, 1) and B(G) are nested, for two values of e, ei and e2 such that 

0 < ei < e 2 < 1 

we have to impose that 
VV(ei) <W(e2) 

(29) 
U(e\) < U(e2). 

As in the Riccati equation approach, since W, U and Y are e-depending, we 
denote in the sequel the sets V(W~1,1) and B(cr) by V(e) and /5(e), respectively. 

All these remarks suggest the following algorithm to build a piecewise linear 
control law. 

— Step 0. Choose N values of e such that eIy = 0 < ejy-i < e/v-2 < ... < e0 = 1. 
Solve LMI problem (P3) for e = eo- We obtain the corresponding ellipsoid 
V(e0), the set B(e0) and the control K(e0) = r(e 0)VV(eo) _ 1 . Set 

V = {V(e0)}, B = {B(e0)}, K = {K(e0)} 

— Step i. Take e = e^ Solve LMI problem (P3) for e = et- by adding the 
constraints: 

W(e{) < W(ei.l) 

U(ei) < U(ei_\) 

We obtain E(ei), B(ei) and K(ei). Set 

V = {V,V(e{)}, B = {B,B(ei)}, K = {K,K(et)} 

Go to step i + 1 . 

At the end of the algorithm we obtain a nested family of ellipsoids V, sets B, 
with the corresponding control gains. To implement this control, we proceed as for 
the Riccati equation approach. 

5.1. Decentralized control 

The interest of a solution based on a LMI formulation lies on the possibility of 
adding some structural constraints provided they do not destroy the linearity of 
the optimization problem. Among the problems which is possible to investigate, we 
present in what follows the decentralized state feedback design problem [2]. If the 
system is formed from geographically separated subsystems, the control is composed 
of q channels i. e. u{ G Umi, i = 1,. . . , g and the decentralised state feedback design 
consists in finding matrices Ki G 5ftm»xn« w h e r e : 

X, ш i = m, Y^Щ = 
i=l , _ 1 

n. 
i=ì 
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A solution to solve this problem is to add to problem (P3) the constraints 

W = diag(Wi,.. ., Wg, Wi G 5ftn ' x n i, Y = diag(Yi,..., Yq), S{ G 5Rm 'X n ' 

which are convex and do not destroy the linearity. The control gain can be written: 

K = YW-1 = diagfY jWf1,... ,YqW~l) 

and has a diagonal structure. 

6. ILLUSTRATIVE EXAMPLE 

Let us consider system (1) described by the following data: 

0 1 
0 0 

;Лd = 
o o 
o 1 

A = 

with r = 0.5s and uo = 2. 
By selecting 

S = I2]R = 1-Q = I2 

the solution to Riccati equation (5) writes: 

;B = 

P(e) = 

\A+T 4+1 + 4^/471 

and 

c(e) = 
4+i+4\A+? 

When e —r oo one gets: 

lim P(e) = 
2л/ 2 

2 2л/ 

limc(e) = - ^ . 

The set of initial conditions is defined as 

,2 ^ C(l ) 

" { B(l) = UeCy,Mi< Amax(E(l)) + 0.5Am a x(5) 
0.136Í 

which implies that 

IMI2 = sup 110(0)11 
0.5<0<0 

< 0.136 =* sup 110(0)11 < 0.369. 
0.5<0<0 

* є ~ c ł 
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7. CONCLUSION 

In this paper, a nonlinear bounded s ta te feedback controller design for a linear 
continuous-time system with s ta te delayed is proposed. The controller is designed 
from the solutions to an e-parameterized family of algebraic Riccati equations or 
linear matr ix inequalities which allow to define invariant ellipsoidal neighborhoods 
of the origin. 

From the Lyapunov-Krasovskii theorem, it is possible to show tha t uniform 
asymptotic stability is ensured and a certain performance level is a t ta ined using 
a quadrat ic cost function. In this paper, feedback control is addressed. For practical 
reasons, the ou tpu t feedback design problem have to be considered in a near future. 

(Received November 22, 2000.) 
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