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AN A S Y M P T O T I C STATE OBSERVER 
FOR A CLASS OF N O N L I N E A R DELAY SYSTEMS 

ALFREDO GERMANI, COSTANZO MANES AND PlERDOMENICO P E P E 

The problem of state reconstruction from input and output measurements for nonlinear 
time delay systems is studied in this paper and a state observer is proposed that is easy 
to implement and, under suitable assumptions on the system and on the input function, 
gives exponential observation error decay. The proposed observer is itself a delay system 
and can be classified as an identity observer, in that it is such that if at a given time 
instant the system and observer states coincide, on a suitable Hilbert space, the observation 
error remains zero in all following time instants. The computation of the observer gain is 
straightforward. Computer simulations are reported that show the good performance of 
the observer. 

1. INTRODUCTION 

As well-known the state space of time delay systems has infinite dimension. This 
fact leads to difficulties not only in the system analysis and in the synthesis of 
controllers and/or observers, but also on their physical implementation. In the case 
of linear delay systems the control problem and the state observation problem, both 
in deterministic and stochastic settings, have been extensively studied in the past 
[1, 2, 6, 7, 15, 16, 18, 21, 22, 23, 24, 25, 26] and are still under investigation. In the 
case of nonlinear delay systems in recent years some papers on the approximation 
of dynamics and on control problems have appeared [8, 13, 19, 20, 23]. Difficulties 
arise in dealing with such systems due to the fact that the state space has infinite 
dimension and moreover the differential description is nonlinear. 

In [8] a formalism has been introduced to overcome these difficulties for an in­
teresting class of nonlinear delay systems. A feedback law for output control has 
been proposed there, that requires the knowledge of all system variables. Prelimi­
nary results on the problem of state reconstruction for nonlinear delay systems has 
been presented in [10, 11]. In [14] the problem of state reconstruction for nonlinear 
output-delay systems is considered. 

In this paper a state observer for nonlinear delay systems is proposed and condi­
tions for exponential observation error decay are given. As in [8], some concepts of 
standard nonlinear analysis [17] are extended to the case of delay systems and used 
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to work out the observer equations and to prove convergence, following the same ap­
proach used in [3, 4, 12, 14]. The observer-gain computation is very straightforward 
and the implementation is easy. Although only single-input single-output systems 
are considered here, for simplicity, the same construction can be used to develop 
observers for multi-input multi-output systems. 

The paper is organized as follows. Section 2 reports the necessary notations, 
definitions and preliminary results. In Section 3 the state observation problem is 
formulated, an observer is proposed and theoretical results are shown. An exam­
ple of application is worked out and simulation results are reported in Section 4. 
Conclusions follow. 

2. PRELIMINARIES 

In this section some notations and definitions necessary for the analysis of the state 
observation problem and for the synthesis of the observer are presented in short. 
The formalism used has been introduced in [8]. 

The system under investigation is described by the following equation 

x(t) = f(x(t),x(t 
y(t) = h(x(t)), 

-A))+g(x(t),x(t-A))u(t), 
t>0, 

(2.1) 
(2.2) 

where A > 0, x(t) G Mn, u(t) G IR and y(t) G -K, the vector functions / and g 
are C°° with respect to both arguments, and h is a C°° scalar function. The model 
description is completed by the initial state in the space of Cl functions in [—A,0]: 

X(T)=Ů(T), TE[-A,O], tfe^íj-A.oj.iřr). (2.3) 

Throughout the paper, for a given function q(t) G Mm, the symbol qiA(t), with 
i nonnegative integer, will denote its translation by —iA, i.e. ^ A ( 0 = Q(t — iA). 
Some care must be put on the interval on which the translated function is defined. 
For instance, being x(t) defined for t > —A, the delayed function x^(t) is defined 
for t > (i — 1)A, while Ui&(t) is defined for t > z'A, being u(t) defined for t > 0. 

Also the following notation is needed in the paper: consider vectors x% £ - ^ n a n d 
scalars Vi, with i integer. The symbols Xij and Vij, with i < j , will denote the 
composed vectors 

Xi,І 

Xi 

Xi+i 

Xi 

є мu-i+l>, vitj = 

щ 

Vi+l 

Vj , 

eM3 -i+1 (2.4) 

Here follows the definition of observation delay relative degree for nonlinear delay 
systems, a weaker version of the concept of delay relative degree introduced in [8]. 
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Definition 2.1. System (2.1), (2.2) is said to have observation delay relative degree 
r in an open set ftr G JRn(r+1) if the following conditions are verified 

VX0,renr, LGLk
FH(X0,r) = 0, k = 0,l,...,r-2, 

3Ao,r G í^r : LGLr
F H(X0>r) ^ 0, 

(2.5) 

where 

E(^0,r 

Я(Ao,r 

/(xo,Xi) 
/(xъXг) 

-/(Xr- l,Xr) 

Mxo), 

G(X0,r) = diag^ 1 {5(x*,Xi+i)} , 
(2.6) 

LFH(XQÌГ) = H(ЛЬ,r), 

Lk

ғH(X0,r) = ( a j Е ^ _ L * - 1 я ) E(ЛІ,r), k<r 

LGLk

ғH(X0<r) = f^J—üjтH) G(ДЬ,r), * < r - l . 

(2.7) 

If fir = i R n ( r + 1 \ the system is said to have uniform observation delay relative degree 
equal to r. 

Remark 2.2. Note that the term L^iJ(Ab,r), k < r, is actually a function of Ab,fc, 
and the term LGL

k

FH(X0^), k < r - 1, is a function of Ab,fc+i-

Remark 2.3. The computation of the observation delay relative degree of a non­
linear delay system is made applying Definition 2.1 to integers r = 1,2,..., until the 
conditions (2.5) are verified. 

At this point it is useful the definition of the stack operator. 

Definition 2.4. Consider a function q(t) G Mm, defined for t G [h,t2] C M. The 
symbol Stackij(q), with i,j such that 0 < j — i < (t2 — £i)/A, denotes the following 
function, defined for t G [h + j A, t2 + iA], 

Stackij(q)(t) = 

QiA(t) 
Q(i+l)A(t) 

jA(t) 

є м^j~i+1^m. (2.8) 

Using the stack operator, the following vector functions can be defined: 

Xitj(t) = Stacku(x)(t), Uij(t) = Stackitj(u)(t) (2.9) 
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Using the previous definitions, the following differential equation can be derived, 
that holds for t > (r - 1)A, 

X0,r-i(t) = F(X0,r(t))+G(X0,r(t))U0,r-l(t), 

y(t) = H(X0,r(t)), 

and the following map can be defined 

(2.10) 

Z = Ф(X0,r-l) = 

H(X0,0) 
Lj?H(X0,i) 

Vғ H(Лo,r-i) 

(2.11) 

For systems having observation delay relative degree r in f_r it is 

!/<*>(_) - Lk

FH{XoAt))> fc = 0 , l > . . . r - l 

y^(t) = ^ ^ ( X o , . ^ ) ) ^ ^ ^ - 1 ^ ^ , . ^ ) ^ - ! ^ ) , 

and therefore substitution of Xn,r_i(£) in the map $(•) provides the output deriva­
tives up to order (r — 1) 

(2.12) 

_(ŕ) = Ф(-Y0,r_i(t)) 

LУ 

У(t) 

m 
(r-1) (t) 

(2.13) 

Note that, being x(t) defined for t > - A , it follows that X0,r-i(t) and z(t) are well 
defined for t > (r - 2)A. 

In the next section an observer for nonlinear delay systems is presented and 
exponential state observation is proved under suitable assumptions. 

Among the assumptions, in the case in which the input u(t) is not identically 
zero, the following is needed: 

Hp0) system (2.1), (2.2) has uniform observation delay relative degree equal to n 
(the dimension of vector x(t)). 

Note that under assumption Hp0 the vector z(t) G Mn is defined for t > (n — 2) A. 
Defining the Brunovsky triple 

Aь = 0(n-l) 
0 

Cь = [ 1 

x l 

0 

0 
In-1 

lx(n-l ) 
Bь = 0(n-l )xl 

1 (2.14) 

ІX(П-I) J î 

it can be verified that, thanks to (2.10), it is 

^^rrF(X0,n) = Ab$(Xo,n-i) + BbLFH(Xo,n), 

Wg^±>G(X0,n) = BbLGLF-\X0,n), 

H(X0,n) = O6$(Ab,„_i). 

(2.15) 



An Asymptotic State Observer for a Class of Nonlinear Delay Systems 463 

From these, the following equation can be derived for the dynamics of the variable 
z(t) defined in (2.13) 

ž(ť) = Abz(t) + Bb(Ln
FH(Xo,n(t))+LGLn

F-
lH(Xo,n(t))Uo,n-i(t)), 

y(t) = Cbz(ť), ť > ( n - l ) Д . 
(2.16) 

The pair A&, Cb is observable, and it is an easy matter to assign eigenvalues to the 
matrix Ab — KCb, that has the companion structure 

Aь - KCb = 

-Һ 1 

-kn-i 0 
-kn 0 

01 

1 
0 

(2.17) 

Let K(\) denote the gain vector that assigns eigenvalues A = (Ai,. . ., An) to matrix 
Ab — K(\)Cb (the gain K(\) contains the coefficients of the monic polynomial that 
has the A/s as roots). If eigenvalues A/s are distinct, the matrix Ab - K(\)Cb is 
diagonalized by the Vandermonde matrix 

r \ n - l 

V(X) = 
K ••• Ax 

\ n - l . . . \ 

so that 
V(\)(Ab - K(X)Cb)V(X)-1 = diag{A} = A. 

(2.18) 

(2.19) 

< L e m m a 2.5. For any positive a, 6, there exists A G Mn that satisfies An < 
Ai < 0, such that 

b\\V'1(\)\\ + \i=-a. (2.20) 

P r o o f . In [3] it is shown that if the n reals \j are chosen as functions of a 
parameter p > 0 as follows: \j(p) = — p-7, for j = 1,. . . ,n, then 

Um ||V--(A(p))|| == 1, 
p—>+oo 

lim | |V- 1(Л(p))| | = +oo. 
P-+0+ 

It follows that the function a(p) defined for p G (0, +oo) as 

<T(p) = b\\V-1(Hp))\\-p, 

is a continuous function such that 

lim a(p) = +oo, 
p-»0+ 

lim a(p) = —oo. 
p—>+co 

(2.21) 

(2.22) 

(2.23) 

This implies that there exists at least one solution p for the equation a(p) = —a. 
Moreover, p is such that the vector \(p) solves equation (2.20). • 

The following three lemmas are required in the proof of convergence of the pro­
posed observer. 
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L e m m a 2.6. Let c0, Ci, c2 and /3 be positive constants, and let s(t) be a non 
negative function, defined for t G [to - nA, oo), that for t > t0 satisfies the following 
inequality 

/

t n n - l 

e-(3(t-r) J2 S(T - iA) dr + c2 ^ s(t - iA). (2.24) 
-o i = l i = l 

Let s0(t) be a function such that: 

so(0)>s(9), 9e[t0-nA,t0], (2.25) 

and for t > t0 

nt n n - l 

So(t) = c 0 e-^-<°) + ci / e - 0 ( * - r ) ^ 80(r - iA) dr + c2 ] £ 5o(* - iA). (2.26) 

Then 
8o(t) > s(t), t G [to - nA, oo). (2.27) 

P r o o f . Consider the function 6(t) = s0(t) — s(t). By assumption it is 6(t) > 0 
in [t0 — nA, t0]. The theorem is proven by induction, by showing that if for a given 
non negative integer i it is 6(t) > 0 in [t0 - nA,t0 + iA], then it follows that 6 > 0 
in [t0 — nA, t0 + (i + 1)A], This result is obtained by writing the inequality 

nt n n—1 

6(t) > a / e-W-T) ] T 6(T - iA) dT + c 2 ^ <*(* - *A)> (2-28) 
^*o i=l i=l 

that is obtained subtracting from both sides of equation (2.26) both sides of in­
equality (2.24). Being positive the constants c\ and c2, and being positive 6(t) for 
t G [t0 — nA, t0 + iA] by assumption, from (2.28) it follows that 6(t) is positive also 
for t G (t0 + iA, t0 + (i + 1)A], and therefore in [t0 - nA, t0 + (i + 1)A]. By finite 
induction it follows that for all t G [t0 — nA, oo) it is 6(t) > 0, that is the thesis. • 

L e m m a 2.7. Let c0, ci, c2 and (3 be positive constants. If 

^ - + c 2 ( n - l ) < l , (2.29) 

then equation (2.26) admits the solution 

s0(t) = s0e-a{t~to\ s0 > 0, a > 0, t G [t0 - nA,+oo) (2.30) 

where the coefficient a is the unique solution in [0, /3) of equation 

TT- x>ftAT+<* Y,(eaAy = -, (2-3i) 
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and s0 is given by 

Sfj = 
CQ 

i-Q2 E V A ) * 
i= l 

(2.32) 

P r o o f . First of all note that the function a : [0,/3) »-> [0,oo), defined as 

n - l 

i=l 2=1 

is a continuous, monotonically increasing function such that 

Cl 

a(0) = — + C2(n — 1) < 1, lim a(a) = +oo. 

(2.33) 

(2.34) 

It follows that one and only one solution to equation a(a) = 1 exists in (0,/J). 
Now, by direct substitution, it can be readily verified that the expression (2.30) is 
a solution of equation (2.26) with a solution of (2.31) and s0 given by (2.32). Note 
that the denominator of (2.32) is positive because it is 

i=l i=l 

(2.35) 

where Ci > 0 and ft > a. D 

L e m m a 2.8. Let Co, ci, C2, /? and SM be positive constants, and let s(t) be a non 
negative function defined for t G [t0 — nA,oo), such that for t G [to - nA,to] it is 
s(£) < SM and for £ > t0 it satisfies inequality (2.24). 

Then, if 

^ + c 2 ( n - l ) < l , (2.36) 

the following inequality holds 

s(t) < 50e-Q(*-*o), t > t0 - nA, 

where a is the unique solution of eq. (2.31) in [0,/?) and s0 is given by 

80 = max < co 

1-P2 E V ^ V 
ѓ = l 

, 8 M 

(2.37) 

(2.38) 

P r o o f . Lemma 2.7 ensures that the solution of (2.31) in [0, P) exists unique, and 
n - l 

that 1 — C2 5Z (e Q f A ) t is finite and positive, so that so is well defined. Define now 
i=l 

so(t) = s0e = - Я P - « ( * - * O ) (2.39) 
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and 
71 — 1 

c0 = s 0 ( l - c 2 ^ ( e a A r ) . (2.40) 
1 = 1 

Prom (2.38) it is c0 > c0. Moreover it is s0(t) > s(t), for t e [t0 - nA,t0] and for 
t>t0 

/

t n n-1 

e-P(t-r) J2 So(r - iA) dr + c2 ] £ *o(* - «A), (2.41) 
0 2 = 1 i=l 

as it can be checked by direct substitution. Note that, being c0 > c0, in [t0 — nA, t0] 
it is also 

pt n n - l 

s(t) < c0e-P(t-to) +cx e-^l-T) Y s(r - iA) d r + c2 Yl *( ' " i A ) ' (2 '4 2) 
•^o i=l i=\ 

and therefore the assumptions of Lemma 2.6 are satisfied, so that s(t) < s0(t), for 
all t E [t0 — nA, oo). This proves the theorem. • 

Let i9 be a function in C1 ([—A,0],iRn). In the following the symbol x(t',if)) will 
denote the state trajectory of the nonlinear delay system (2.1), (2.2) when the initial 
state is tf (note that for r G [—A,0] it is x(r\d) = i9(r)). In the same way z(t\d) 
will denote the vector of output derivatives defined in (2.13) (with r = n) when the 
initial state is tf. 

Definition 2.9. A system of the form (2.1), (2.2) is said to be globally delay drift-
detectable if for u(t) = 0, and for any pair of initial states i9, d G C1 ( [ -A, 0], Si71), 
the inequality 

\\z(t'^) - z(t,$)\\ < i/e-^-<<>), t > t0> (2.43) 

where t0, v and (3 are positive real, implies the inequality 

||x(t;i>) - x(t,<d)\\ < iie-^l-tQ\ t > t0, (2.44) 

for suitable positive // and a. 

Remark 2.10. It can be shown that this definition, when applied to linear delay 
systems, implies the definition of (—a)-observability given in [18], where inequality 
(2.43) is substituted by equality ||z(t;tf) - z(t,ti)\\ = 0, t > t0. 

Throughout the paper it will be referred to the map z = $(rY0jn_i) as the observ­
ability map of system (2.1)-(2.1), because suitable assumptions on this map imply 
delay drift-detectability of the system and allow the construction of an observer. 

The observability map can be seen as a square map from xo to z, in which the 
sub-vector Ai )n_i G jRn(n - 1) is considered as a vector of parameters. To stress this 
point of view, in the following the map $ will be rewritten as follows 

- = *(Xo,«*i,n-i). (2-45) 
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Definition 2.11. The observability map associated to a system (2.1), (2.2) is said 
to be globally partially invertible if, for any A\)n__i G IRn^n~1\ the map (2.45) is a 
diffeomorphism in _7tn. 

The inverse of the map (2.45) can be denoted as 

Xo = * - 1 ( ^ , ^ i , n - i ) . (2.46) 

Substituting the trajectories z{t) and Xi?n_i(_) in the inverse map one has 

x(t) = *-1(z(t),X1,n-i(t)), t > ( n - 2 ) A . (2.47) 

The expression (2.47) can be substituted in the nonlinear perturbation term in 
expression (2.16) of system (2.1), (2.2), yielding 

Z(t) = ^ z ( 0 + B6L(-(0,-X-,n(0,vO,n-l(*)), 

y(t) = Cbz(t), t > ( n - l ) A , 

in which the function L(-, •, •) is defined as 

L(z,X1<n,V0,n-l) = ^ ( - - H ^ l . n - l ) , *!,-_!) 

+LGLn
F-lH($-l{z,X1,n-1),X1,n-1)Vo,n-i. 

(2.48) 

(2.49) 

The differential equation (2.48) can be used for the description of system (2.1), (2.2) 
completing it with (2.47) and by writing the following updating equation for -Ki>n(„) 
for t > (n - 1)A 

_Yi,n(t) = Stackhn(x)(t) = S t a c f c i . n ^ - 1 ^ , ^ , ^ ! ) ) ^ ) . (2.50) 

For a correct initialization of system (2.48) at the initial time _n = (n — 1)A 
the vector _Ki,n_i(£) in the interval [(n — 2)A,(n — 1)A] is needed. Since it is 
-Yi,n-i(£) = Stac__i?n_i(x)(_), the knowledge of x(t) in [—A, (n — 1)A] is required. 

An assumption that will be needed later in the paper is the following: 

HPT) The observability map of system (2.1), (2.2) is such that there exist positive 
7o and 71 such that 

*(X0, -*i.n-l) - *(X0, -*l,n-l)|| + 71 H-^l.n-l ~ ^ l ,n - l | | > 7o||XO ~ Xo||, 

(2.51) 

with ?L(n-l) < 1. 
7o 

The following theorem can be given. 
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Theorem 2.12. If the observability map of system (2.1), (2.2) is globally partially 
invertible and if assumption Hpx holds, then the system is globally drift-detectable. 

P r o o f . Inequality (2.51) of assumption Hpx can be rewritten as 

I|X0-X0|| < £||<I>(XO,*l,n-l)-<I>(XO,*l,n-l)|| 

n-1 (2.52) 

+£ Ellxi-x.il-
i = l 

From (2.47), for any pair d,d G C1([-A,0],Rn) it is, for t > (n - 2)A, 

z(t;ů) = Ф(x(í;tf), * ! , „ _ ! (í;i?)), 

z(t;ů) = Ф(x(t;д),Xhn.!(t;ů)). 
(2.53) 

With substitutions Xo = -c(i;^), Xo = x(t\d), Xx,n-\ - _Yi)n_i(i;i/), ,%i,n_i = 
Xiin-\(t]'d), inequality (2.52) becomes 

n - l 

\\x(t;ti) - x(t,d)\\ < J0\\z(t;ti) - z(t;d)\\ + 7 1 ~_ \\xiA(t;ů) - xiA(t;ů)\\, (2.54) 
І = l 

where 70 = I/70 and 71 = 71/70. 

Let s(t) = ||x(_;i/) — £(_, d)\\. If there exist positive v and /? such that inequality 
(2.43) holds, (to necessarily must be greater than (n — 2)A), then from (2.54) the 
following is derived 

n - l 

s(t) < 7 0 i /e-W- í o ) 4- 71 J"; s(t - ѓД). (2.55) 
i = l 

Since, by assumption Hp1, it is 71 (n — 1) < 1, then a constant c\ can be chosen 
small enough to satisfy 

ci 
+ 7 l ( „ - ! ) < ! . (2.56) 

Prom (2.55) it is also 

/

_ n n - l 

^ ( t" r )7i J2 ^ - i A ) + 1 * S ^ - i A ) ' (2-57) 
-a t = l i = l 

being positive the integral term. From Lemma 2.8, there exist positive ji and a such 
that s(t) < /ie~a(*~*°), t > to. Recalling the definition of s(t), this inequality is 
precisely inequality (2.44), so that drift-detectability is proved. • 
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3. AN OBSERVER FOR NONLINEAR DELAY SYSTEMS 

Prom Definition 2.11 the matrix function 

Qo(*.,n-l) = ° * y - - - > (3.1) 
dxo 

associated to a globally partially invertible observability map is nonsingular for all 
<r<),n-i £ Mn . Moreover it is such that 

as-1 (2, *!,„_!) 
= ťЛ_1(<*b,n-i). (3-2) 

г=Ф(Лo,„-i) V ' dz 

Also the following matrices can be defined 

^(^0,n-i) = ̂ ( f ° ' n - l ) , i = l,...,n-l. (3.3) 
dXi 

In many cases it will be preferred to split the argument of Qi and of QQ , writing 

Qi(Xo,Xi,n-i) and Qo1(Xo,^i,n-i)-
The proposed observer for nonlinear delay systems that are globally delay drift-

detectable is the following: 

x(t) = f(x(t),xA(t))+g(x(t),xA(t))u(t)+w(t), t>0 

w(t) = Qo1 (x(t),Xi,n-i(t)) (K (y(t)-h(x(t)))-nZ Qi(x(t),Xi,n-i(t))wiA(t) 
\ i = i 

(3.4) 
with initial conditions 

* ( r ) = £ ( r ) , f G C H h n ^ O ] ; ^ ) , 

W(T) = £(T) - / (£(r ) , tfr - A)) - g(£(r), f(r - A))fi(r), (3.5) 

Xhn-i(t) = Stacfc1 |n_i(0(t), * G H M ] , 

in which u(r) in [—(n — 1)A,0] is any bounded extension of the function u(t) for 
negative times. 

The gain vector K G Mn is chosen such to assign the eigenvalues to the ma­
trix At — KCb. The function £ that initializes the observer represents the a priori 
knowledge on the system state. 

L e m m a 3 .1 . Let system (2.1), (2.2) have observation delay relative degree equal 
to n, and let the observability map be globally partially invertible. Then, for t > 0, 
the observed state x(t) provided by the observer (3.4) can be obtained as follows 

x(t) = $-1(z(t),X1,n-1(t)), (3.6) 

where 

k(t) = Abz(t) + Bb(L
n
FH(XQ,n(t)) + LGL^H^oAtyUo^-iW) 

+K(y(t)-Cbz(t)) (3.7) 

2(0) = $(XO ,n-l(0)), 
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and the initial values are chosen as in (3.5). 

P r o o f . It is sufficient to verify that differentiation of (3.6) and substitution of 
(3.7) gives back the observer equation (3.4). In this proof the input u(t) is extended 
in the interval [— (n — 1)A, 0] by the function u(t) used for the observer initialization 
in (3.5), so that Uo,n-i(t) is defined for t > 0. 

Consider the map (2.13) in the form 

i ( 0 = $ ( x W ) X 1 , n _ 1 ( t ) ) = $ ( x ( 0 , x A ( ^ ) , . . . , . T ( n _ 1 ) A ( t ) ) . (3.8) 

Differentiation of (3.6), recalling definitions (3.1)-(3.3) gives 

i(t) = Q^(X0,n-l(t)) h(t) - 530i(X0|n-l(t))*iA(«) ) • (3.9) 

By (3.7), recalling also the definition (3.1), it is 

i(t) = Q - ^ n - l W ) ^ ^ 

+LGLn
F-1H(XQ,n(t))Uo,n-i(t)) + K(y(t) - h(x(t)))) ( 3 . 1 0 ) 

-Qn^-^n- lW) J: Qi{X0,n-l)iiA(t). 
i=l 

Note that it is 

^•^ 'Wo.n ) = J:Qi{X0,n-x)f(Xi,Xi+l), 
1 = 0 (3.11) 

d$[.X ) n—1 
rf^oT-i G(*0,n)Vo,n-l = E Qi(<^0,n-l)g(Xi,Xi+lM-

i=0 

From these and from the first two equations of (2.15), with the substitution Xo,n-i — 

Xo,n-i(t) and yo,n-i = Uo,n-i(t), it follows that for t > 0 

n - l 

Ab$(X0,n-l) +BbL
n
FH(X0,n) = ^Qi( -Yo,n- l ) / (XiA,%+l)A) , (3-12) 

i=0 

and 

n - l 

BbLGLnT1H(Xo^Tl)Uo,n-l = ^Qi(-Yo,n-l)y(^iA,£(i+l)A)^iA- (3.13) 
i=0 

Substitution of these in (3.10) gives the following differential equation for t > 0 

x = f(x,xA) + g(x,xA)u> + QQ1 (X0,n-i)K (y - h(x)) 

^ n - l ^ / . \ 
-QQ1(XO,U-I) E Qi(^0,n-l) UiA ~ /(£iA,£(i+l)A) ~ ^(^iA, ^(i+l)A)^ iA J * 

(3.14) 
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Consider now that from the first of (3.4) for t > 0 it is 

w(t) = £(t) - f(x(t),x(t - A)) - g(x(t),x(t - A))u(t), (3.15) 

and that (3.15) holds also for t G [-(n — 1)A,0] thanks to the initialization (3.5). It 
follows that for t > 0 and i = 0 , 1 , . . . , n — 1 it is 

wiA(t) = xiA(t) - f(xiA(t),£(i+1)A(t)) - g(xiA(t),x{i+1)A(t))uiA(t). (3.16) 

Substitution of (3.16) in (3.14) gives back the observer equation (3.4). • 

R e m a r k 3.2. Using the definition (2.49) of the function L(-, •, •) the observer (3.7) 
can be written as 

k(t) = A6z(0 + B 6 - £ ( £ ( t ) , ^ 

i(0) = *(Xn,n-i(0)), (3.17) 

x(t) = ^-1(z(t),Xlin-1(t)), * > 0 , 

with the initial values chosen as in (3.5). 

R e m a r k 3.3. On the basis of expression (3.7) for the observer, it can be noted 
that if for a given fit is X(T) = X(T) for r G [i— (n — l)A,f|, it follows that x(t) = x(t) 
for all t > t. This result follows from the fact that coincidence of x and x on the 
interval r G [i — (n — l)A,f) implies that W(T) = 0 and 2/(r) = H(X(T)) on the same 
interval, so that for t > t the feedback terms in (3.4) are identically zero. 

Now it is possible to give the main result of the paper, that is the convergence 
theorem for the proposed observer (3.4). 

T h e o r e m 3.4. Consider system (2.1), (2.2) and assume the following assumptions: 

ffi) the system has observation delay relative degree equal to n (Hp0) and there 
exists a positive UM such that \u(t)\ < UM Vt > 0; 

H2) the observability map is globally partially invertible; 

Hs) the observability map satisfies assumption Hpx\ 

H4) there exists a positive 7 - such that 

SUp \\L(Z, A i , n , Vn,n-l) - L(Ž, A i , n , Vo,n-l) | | < 7 7 
Vo,n- i€5 

z ~~ *L 
^tl,n — <^l,n 

(3.18) 

where S = [-UM.UM]71 C Mn; 

H5) the observation error \\x(t) — x(t)\\ is bounded in [-A, (n — 1)A]. 
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Then, there exists a gain vector K G Mn to be put in the observer (3.4) such that 

\\x(t)-x(t)\\<»oe-a\ (3.19) 

for suitable positive /io and a. 

P r o o f . Let A be a n-ple of real eigenvalues, with An < . . . < A2 < X\ < 0. Let 
K(X) be the gain vector that assigns such eigenvalues to matrix Ab — K(X)Cb. Con­
sider the expression (2.48) of system (2.1) and the expression (3.17) of the observer. 
For t > (n — 1)A, the dynamics of the error in z-coordinates ez = z — z can be 
written as 

ez = (Ah - K(X)Cb)ez + Bh(Z(z,Xi,n,Uo.n-i) - L(z,_Yi,n,Uo.n-i)). (3.20) 

As stated in the introductory section, the Vandermonde matrix V(X) defined in 
(2.18) diagonalizes Ab - K(X)Cb. Let f (_) = V(X)ez(t) and let A = diag{A}, so that 

i(t) = ki(t) + V(X)Bb(L(z(t),Xlyn(t),U0,n-i(t)) - L(z(t),X1>n(t),U0,n-l(t))). 
(3.21) 

Note that assumption H4 implies that for t > (n — 1)A 

n 

| |Z(z ,Xi , n ,L7 0 , n _0^ (3.22) 
1 = 1 

By integration of (3.20), taking also into account that ||y(A)_3&|| = y/n and that 

IMIr.lW-^IHia it follows 
||((.)|| < eM'-^IKfo)!! 

Jj e M ' - ^ 7 r (iW-U^H-lleWII + t \\xiA(T) - ___(r)||) dr, 
(3.23) 

where i0 = (n - 1)A. Rewriting (3.23) in terms of the variable e-A l( t _ t o) | |£(i) | | , 
applying the Gronwall inequality and returning to ||£(i)||, yields 

IKWII < e(^rl|v-1w'l+Al)(t-'o)||e(i0)|| 

+ Jt0
e L •Vn-ri^2\\xiA(T)-XiA(T)\\dT. 

2 = 1 

Being assumption Hpl satisfied, and being 

Z(t) = ^ x W ^ L n ^ W ) , 
^ (3.25) 

z(t) = $ (_ ( i ) ,x i , n _ i ( i ) ) , 

it is, from (2.54), 

+ 

n - l 

\\x(t) - x(t)\\ < 7b||e.(i)|| + 7i J2 ll*iA(í) " xiA(t)\\, (3.26) 
І=l 
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where 7 o = I/70 and 7 l = 7 l / 7 0 . Since it is ||e*(t)|| < ||V—a(A)|| - | | ^ ) l l , and 
l l^o) | |< |W(A)|H|e z(fo) | | , it follows 

||^(0 - £(*)]| < T O I I ^ - H A ) ! ^ ^ ^ ^ " ^ 1 ^ ' ^ ^ ) ^ - ^ ) , , ^ ^ , ! . ! ! ^ ^ ) , ! 

+7o|W-1(A)|| Si e^^V~1(m+X^-T) • ^1~L t ll*i-(r) - *«_(r)|| dr 
i=l 

+71 £ \\XiA(t) - xiA(t)\\. 
i=l 

(3.27) 
Note that, setting s(t) = \\x(t) — x(t)\\, inequality (3.27) has the same structure of 
inequality (2.24) considered in Lemmas from 2.6 to 2.8, with 

P = ^ 7 Z l l ^ - 1 ( A ) | | + A1, 

co = 7o|W-1(A)||-|W(A)||-||e,(«o)||, ( 3 2 g ) 

Cl = 7o|W-1(A)||V^7z, 
C2 = 71 • 

Moreover, by assumption ffpj, it is c2(n — 1) < 1. It follows that a sufficiently large 
positive constant 0 can be chosen such that 

| - + c 2 ( n - l ) < l . (3.29) 

By Lemma 2.5 it is always possible to choose a set of eigenvalues A such to ensure 

V^7z lW - 1 (A) | |+A 1 = i 9 . (3.30) 

Then, all the assumptions of Lemma 2.8 are satisfied by inequality (3.27), with 
tQ = (n — 1)A. It follows that there exist positive fio and a such to satisfy (3.19), 
and this proves the theorem. D 

Remark 3.5. It must be stressed that only assumption !_2 of Theorem 3.4 is nec­
essary for the observer implementation. The other conditions are only sufficient to 
ensure exponential convergence of the observation error to zero. Indeed, in computer 
simulation, the observer performed well also on many systems that did not satisfy 
such conditions. 

Remark 3.6. An interesting class of systems that satisfy hypotheses of Theo­
rem 3.4 is the one described by the following nth order differential equation 

*(»)(*) = <p(x(t),x(t - A)1x(1^t),x(1\t- A),...,x(n-V(t),x(n-V(t- A)) 

+iP(x(t),x(t - A),xW(t),x^(t - A ) , . . . ,a;(r i-1)(t),a;(n-1)(t - A))u(t), 

y(t) = x(t), 
(3.31) 

where x^(t) denotes the zth derivative of the scalar function x(t), for any given C°° 
Lipschitz functions ip and z/>. 
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4. EXAMPLE 

In this section let ^ A ( * ) > i — 1,2, denote the ith component of a vector x G M2 

delayed of j'A, that is *Xj&(t) = {x(t - j'A), j = 0,1,2,.... 
Consider the following nonlinear delay system: 

xx(t) = -32x(t) + 0.5 heA(t) 2xA(t), 

2x(t) = -(rxA)
2(t)2xA(t) + u(t), 

V(t) = *x{t). 

(4.1) 

The observation delay relative degree can be computed exploiting Definition 2.1, 
obtaining r = n = 2. Computations give 

H(X0,2) = \ 

F(X0>2) = 

- 3 \ + 0.5 xxA

 2xA 1 
~(1xA)

22xA 

-3 2 XA + 0.5 "X2A 2^2A 

-(^2A) 2 2 a;2A 

O(X0,2) = 

"0 o-
1 0 
0 0 

.0 1. 

LFH(X0,2) = [ 1 0 0 0]F(Xo )2) = - 3 2 x + 0 .5 1 x A

2 x A 

L2

FH(X0,2) = [0 - 3 0.5 2 x A 0.51xA]F(X0>2) 

= 3( ^ A ) 2 2xA + 0.5 2 x A ( - 3 2 x A + 0.5 xx2A

 2x2A) 

+0.51xA(-(1x2A)
22x2A) 

LGH(X0>2) = [ 1 0 0 0]O(X0,2) = [0 0] 

LGLFH(X0,2) = [0 - 3 0.52xA 0.5 xxA ] G(X0,2) = [ - 3 0.5 "a* ]• 

The map $ is as follows 

Z = Ф(x,Жд) = 
•32x + 0.5 h:A

2xA 

and 

n-it \ 1 ° 
y 3 J 

In this case, the observer has the following equations 

*£ = - 3 2x + 0.5 ^ A 2 £ A + V 
2x = - ^ 2fA + U+ \), 

K(y - fc) -w = 
\v 1 0 

o - ł 
1 0 

° - L L 
0 0 

0.5 ^řд 0.5 ЧA 

(4.2) 

wA, 
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where, as usual, w&(t) = w(t — A). In the simulations here reported it has been 
taken A = 0.1. The initial state of the system has been chosen constant over the 
interval[-A,0] 

x(т) т Є [-0.1,0]. 

Two simulations are reported here, one with x = 1 and one with x 
cases the observer has been initialized with 

x(r) = 0, W(T) = 0 , T e [-0.1,0]. 

(4.3) 

-1. In both 

(4.4) 

The vector K has been chosen such to assign eigenvalues A = (—1,-2) for the 
matrix A - KC in (2.17). The input applied is u(t) = sin4£. In Figures 1-2 the two 
components of the true and estimated state are plotted, in the interval [—0.1,5], in 
the case of x = 1. Figures 3-4 report simulation results for x = - 1 . 

Many simulations on different systems have been carried out, and in most cases 
they showed good performance, also when hypotheses of Theorem 3.4 were not 
satisfied. The observer has been tested successfully also with respect to robustness 
to disturbance on output measures. 

5. CONCLUSIONS 

An observer for a class of nonlinear delay systems has been proposed in this paper. 
The observer is very easy to implement, and sufficient conditions for the convergence 
of the estimated state to the true one are provided. Global and delay independent 
results are presented in this paper. Computer simulations have shown the good 
performance of the proposed observer. 
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Fig. 1. True and observed variable xx in the case of x = 1. 
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Fig. 2. True and observed variable 2x in the case of x = 1. 
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Fig. 3. True and observed variable lx in the case of x = — 1. 
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