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SOLUTION FOR A CLASSICAL PROBLEM 
IN THE CALCULUS OF VARIATIONS 
VIA RATIONALIZED HAAR FUNCTIONS 

MOHSEN RAZZAGHI1 AND YADOLLAH ORDOKHANI 

A numerical technique for solving the classical brachistochrone problem in the calculus 
of variations is presented. The brachistochrone problem is first formulated as a nonlin
ear optimal control problem. Application of this method results in the transformation of 
differential and integral expressions into some algebraic equations to which Newton-type 
methods can be applied. The method is general, and yields accurate results. 

1. INTRODUCTION 

There has been a considerable renewal of interest in the classical problems of the 
calculus of variations both from the point of view of mathematics and of applications 
in physics, engineering, and applied mathematics. 

Finding the brachistochrone, or path of quickest decent, is a historically inter
esting problem that is discussed in virtually all textbooks dealing with the calculus 
of variations. In 1696, the brachistochrone problem was posed as a challenge to 
mathematicians by John Bernoulli. The solution of the brachistochrone problem is 
often cited as the origin of the calculus of variations as suggested in [19]. 

The classical brachistochrone problem deals with a mass moving along a smooth 
path in a uniform gravitational field. A mechanical analogy is the motion of a bead 
sliding down a frictionless wire. The solution to this problem was obtained by various 
methods such as the gradient method [3] and successive sweep algorithm in [1, 4]. 

Orthogonal functions have received considerable attention in dealing with vari
ous problems of dynamic systems. The main characteristic of this technique is that 
it reduces these problems to those of solving a system of algebraic equations thus 
greatly simplifying the problem. The approach is based on converting the under
lying differential equations into an integral equations through integration, approx
imating a various signals involved in the equation by truncated orthogonal series 
cf){t) = [</>o,</>i,-' * j<rV-i]T and using the operational matrix of integration P , to 
eliminate the integral operations. The elements 0O, </>i, • • • , (j)r-i are the basis func
tions, orthogonal on certain interval, and the matrix P can be uniquely determined 

1 Corresponding author. 
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based on the particular orthogonal functions. Special attention has been given to 
applications of Walsh functions [6], block-pulse functions [10], Laguerre series [9], 
Legendre polynomials [5], Chebyshev polynomials [8] and Fourier series [17]. 

The orthogonal set of Haar functions is a group of square waves with magnitude 
of +2^ , —22 and 0, i = 0 ,1 ,2 , . . . [15]. The use of the Haar functions comes from 
the rapid convergence feature of Haar series in expansion of function compared with 
that of Walsh series [2]. Lynch et al [11] have rationalized the Haar transform by 
deleting the irrational numbers and introducing the integral powers of two. This 
modification results in what is called the rationalized Haar (RH) transform. The 
RH transform preserves all the properties of the original Haar transform and can be 
efficiently implemented using digital pipeline architecture [18]. The corresponding 
functions are known as RH functions. The RH functions are composed of only 
three amplitude + 1 , —1 and 0. Further, Ohkita and Kobayayashi [12, 13] applied 
RH functions to solve linear ordinary differential equations [12] and linear first and 
second order partial differential equations [13]. 

In the present paper we apply RH functions to solve the brachistochrone problem. 
The brachistochrone problem is first formulated as an optimal control problem. The 
method consist of reducing the optimal control problem into a set of algebraic equa
tions by expanding the state rate x(t) as RH functions with unknown coefficients. 
The operational matrix of integration is then used to evaluate the coefficients of RH 
functions in such a way that the necessary conditions for extremization is imposed. 
The paper is organized as follows: In Section 2 we describe the properties of the 
RH functions required for our subsequent development. Section 3 is devoted to the 
formulation of the brachistochrone problem as an optimal control problem. In Sec
tions 4 and 5 the proposed method is used to approximation the brachistochrone 
problem. In Section 6, we report our numerical finding and demonstrate the ac
curacy of the proposed numerical scheme by considering the illustrative example 
discussed in [1, 3, 4]. 

2. PROPERTIES OF RATIONALIZED HAAR FUNCTIONS 

2.1. Rationalized Haar functions 

The RH functions RH(r, £), r = 1,2,3, • • • are composed of three values + 1 , - 1 and 0 
and can be defined on the interval [0,1) as [12] 

1, Ji < t < J i 

RH(r, t) = { - 1 , Ji < t < J0 (1) 

0, otherwise, 

where 
j — u ^ 1 - . 

Ju = —y-, ti = 0 , - , l . 
The value of r is defined by two parameters i and j as 

r = 2 i + j - l , 1 = 0 ,1-2-3 , . . . j = l , 2 , 3 , . . . , 2 \ 
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RH(0, t) is defined for i = j = 0 and is given by 

RH(0,t) = l, 0 < * < 1. 

577 

(2) 

A set of the first eight RH functions is shown in Figures 1-8, where, r=-0, l ,2 , . . . ,7 . 
The orthogonality property is given by 

for r = v 

for r фv 
í RH(r,ť)RH(u,ř)dť = j 2 *' 

u = 2 n + m - l , n = 0,1,2...., m = 1,2,... ,2 n . 

Fig. 1. RH(0,*) obtained for i = 0 and j = 0. 

i 

Fig. 2. RH(l,t) obtained for i = 0 and j = 1. 

Fig. 3 RH(2,£) obtained for i = 1 and j = 1. 

Fig. 4. RH(3,t) obtained for i = 1 and j = 2. 

-1 

Fig. 5. RH(4, t) obtained for i = 2 and j = 1. 
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Fig. 6. RH(5,t) obtained for i = 2 and j = 2. 

Fig. 7. RH(6,£) obtained for i = 2 and j = 3. 

Fig. 8. RH(7,t) obtained for i = 2 and j = 4. 

2.2. Function approximation 

A function f(t) defined over the interval [0,1) may be expanded in RH functions as 

-f-oo 

(3) /(*) = 5>rRH(r,*), 
r=0 

where a r , r = 0,1,2, • • • is given by 

o r = 2i / / ( t )RH(r , t )d t , 
Jo 

with 

r = 2* + j - 1, i = 0 ,1 ,2 ,3 , . . . / = 1,2,3, . . . , 2* and r = 0 for i = j = 0. 
(4) 

The series in Eq. (3) contains an infinite number of terms. If we let i = 0 ,1 ,2 , . . . , a 
then the infinite series in Eq. (3) is truncated up to its first k terms as 

k-l 

/(í) = 5> r RH(r,ť) = Ar «/>(*), (5) 
r=0 

where 
fc = 2 a + 1 , a = 0,1,2,. . . . 

The RH functions coefficient vector A and RH functions vector (j)(t) are defined as 

A = [ a 0 , a i , . . . ,afc_i]T (6) 

4>(t) = [0o(*)^i(t),...,0*-i(t)]T (7) 
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where 
(j)r(t) = R H ( r , t ) , r =-0,1,2, • • • , f c - l . 

If each waveform is divided into eight intervals, the magnitude of the waveform can 
be represented as 

Ф8X8 = 

Фo 
Фl 

1 1 1 1 1 1 1 1 
1 1 1 1 - 1 - 1 - 1 - 1 
1 1 - 1 - 1 0 0 0 0 
0 0 0 0 1 1 - 1 - 1 
1 - 1 0 0 0 0 0 0 
0 0 1 - 1 0 0 0 0 
0 0 0 0 1 - 1 0 0 
0 0 0 0 0 0 1 - 1 

(8) 

In Eq. (8) the row denotes the order of the Haar function. The matrix <&kxk can be 
expressed as 

Фfcxfc = [ф(l/2к),ф(3/2к),..., ф((2к - l)/2к)]. 0) 

2.3. Operational matrix of integration 

The integration of the function c/)(t) defined in Eq. (7) is given by 

/ ф(ť) dť = pф(t) 
jo 

(Ю) 

where P = Pkxk is the k x k operational matrix for integration and is given in [12] 
as 

Pkxk - ^ 

2кPk„k 
2 Л 2 

-Фfc vfc 
2 л 2 

Ф - ì 

where Ф l x i = [1], P l x i = [ ì] , and 

Ф :xk " l JL I ^kxк 

( 

diag 1 1 0 O O2 O2 9 3 9 
i , ±, z, z, L , . . . , L , L , . . . , __; ì • • • J o ' ' * * » 

V 22 23 

3. THE BRACHISTOCHRONE PROBLEM AS AN OPTIMAL CONTROL 
PROBLEM 

The brachistochrone problem may be formulated as an optimal control problem as 
in [7]. Minimize the performance index J , 

jo U-z ( í ) 
dt (И) 
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subject to 

x(t) = u(t) (12) 

with 

x(0) = 0, x(l) = -0 .5 (13) 

Equations (11)-(13) describe the motion of a bead sliding down a frictionless wire 
between two points (0,0) and (1, —0.5) in a constant gravitational field. It is desired 
to find the shape of the wire that will produce the minimum time pass between the 
two points. 

The minimal time transfer expression in Eq. (11) is obtained from the law of 
conservation of energy. Here x(t) and u(t) are dimensionless and they represent 
respectively the vertical and horizontal coordinates of the sliding bead. 

As is well known the exact solution to the brachistochrone problem is the cycloid 
defined by the parametric equations. 

x = 1 - ^ ( 1 +cos 2a ) , *-= J0 + c(2a. + sin2a) 

where 
tag a = x 

with the given boundary conditions, the integration constants are found to be 

c = 1.6184891, t0 = 2.7500631. 

4. THE NUMERICAL METHOD 

Suppose, the rate variable x(t) can be expressed approximately as 

x(t) = ATct>(t) (14) 

using Eqs. (10) and (14), x(t) can be represented as 

x(t) \= ( x(t')dt' + x(0) 
Jo 

= - 4 T W ) , (15) 

also by using Eqs. (12) and (14) we have 

u(t) = AT<f>(t). (16) 

To apply Eqs. (15) and (16), we first collocate these equations in k points. Suitable 
collocation points are Newton-Cotes nodes given in [14] as 

tP = ^ ^ , P = 1 ,2 ,3 , . . . , k. (17) 
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By using Eqs. (7) and (17) we get 

<f)(tp) = $kxkep , p=l ,2 , . . . , fc , (18) 

where $kxk can be obtained similarly to $8x8 in Eq. (8) and 

ep = [0,0,..., 0,1, o ^ a T . 
p—1 k—p 

Next we express Eqs. (15) and (16) at collocation points as 

xp = x(tp) = ATP<t>(tp) = ATP$kxkeP p = l,2,...,k (19) 

Up = u(tp) = AT$kxkep, p = l,2,...,k. (20) 

5. THE PERFORMANCE INDEX APPROXIMATION 

Let 

g(X(t),U(t),t)=(±^y. (2D 

Substituting Eqs. (15) and (16) in Eq. (21) we get 

9(A
TP<Kt),AT<f>(t),t) = ( \ + j £ ^ y . (22) 

At the collocation points tp, p = 1,2,3,..., A;, Eq. (22) reduces to 

. (1+ul\i 

g(xp,up,tp)= I T T ^ J • 

Finally, the performance index in Eq. (11) can be written as: 

J = f g(x(t),u(t),t)dt= [ g(ATP<j)(t),AT(j)(t),t)dt 
Jo Jo 

= 5"'M (23) 

where u>p are the corresponding weights, given by [14] 

1 U* = k ' P = 1 ' 2 ' - " ' f c -
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6. EVALUATING THE VECTOR A 

The optimal control problem has been reduced to a parameter optimization problem 
which can be stated as follows: 

Find a r , r = 0 ,1 ,2 , . . . , k — 1, which minimizes Eq. (23) subject to 

x(0)=ATP$kxke1=0, x(l)=ATP$kxkek = -0.5. (24) 

We now minimize Eq. (23) subject Eq. (24) using the Lagrange multiplier technique. 
Suppose 

J* = J + Aia:(0) + A2[x(l) + 0.5]. 

The necessary conditions for minimum are 

d J* d T* 8T* 
^ — = 0, ^ T - = 0, ^ T - = 0, n = 0,l,2,---,k-l, 
oar oXi 0X2 

which gives (k + 2) non-linear equations which can be solved for a r , Ai and A2 using 
Newton's iterative method. The initial values required to start Newton's iterative 
method have been chosen by taking x(t) as linear function between the initial value 
x(0) --- 0 and final value x(l) = —0.5. In Table 1 the results for RH functions 
approximation with k = 4, 8 and 16 together with gradient [3], successive sweep 
[1, 4] methods and exact are listed. 

Table 1. The RH functions and other solutions. 

Methods x(l) « ( - - ) J 

Gradient method [3] -0.5 -0.7832273 0.9984988 

Successive sweep method [1, 4] -0.5 -0.7834292 0.9984989 

RH functions 
k = A -0.51 -0.7864563 0.9984684 
k = 8 -0.5 -0.7864415 0.9984973 
k = 16 -0.5 -0.7864407 0.9984982 

Exact Solution [4] -0.5 -0.7864408 0.9984981 

7. CONCLUSION 

The operational matrix of integration of the RH functions together with the Newton-
Cotes nodes are applied to solve the brachistochrone problem. The matrices $kxk 

and P introduced in Eqs. (9) and (10) contain many zeros, and thus make the 
rationalized Haar functions computationally very attractive. 

(Received October 6, 2000.) 
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