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K Y B E R N E T I K A - V O L U M E 37 ( 2 0 0 1 ) , NUMBER 6, P A G E S 6 4 7 - 6 6 7 

LINEAR TRANSFORMATIONS OF WIENER PROCESS 
THAT BORN WIENER PROCESS, BROWNIAN BRIDGE 
OR ORNSTEIN-UHLENBECK PROCESS1 

P E T R LACHOUT 

The paper presents a discussion on linear transformations of a Wiener process. The 
considered processes are collections of stochastic integrals of non-random functions w.r.t. 
Wiener process. We are interested in conditions under which the transformed process is a 
Wiener process, a Brownian bridge or an Ornstein-Uhlenbeck process. 

1. INTRODUCTION 

Investigation of asymptotic properties of a statistical estimator or of a testing statis­
tic often leads to a linear transformation of a Wiener process that born a Wiener pro­
cess or a Brownian bridge. Let us recall some typical examples of such transforma­
tions. Provided a Wiener process (W(t) , £ > 0) the processes (^W(a2 • t) ,t > 0), 
a T-: 0 and (tW(\) , £ > 0) are Wiener processes and (W(t) - tW(\) ,t G [0,1]) and 
(tW(^) ,* G (0,1)) are Brownian bridges. 

In the paper a more general schema is treated. We consider a collection of stochas­
tic integrals of non-random real functions w.r.t. Wiener process, i. e. 

( J at(rj) dW(rj) ,teTj, where at G L2(E+) VteT. 

We look for conditions under which the transformed process fulfills 

r+oo 

/ 
J0 

at{rj) áW{ri) = V{ţ{t)) a.s. Ví Є T, 

where V is either a Wiener process or a Brownian bridge or an Ornstein-Uhlenbeck 
process and f is a convenient function. 

The investigation starts with necessary and sufficient conditions under which the 
transformed process is a Wiener process. The other two sections provide a study 

xThe research has partially been supported by the research project "Mathematical Methods 
in Stochastics" - MSM 113200008 and the Grant Agency of the Czech Republic under Grant 
201/99/0264. 
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on necessary and sufficient conditions under which the transformed process is a 
Brownian process or an Ornstein-Uhlenbeck process. In each of these cases, we 
present sufficient conditions based on Radon-Nikodym derivative. Each section is 
closed with necessary and sufficient conditions for the rescaling of a Wiener process. 

To avoid any misunderstanding let us summarize notation used in the paper: 

l_2 — the set of all random variables having finite second moment; 

+) — the set of all Lebesgue measurable functions a : R+ -> R; 
+00 

.) = | a € L ( E + ) : / a2{rj)ár) < +001 

2. WIENER PROCESS 

This section treats necessary and sufficient conditions under which the linear trans­
formation preserves Wiener processes. For completeness let us recall the definition 
of Wiener process. 

Definition 2 .1 . A random process (W(t) ,t > 0) is called Wiener process if the 
following conditions are fulfilled: 

i. it is a Gaussian process, i.e. for each D C R+, #D < +00 we have 

C( (W(t) ,t G D)j = N(/i£),X.£>) for some vector /JLD G R D and some positive 

semidefinite matrix E/j G R D x D ; 

ii. V t G R+ : E[W(t)] = 0; 

hi. V t , s G K + : cov(W(t), W(s)) = min{>, 5}; 

iv. the process possesses continuous sample paths. 

Definition 2.2. Let T be a non-empty set. We call a process (W(t), t G T) to be 
a pre-Wiener process if 

i. the process is a Gaussian process, i. e. for each D C T , #D < +00 we have 

C((W(t) ,teD)J = N(/i£>,T,D) for some vector /JLD G R D and some positive 

semidefinite matrix T,D G R D X D ; 

ii. V t G T : E[W(t)] = 0; 

hi. there is a function f : T -> R+ such that cov(W(t), H>(8)) = min{f («),£(*)} 
Vt,seT. 

Here of course, £(t) = var(>V(*)) but we decided to keep the redundant function 
f to engrave a similar scheme to Definitions 2.2,3.2 and 4.2. 

Let us recall the well-known relation between a Wiener and a pre-Wiener process. 
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Proposition 2.1. If the process (W(t) ,t > 0) is a pre-Wiener process with 
var(W(t)) = t for all t G R+ then there is a Wiener process (W(t) ,t > 0) which is a 
modification of the pre-Wiener process, i.e. V£ > 0 : W(t) = W(t) a.s. 

P r o o f . A proof can be found in [1], Chapter 2, §9. • 

The pre-Wiener process has limits in L2 and can be extended to the closure of 
indexes. 

Proposition 2.2. Let T C R+ be a non-empty set and (W(t), £ G T) be a pre-
Wiener process with var(W(£)) = t for all t G T. Then for each t G clo(T), there 

is X(t) G L2 such that W(s) — - ^ ^ X ( t ) . The process (X(t),t G clo(T)) is a pre­
fer 

Wiener process with var(X(t)) = t for all t G clo(T) extending the former one, i.e. 
VteT:X(t) = W(t) a.s. 

P r o o f . The existence of limits in L2 is evident since 

E \(W(s) - W(v))2] =s + v-2 min{.5, v} — ) 0 for each t G clo(T). 
a,vЄT 

Let (X(t),t G clo(T)) denote the limit in L2. 
For each t G T, we immediately have that 

W(s)—^W(t). 
seT 

Therefore, X(t) = W(t) a.s. 
The process (X(t),t G clo(T)) is a pre-Wiener process with var(X(£)) = t for all 

t G clo(T), since the convergence in L2 preserves Gaussian processes and implies the 
convergence of the mean and of the covariance. • 

A pre-Wiener processes can be equivalently characterized as a re-indexed Wiener 
processes. 

T h e o r e m 2 .1 . Let T ^ 0 and (V(t),t G T) be a L2-random process. Then there 
exists a Wiener process (W(t), t G IR+) such that V(t) = W(var(V(t))) a. s. for each 
t G T if and only if (V(t), t G T) is a pre-Wiener process. 

P r o o f . 

1. Let a Wiener process (W(t),t G R+) be such that V(t) = W(var(V(t))) a.s. 
for each t G T. Then (V(t),t G T) is a zero mean Gaussian process with 
cov(V(t),V(s)) = min{var(V(t)) ,var(V(s))} for each t,s G T; i.e. it is a 
pre-Wiener process. 
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2. Assume (V(t),t e T) is a pre-Wiener process. 

Let us denote D = {var(V(t)) : teT}. 

For each d G D we choose t(d) e T such that d = var(V(t(d))) and denote 
X(d) = V(t(d)). 

Then the process (X(d),d e D) is a pre-Wiener process being Gaussian zero-
mean process according to the definition and fulfilling 

c o v ^ d O , * ^ ) ) = c o v ^ d x ) ) , ^ ^ ) ) ) 

= min{var(y(*(<*!))) ,var(V(*(d2)))} = m i n ^ , ^ } . 

Further, X(d) = V(s) a. s. whenever var(V(s)) = d since 

E[(X(d) - V(s))2] = E[(V(t(d)) - V(s))2] 

= var(V(t(d)))+v3r(V(s)) - 2mm{vzr(V(t(d))) ,var(F(s))} = 0. 

According to Proposition 2.2, there is a pre-Wiener process (Y(d),d e c\o(D)) 
extending the process (X(d), d e D). If 0 £ clo(L)), we add Y(0) = 0 to have a 
pre-Wiener process (Y(d), d e clo(Z?) U {0}) extending the process (X(d), d e D). 

Let us set D\ = clo(jD) U {0} and dmax = supd G D l d. Now we start a construc­
tion giving a pre-Wiener process with var(W(t)) = t defined for all t G R+. 

If dmax = +oo then we set D2 = D\ else D2 = -DiU(dmax, +oo) and one can find 
a Wiener process (G(t),t G R+) independent with the process (Y(d),d G Di) 
and define Y(d) = Y(dma,^) + G(d - dmax) for all d > dmax. Then the process 
(Y(d),d e D2) is a pre-Wiener process with var(y(d)) = d. 

The set D2 is a closed unbounded subset of R+ and, hence, its complement 
is an open set and can be expressed as an at most countable union of disjoint 
bounded intervals, say R+ \ D2 = UiGI(a*> &*)> where / C N and 0 < a* < bi < 
+co Vi G / . 

For all i e I can be found a Brownian bridge (Bi(t),t G [0,1]) such that the 
processes (Y(d),d G D2), (Bi(t),t G [0,1]), i el are independent. 

Now, we define a process (W(t) ,t G R+) by 

(i) W(t) = Y(t) for all t e D2] 

(ii) W(t) = Y(cn) + £%(Y(bi) - Y(a{)) + Vb^lBi ( ^ ) for all t G 

(di,bi),ieL 

The process (W(t) ,t G R+) is a Gaussian process with zero mean. Hence we 
just need to verify covariances to show that it is a pre-Wiener process. 

Let 0 < t < s < +oo. 

(a) If t, s e D2 then cov(W(*), W(s)) = cov(Y(t), Y(s)) = t. 
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(b) If t G D2 and s £ D2 then there is i G / such that s G (a^ bi) and t < ai. 
Then we conclude 

cov(W(*),W(8)) 

COV (Y(t),Y(ai) + ^t.(Y(bi) - Y(ai)) + y/bT^Bi ( ^ j ) ) 

= cov(y(t),y(ai)) = t. 

(c) If t £ D2 and s e D2 then there is i e / such that t e (at, bi) and bi<s. 
Then we have 

cov(W(t),W(s)) 

COV ( У ( O І ) + l~^І~{ү{bi) - YЫ) + Љ-"iBi ( ^ : ) >ү{s)) 
= at +

 L(bi - a^ = t. 
bi — ai 

(d) Let t G (ai,bi) and s G (aj.bj) for some i , j G J, 6» < aj . Then we have 

cov(W(t),W(«)) 

cov (V(fli) + ±Z*-(Y(bi) - Y(ai)) + yfb^iB{ ( ^ L ) , 
\ bi-ai \bi-aij 

y < ° > > + ^ < F < ^ » - Y^+S^B' (^)) 
. t - ai 

a{ + (6i-ai) = t. 
bi — ai 

(e) Let t,s G (ai, bi) for some i G I. Then we have 

cov(W(«),W(*)) 

cov (Y(ai) + ±Z2L(y(bi) - Y(ai)) + y/b^iBi (\P^\ , 
V bi-ai \bi-aij 

Y(ai) + ^-(Y(bi) - Y(ai)) + y/b^iBi ( f ^ ) ) 
0i-ai \bi-aiJJ 

(t-ai)(s-ai) ( s_-Oi\ 
-ai + + (t - ai) I 1 - = t. 

bi — ai \ bi — ai) 

According to Proposition 2.1, there is a Wiener process (W(t) ,t G 1R+) such 
that W(t) = W(t) a. s. for each t > 0. Because of the construction, we have 
the desired property: V(t) = W(vzr(V(t))) a. s. for each teT. • 

Now, we can start to investigate linear transformations of a Wiener process. 



652 P. LACHOUT 

Proposition 2.3. Let T / B , (W(t) ,t G R+) be a Wiener process and for each 
t eT a, function at G L2(R+) be given. 

Then (fQ °° at(rj) dW(r)) ,t eTj is a Gaussian process with zero mean and the 

covariance function R(t, s) = JQ°° at(u)as(u) du for each t,s eT. 

P r o o f . The set of all Gaussian random vectors is closed for linear transforma­
tions and as well is a closed subset of the space L2. Therefore, the considered process 
is always Gaussian. 

By the definition of the stochastic integral, the mean must be zero and covariances 
of the announced form. • 

T h e o r e m 2.2. Let T ^ 0, (W(t), t G R+) be a Wiener process and for each t G T 
a function at G L2(R+) be given. 

Then there exists a Wiener process (V(t),t G R+) such that 

r+oo / /«+oo \ 
/ at(rj) dW(r)) = V I / a2

t(rj) drj J a. s. for each teT (1) 

if and only if 

f+oo r r+oo r+oo r+oo r r+oo r+oo "\ 
/ at(r))as(r)) dr) = m h J / a2(r)) drj, / a2

s(r)) drj > for each t,s G T. (2) 

P r o o f . According to Theorem 2.1 the expression (1) is fulfilled if and only if 

(Jo+0° at(v) dW(r)) ,t eTJ is a pre-Wiener process. 

The process is zero-mean Gaussian process, according to Proposition 2.3. Hence, 
(1) and (2) are equivalent. D 

Theorem 2.2 gives a necessary and sufficient condition for the expression (1). In 
the rest of this section, we present sufficient conditions giving (1). At first, let us 
mention that reversing time procedure preserves the expression (1). 

Proposition 2.4. Let T ^ 0 and (W(t) ,t G R+) be a Wiener process. For each 
t eT a function at G L2(R+) is given and 

r+oo r r+oo r+oo -\ 

/ at(r))as(rj) dr) = min< / a2(r)) dr/, / a2
s(rj) drj > for each t,s eT. (3) 

Then there exists a Wiener process (V(t),t G R+) such that 

( / + G O atiT,)2 dV) lo" ativ) dW{T,) = V[ {C" at{v)2 dT]) ) a> S' ̂  
for each t G T. 

P r o o f . One can verify the condition from Theorem 2.2 and give the proof. • 

The condition of Theorem 2.2 is closed to Radon-Nikodym derivative. 
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Propos i t ion 2.5. Let T ^ 0, (W(t) ,t G R+) be a Wiener process and for each 
t G T a function a* G L2(R+) be given. Let for each t,s G T we have either 
at = d ^ 7 ' I{n€R+:«,(!,)*>} o r a* = dr^77 ' ^ e ^ : o . ( ^ o } , where At denotes 
the measure on B(R+) with density at and m^ denotes the restriction of Lebesgue 
measure to a cr-field B. 

Then there is a Wiener process (V(£),£ G R+) such that 

(5) 
r+oo / r+oo \ 
/ at(rj) dW(r)) = vl at(rj)2 drj J a. s. for each t G T. 

P r o o f . Let t,s €T. Properties of Radon-Nikodym derivative are giving 

r+oo r+oo r+oo 
/ at(r))as(r))dr) = / at(rj)2 drj < as(rj)2 drj 

Jo Jo Jo 
•f dA* IT 

r+oo r+oo r+oo 
/ at(T))as(T))dT) = / as(T))2dT)< at(r])2 drj 

Jo Jo Jo 
C dAt * 

3 = Hm , x-{t|€R+:a.(t7)--0}-u , , l a(a j ) 

Consequently, Theorem 2.2 concludes the proof. • 

P ropos i t ion 2.6. Let T ^ 0, (JV(£) , £ G R+) be a Wiener process and for each 
t G T a function a* G L2(R+) be given. Let for each t, s G T we have either 
at = d ^ •I{neR+ :a4(^o} or as = - j ^ . l{ f | eR+: f l - ( l ? )#0}> where ^ denotes 
the measure on B(R+) with density at and m^ denotes the restriction of Lebesgue 
measure to a cr-field B. 

Then there is a Wiener process (V(t),t G R+) such that 

{C°°at{j])2 dr?) C°°at{r,) dw{r,)=v[ (C°°at{7,)2 dv))a's' (6) 

for each teT. 

P r o o f . The statement is a direct consequence of Propositions 2.5 and 2.4. • 

Unfortunately, the condition (2) is weaker than Radon-Nikodym derivative. 
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E x a m p l e 2 . 1 . Let T = {1,2} and 

f 0 for 0 < 77 < 1, 

1 for 0 < 77 < 2, 

a i 

1 for 1 < 77 < 2, 

( i))= 2 f o r 2 < 7 7 < 4 , a 2 ( y ? ) : = J 2 f 0 r 2 < 7 7 < 3 , 

0 for 4 < 77 < +00, 2.5 for 3 < 77 < 4. 

0 for 4 < 77 < +00. 

One can easily check that 

/»+oo r+00 /»+oo 

/ ai(T/)a2fa)dTj = 10= / a?(77)d77< / ^(77) dry = 11.25, 
Jo Jo Jo 

( 0.5 for 0 < 77 < 2, 

2.25 for 2 < 77 < 4. 
o{ai) . a m a ( a i ) 

I 0 for 4 < 77 < -Foo. 

Assuming restricted collections of functions, we can show reverse statements. 

Proposit ion 2.7. Let T / 0, (W(t), t G R+) be a Wiener process, a G L(R+) and 
At C K+ for each t eTbe such that JA a(rj)2 &r) < +00 for each t G T. 

Then there is a Wiener process (V(t),t G R+) such that 

I a(fi)lAt(ri)dW(ri) = v(f a(r))2 drA a.s. for each t G T (7) 

if and only if for each t,s eT 

either m((.A* - As) n {77 G R+ : 0(77) 7- 0}) = 0 
(8) 

or n\((A8 - At) n {77 G M+ : afa) £ 0}) = 0. 

P r o o f . According to Theorem 2.2, the expression by a Wiener process is equiv­
alent to 

/ a(u)2 du = min< / a(u)2 du, / a(u)2 du > for each t,s €T. 
JAtnAM [J At J AM ) 

That is equivalent to 

min< / a(u)2 du, / a(u)2 du > = 0 for each t,s GT. 
{jAt-AtnA. JAM-AtnAa ) 

This condition can be equivalently rewritten as (8). • 
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Propos i t ion 2.8. Let T / 0, (W(t), t G R+) be a Wiener process, a G L(R+) and 
at G E, Qf 7- 0, At C R+ for each t G T. Let 

either m((At - As) n {77 G R+ : a(r)) ^ 0}) = 0 

or m((A8 - At) n {77 G R+ : 0(77) / 0}) = 0 whenever t, 5 G T 

and 0 < fA a(rf)2 dr) < -Foo for each t G T. Let there be £n,so £ T such that 

«to # a«o-
Then there is a Wiener process (V(t),t G R+) such that 

/ ata(rj)lAt (77) dJVfa) = V (aj f a(rj)2 drA a. s. for each teT (9) 

if and only if 
fAt a(rj)2dr) 

at = / ° / \o 1 * a*o f° r e a c h * G T. (10) 
fAt <rj)2 dr) 

P r o o f . According to Theorem 2.2, the expression by a Wiener process is equiv­
alent to 

atas / a(u)2 du = min< a2 / a(u)2 du, a2 / a(u)2 du > for each t,s eT. 
JAtnA3 I J At JAS ) 

Assume t,s eT with at / as and m((.Aj - As) n {77 G R+ : a(rf) ^ 0}) = 0, then 

as / a(u)2 du = at / a(w)2 du because 
J Aa J A t 

0 < / a(7?)2 d77 < +00, 0 < / a(77)2 d77 < +00. 
J At JAS 

Since ato 7̂  aSo, we have either at 7-= aSQ or a* 7-̂  aj0 for each teT. Therefore, we 
can conclude 

at / a(u)2 du = ato / a(u)2 du for each <GT. 
•/At JAt0 

Evidently, such constants fulfill the condition of Theorem 2.2. Therefore, we have 
proved the statement of the proposition. • 

These two propositions solve the problem of the rescaling of a Wiener process. 

Theorem 2.3. Let T ^ 0 and (W(t),t G R+) be a Wiener process. Let for each 
teT constants aty fit G R, at ^ 0, /3t > 0 be given. 

Then there is a Wiener process (V(t),t G R+) such that 

atW(/3t) = V (a?ft) a.s. for each t G T 

if and only if either at = a8 for each s,t G T or a*& = a5A* for each s,t eT. 



656 p. LACHOUT 

Proof. 

1. Let at = a for all t G T. 

Setting a = a, At = [0,/3t] the assumptions of Proposition 2.7 are fulfilled and 
the statement becomes to be obvious. 

2. Let t,s £ T exist such that at < as. 

Setting a = 1, At = [0,/3t] the assumptions of Proposition 2.8 are fulfilled and 
the statement follows. • 

3. BROWNIAN BRIDGE 

This section treats necessary and sufficient conditions under which the linear trans­
formation gives Brownian bridges. For completeness let us recall the definition of 
Brownian bridge. 

Definition 3.1. A process (B(t) ,t G [0,1]) is called Brownian bridge if 

1. it is a Gaussian process; 

2. V t G [0,1] : E[B(t)) = 0; 

3. V t, 8 G [0,1] : cov(B(t), B(s)) = min{£, s} (1 - max{>, s}); 

4. its sample paths are continuous. 

Definition 3.2. Let T be a non-empty set. We call the process (B(t) ,t eT) to 
be a pre-Brownian bridge if 

1. it is a Gaussian process; 

2. V t G T : E[B(t)) = 0; 

3. there is a function f : T -> [0,1] such that V t,s eT : 

cov(B(t),B{8)) = m i n ^ U O O } (1 - maxtf (*),£(*)}). 

A Brownian bridge exists. 

Proposition 3.1. Let (W(t),t G IR+) be a Wiener process. Then the process 
(W(t) - t - W(l), t G [0,1]) is a Brownian bridge. 

P r o o f . The transformed process is a zero-mean Gaussian process with continu­
ous sample paths. Evaluating covariances one can easily check that the process is a 
Brownian bridge. • 

Any pre-Brownian bridge can be described as a re-indexed Brownian bridge. 
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L e m m a 3 .1 . Let T 7- 0, G be a standard Gaussian r.v. independent with a 
random process (B(t) ,t G T) and f : T -> [0,1]. Then 

(#(£), t G T) is a pre-Brownian bridge with 
cov(B(t) ,B(s)) = mixi{t;(t),tis)} (1 - max{at),^(s)}) t,s€T (11) 

if and only if 

(B(t) + £(t) • G, t G T) is a pre-Wiener process with 
var(z3(i) + Z(t) • G) = £(t) V t G T. (12) 

P r o o f . For each . , s 6 T w e immediately receive 

co\t(B(t) + £(*) • G, B(s) + £(s) • G) = cov(B(t), B(s)) + £(*) • £(s) • var(G) 

= cov(B(t),B(s)) + S(t)-m-
That is straightforwardly giving the desired statement. • 

T h e o r e m 3 .1 . Let T / 0 and (B(t) ,t G [0,1]) be a L2-random process. Then 
(B(t) ,t G [0,1]) is a pre-Brownian bridge if and only if there exists a Brownian 
bridge (B(t), t G [0,1]) and a function £ : T -> [0,1] such that 

B(t) = B(£(t)) a. s. for each t G T. 

P r o o f . Let G be standard Gaussian r.v. independent with the process (B(t) ,t€T) 
a n d £ : T - > [0,1]. 

According to Lemma 3.1, (B(t), £ G T) is a pre-Brownian bridge with 

cov(/3(*) ,/3(s)) = m i n ^ t U O O } (1 - max{£(jU00}) 

if and only if (B(t) + £(t) • G, £ G T) is a pre-Wiener process with 

var(£(*)+ £(*)• £) = £(*)• 

According to Theorem 2.1, the process (B(t) + f (£) • G,t G T) is a*pre-Wiener pro­
cess with var(#(£) + £(t) • G) = £(t) if and only if there is a Wiener process 
(W(t) ,t G R+) such that #(*) + ^(t) • G = W(£(t)) a.s. for each t G T. 

Consequently, B(t) = W(£(t)) - £(t) • W(l) a.s. for each t G T. 
This concludes the proof since the process (W(t) — t • W(l), t G [0,1]) is a Brow­

nian bridge, accordingly to Proposition 3.1. • 

Brownian bridges and pre-Brownian bridges are preserved if the time is reversed. 

P ropos i t i on 3.2. If (B(t), t G T) is a pre-Brownian bridge then (B(l -t),teT) 
is a pre-Brownian bridge, as well. 

P r o o f . The covariance structure must be verified, only, and that is evident. • 
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Proposition 3.3, If (B(t), t G [0,1]) is a Brownian bridge then (5(1 - t), t G [0,1]) 
is a Brownian bridge, as well. 

P r o o f . The process (B(l — t) ,t G [0,1]) is a pre-Brownian bridge, according to 
Propositions 3.2 and its sample path are evidently continuous. • 

Theorem 3.2. Let T / 0, (JV(£) ,* G R+) be a Wiener process, for each t G T a 
function at G L2(R+) be given and f : T -» [0,1]. 

Then there exists a Brownian bridge (i?(£) ,£ G [0,1]) such that 

r+oo 
/ ^(77) dVV(r?) = B(£(t)) a. s. for each t G T (13) 

Jo 

if and only if 

r+oo 
/ af(r?)as(r/)dr? = m i n { ^ ) , ^ ( 5 ) } ( l - m a x { ^ ) , ^ ( 5 ) } ) for each t,s G T. (14) 

Jo 

(Particularly /0
+°° a? fa) ̂  < £(i)(l - f (t)) < J-) 

P r o o f . The assertion is a direct consequence of Theorem 3.1. • 

Now, we give two systems of functions fulfilling the condition of the previous 
theorem. 

Proposit ion 3.4. Let T / 0 and (W(t) ,t G R+) be a Wiener process. For each 
t G T a function at G L2(R+) is given such that 

r+oo r r+oo r+oo *\ 

/ at(r])as(rj) drj = min< / a%(rj) dry, / a2
s(r)) dr] > for each t,s €T. 

Then there exists a Brownian bridge (B(t) ,t G R+) such that 

a+oo \ _ 1 r+oo / / r+oo \ _ 1 \ 

at(V)2dri + l) J at(r,)dW(ri) = BIN at(r])2 drj +1) 1 a.s. 
for each t G T. 

P r o o f . One can verify the condition of Theorem 3.2 for 

m =(L °°ot^2d^+i) • 
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Propos i t ion 3.5. Let T ^ 0 and (W(t) ,t G E+) be a Wiener process. For each 
£ G T a function at G l-2(E+) is given such that 

r+oo f r+oo r+oo \ 
I at(rj)as(r)) dr) = min< / a2(rj) drl, / a2(77) dr) \ for each t,s eT. 

Let t0 e T be such that fQ°°at(r))2dr) < f^°° ato(rj)2 dr) for each t G T and 

f 0
+ o o a 2

0 (^ )d^>0 . 
Then there exists a Brownian bridge (B(t) ,t G E+) such that 

(f^aM'dri)"2 f+°° Uv)-{CatifJ" -"M) dW(V) 
\Jo J Jo \ J0 a,0(v)2dv ) 

r+oo 

= в(JГ«bГ*,\ a.s. 

for each t G T. 

r+°° / \2 . 
P r o o f . One can verify the condition of Theorem 3.2 for £(t) = -f+-zs— . • 

J 0 at0(»7)2dT7 

Again, we can employ Radon-Nikodym derivative. 

P ropos i t ion 3.6. Let 7 ^ 0 and (W(t) ,t G E+) be a Wiener process. For each . 
t G T a function at G l_2(E+) is given such that for each t,s G T we have either 
at = d r ^ '^GR+raeW^o} or as = ^ • I h G R + : f l j ( ^ o } , where A, denotes 
the measure on B(E+) with density at and m/3 denotes the restriction of Lebesgue 
measure to a cr-field B. 

Then there exists a Brownian bridge (B(t) ,t G E+) such that 

a+00 \ _ 1 r+OQ I / r+oo \ _ 1 \ 

at(i7)2d^ + l j J at(r))dW(r)) = BlU at(r))2 dr) + l j J a.s. 
for each t G T. 

P r o o f . According to Proposition 2.5, the considered functions fulfill the condi­
tion required in Proposition 3.4. Hence, the proof is done. • 

Proposition 3.7. Let T ^ 0 and (W(t) ,t G E+) be a Wiener process. For each 
t G T a function at G L2(E+) is given such that for each t,s G T we have either 
at = d r ^ - I W + : a - ( ^ o } or as = - ^ . I { | | € R + : o - ( f | ) # 0 } > where ^ denotes 
the measure on B(E+) with density at and m^ denotes the restriction of Lebesgue 
measure to a cr-field B. Let to eT be such that fQ °° a ^ ) 2 dr/ < fQ °° a*0 (ry)2 drj for 
each * G T and J0

+o° a2
o (77) dr) > 0. 
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Then there exists a Brownian bridge (B(t) ,£ G E+) such that 

( /+°°atM
2 dri)"2 f+°° Un)-lCat{fJ" -^(V)) dW(n) 

\Jo J Jo V L atAv)2dv J 

= * C°'(">гd" ,, 
for each t e T. 

P r o o f . According to Proposition 2.5, the considered functions fulfill the condi­
tion required in Proposition 3.5. Hence, the proof is done. • 

Assuming restricted collections of functions, we can show reverse statements. 

Proposit ion 3.8. Let T / 0, £ : T -> [0,1], (W(t) ,t e E+) be a Wiener process, 
a e L(E+) and at e E, a* ^ 0, At C E+ for each t e T. Let 

either m((At - As) fl {q e E+ : a(rj) ^ 0}) = 0 

or m((As - ,4*) fl {q e E+ : a(r)) ^ 0}) = 0 whenever t,s eT 

and 0 < fA a(rj)2 dr} < -Foo for each t E T. 

Then there is a Brownian bridge (B(t) ,t e E+) such that 

/•-foo 

/ ata(77)I^t (r/) dW(rj) = £(£(*)) a. s. for each t e T (15) 

Jo 

if and only if 

f (t)(l - £(t)) = a \ \ a(r])2 dry for all t G T (16) 
JA* 

and there is c e E, c ^ 0 such that either 

(m((,4 t - A , ) fl {rj e E+ : afa) ^ 0}) = 0 <=> £(t) < £(s)) for all t,seT, 

£(t) = 1 - c • at for all t 6 T (17) 

OГ 

(m((Л t - Д,) П {Í? Є E+ : afa) 7- 0}) = 0 <í=ř> £(ť) > £(s)) for all t,sЄT, 

Ç(t) = c-at for all t Є T. (18) 

Proof . We need just to verify that under the theorem assumptions (16), (17), 
(18) are equivalent to the condition (14) of Theorem 3.2. 
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1. Let the conditions (16) and (17) be fulfilled. 

Thus for t,seT with £(t) < £(s) we have 

<*t*, • JAt a(v)2 dr, = ^( t)( l - m) = YZ^mO- ~ «0) = €(0(1" €(*))• 

2. Let the conditions (16) and (18) be fulfilled. 

Thus for t,s€T with f(t) > £(s) we have 

atas • ( a(r,)2 dr, = ^ ( t ) ( l - £(t)) = §&(*) ( - - «*)) = £(*)(- - £(*))• 
j.4, a * ?(*) 

3. Let the statement (14) be fulfilled. 

Immediately, we have the following observations. 

(a) a2 • JAt a(rj)2 dr, = £(t)(l - £(*)) for each t e T. 

(b) Let t,seT, m((At - A,) n {?? e R+ : a(rj) / 0}) = 0 and £(t) < £(s). 
Then a t a s • /^ a(r;)2 dr? = £(£)(1 - £(s))- Consequently, 

<*» _ £(t) _ att(t) _ at 

1 - ^(s) at JAi afa)- dr, £(t)(l - £(*)) " 1 - tft)' 

(c) Let t, s G T, m((At - As) n {ry e M+ : a(r,) / 0}) = 0 and £(t) > £(s). 
Then atas • JA a(r,)2 dr, = £(s)(l — £(£))• Consequently, 

as _ l -g ( f ) = at(l-gt)) = <-t 
as) atJAia(ri)*dri £(t)(l -£(«)) £(tY 

It gives £(t) = £(s) and JA a(r,)2 dr, = JA a(rj)2 dr, whenever at = as. 

Assume to,«o G^ such that ato / aSo and 

m((At0 - AS0) n {r, e R+ : 0(17) 96 0}) = 0. 

(a) If ato) < S(so) then -_|fa = -_^-- for all t e T. 

It is because any t eT not fulfilling this equality must fulfill ^ y = ^ y 
and ^ y = Tf̂ y- That is impossible since ato 7- aSo. 

(b) If ato) > £(*>) then fa = -^ - for all t e T. 
It is because any t € T not fulfilling this equality must fulfill JZCHY = 

YZT^j and Y_^y = i J ^ 0 ) - T h a t i s impossible since a*0 ^ aSo. • 

The proposition solves the problem of the rescaling of a Wiener process. 



662 P. LACHOUT 

T h e o r e m 3.3. Let T ± 0, £ : T -> [0,1] and (W(t), t G R+) be a Wiener process. 
Let for each £ G T constants auPt G R, a* ^ 0, & > 0 be given. 

Then there is a Brownian bridge (B(t) ,t G R+) such that 

<*tW(pt) = B(£(t)) a. s. for each t G T (19) 

if and only if 
f (*)(1 - f (*)) = a?A for all* e T (20) 

and there is c G R, c 7-= 0 such that either 

^ < /Js <=> £(*) < £(8j) for all t , s G T , f (i) = 1 - c • a* for all * G T (21) 

or 

^ < / ? , < = » f (*) > £(5)) for all t,seT, f (i) = c • a, for all t G T. (22) 

P r o o f . One can easily show the statement setting a = 1, At = [0,(3t] and 
applying Proposition 3.8. • 

4. ORNSTEIN-UHLENBECK PROCESS 

This section treats necessary and sufficient conditions under which the linear trans­
formation gives Ornstein-Uhlenbeck processes. To help to the reader we usher the 
definition of such a process. 

Definition 4 . 1 . A process (QJ(t), t G R) is called an Ornstein-Uhlenbeck process 
if 

1. it is a Gaussian process; 

2. V t G R : E[OJ(t)] = 0; 

3. V t,s G R : cov(OJ(t),aj(s)) = e ^ " 5 ! . 

4. its sample paths are continuous. 

Definition 4.2. Let T / 0. We call a process (CK(t) ,t e T) a pre-Ornstein-
Uhlenbeck process if 

1. it is a Gaussian process; 

2. V t G T : E[O/(0] = 0; 

3. there is a function f : T -r R such that cov(Q/(t), Q/(s)) = e"l*W-*WI 

Linear transformation of time preserves Ornstein-Uhlenbeck processes. 
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Proposition 4.1. If (CU(t), t G T) is a pre-Ornstein-Uhlenbeck process and a, /? G 
E, | a | = 1 then (QA(at + /?) , £ G T) is a pre-Ornsteiri-Uhlenbeck process, as well. 

P r o o f . One can easily show the statement. • 

Proposition 4.2. If (QJ(t), t G E) is an Ornstein-Uhlenbeck process and a, /? G E, 
|a | = 1 then (QJ(at + (5), t G E) is an Ornstein-Uhlenbeck process, as well. 

P r o o f . The process (QJ(at + /3) , t G l ) is a pre-Ornstein-Uhlenbeck process, 
according to Propositions 4.1 and its sample path are evidently continuous. • 

An Ornstein-Uhlenbeck process can be easily constructed from a Wiener process 
and vice versa. 

Proposition 4 .3 . Let (W(t),te E+) be a Wiener process. Then the process 
(e~* • W(e2t) , £ G E) is an Ornstein-Uhlenbeck process. 

P r o o f . The considered transformation of the Wiener process is a Gaussian pro­
cess with zero mean and continuous sample paths. We have to check its covariances, 
only. Let t,s G [0,1] then 

cov(e-' • W(e2t) ,e"* • W(e2s)) = e~l-s • cov(W(e2t), W(e2s)) 
= e _ f - s • min{e 2 t ,e 2 s | = e-

t-s+2mHt^} _ e-|*-*le • 

From an Ornstein-Uhlenbeck process we can construct a Wiener process, too. 

Proposition 4.4. Let (QJ(t), t G E) be an Ornstein-Uhlenbeck process. Then 
there is a Wiener process (W(t) ,t G E+) such that y/i• OJ(\logt) = W(t) a.s. for 
each t > 0. 

P r o o f . The transformed process is a zero-mean Gaussian process. We need to 
check the covariances, only. Let 0 < £ < s < + o o then 

COv(y/i(U(i\ogt) ,y/8(U(ilogs)) = V ^ 8 - C 0 v ( a / ( | l 0 g t ) , O / ( | l 0 g 5 ) ) 

= y/U$-e-\*logt-*logs\ = ^'e*logt-*logs = t. 

Thus, the transformed process is a pre-Wiener process and the statement follows 
from Theorem 2.1. ---

Theorem 4.1. Let T # 0, (W(t) ,t G E + ) be a Wiener process, for each t G T a 
function at G Lj(E+) be given and £ : T -> E. 

Then there exists an Ornstein-Uhlenbeck process (QJ(t) ,t G E) such that 

r+oo 

/ at(rj) dW(rj) = QJ(£(t)) a. s. for each t G T (23) 
Jo 
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if and only if 

r+oo 
/ at(v)as(rj) dry = e"l«*)-€WI for each t,seT. (24) 
Jo 

(Particularly f*°° a%(rj) drj = 1.) 

P r o o f . 

1. Assuming the representation (23) the condition (24) is fulfilled. 

2. Let the condition (24) be fulfilled. 

We define W(t) = e*W f+°° at(rj) dW(rj) for all t G T. One can check that 
the process (W(t) ,t G T) is a pre-Wiener process. According to Theorem 2.1, 
there is a Wiener process (W(t) , £ G R+) such that W(t) = W(e2t) a. s. for 
each t G T. According to Proposition 4.3, we have 

r+oo 
/ at(rj) dW(ri) = e~^ - W(t) = e~m • W(e2t) = <U(t) a. s. for all t G T. 

Jo 

• 

Now, we give two systems of functions fulfilling the condition of the previous 
theorem. 

P ropos i t ion 4.5. Let T ^ 0 and (W(t) ,t G R+) be a Wiener process. For each 
t G T a function â  G L2(1R+) is given such that 

/

+oo r r+oo r+oo \ 

at(,n)as(/n) dry = mini / a2(r/) dr/, / a2
s(rj) drj > for each t,s eT. 

Then there exists an Ornstein-Uhlenbeck process (QJ(t) ,t G R+) such that 

a+oo \~* r+°° / r+oo \ 

at(v)2drj) / at(fi)dW(ri)=(Ullog at(r])2 dr/j a. s. for each *GT. 

P r o o f . One can verify the condition of Theorem 4.1 for £(t) = log/0
+o° at(rj)2 dr). 

• 

Again, we can employ Radon-Nikodym derivative. 
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Proposition 4.6. Let T / 0 and (W(t) ,t G E+) be a Wiener process. For each 
t G T a function at G l_2(E+) is given such that for each t ,s G T we have either 
at = d r ^ y ' hie*+:at(n)±o} or *8 = 7 ^ 7 ' I {^R+:a . ( ^o} , where At denotes 
the measure on B(E+) with density at and mjg denotes the restriction of Lebesgue 
measure to a cr-field B. 

Then there exists an Ornstein-Uhlenbeck process (QJ(t) , £ G E+) such that 

a+oo \ _ 2 /-Hoo / r+oo \ 

a£(r7)2 dr? J / at(rj) dW (r)) = Qj( log / a ^ d r / j a. s. for each teT. 

P r o o f . According to Proposition 2.5, the considered functions fulfill the condi­
tion required in Proposition 4.5. Hence, the proof is done. • 

Assuming restricted collections of functions, we can show reverse statements. 

Proposition 4.7. Let T ?- 0, (W(t) ,t G E+) be a Wiener process, a G L(E+) and 
at G E, a* ^ 0, At C E+ for each t G T. Let 

either rr\((At - As) n {q G E+ : a(r7) ^ 0}) = 0 

or xx\((As - At) n {q G E+ : a(r/) / 0}) = 0 whenever t,s eT 

and 0 < / ^ a(r))2 dr) < +oo for each t eT.s 

Then there is an Ornstein-Uhlenbeck process (QJ(t) ,t G E+) and a function 
£ : T -+ E such that 

/•+oo 
at • / a(r))IAt (r)) dW(r)) = QJ(£(t)) a. s. for each t G T (25) 

Jo 
if and only if 

^2 dr) = 1 (26) 
JA, 

or 

and there is a constant c 6 M such that either 

(m((At - A,) D {7/ € E+ : a(j]) # 0}) = 0 <==> £(i) < £(s)) for all f, s € T, 

^(t) = log X4t a(77)2 d»7 -F c for alU e T, (27) 

(m((At - As) n {r> € K+ : 0(77) # 0}) = 0 <=> £(t) > f(s)) for all t, s e T, 

£(t) = - log / i4 ( a(T])2dr] + c for all t € T, (28) 

P r o o f . According to Theorem 4.1, the expression (25) is equivalent to the prop­
erty 

»-l«.)-€(-)l octas 
I a(ijf dr? = • 

JA, 

whenever t,s eT and xx\((At - As) n {rj G E+ : a(rj) ^ 0}) = 0. 
Hence, we have the following observations: 
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1. a2 • fAi a(rj)2 dr? = 1 for each t G T. 

2. For t, s G T, m((At - As) n {r? G R+ : a(rj) ^ 0}) = 0, t,(t) < £(s) we receive 

W) = \ • log / a(r))2 dr? + £(s) - \ • log / aft)2 dry. 
- J At z JAS 

3. For t,seT, m((At - As) D {rr G R+ : afa) # 0}) = 0, «*(t) > £(s) we receive 

Z(t) = -l-logf a(»7)2d»7 + «e(a) + i . l o g y a(T7)2dr7. 

Therefore, £(£) = f(s) and / ^ a(r7)2dT7 = fA a(r])2 dr] whenever at = as. Let us 

assume i0) «o G T such that at0 ^ aSo. 

1. If «*(to) - \ • l o g / ^ a(rr)2 dr, = £(s0) - I • l o g / ^ aft)2 dr/ then £(t) = I • 

log J^ a(?7)2 dr/ + c for alH G T and some c G R. 

It is because assuming t eT without this property, we have 

f (*)+5 ' l o g / a(v)2 dr] = f (t0)+5 *loS / a W 2 ^ = d(sv)+\ -log / a(r])2 dry, 
2 JA* 2 JAt0

 l JASO 

which is a contradiction with ato ^ aSo, 

2. If ato) + \ • l o g / ^ a(r,)2 dr? = £(s0) + \ • l o g / ^ a(r,)2 dr, then £(i) = - § • 

log JA a(r])2 dr] + c for alH G T and some c G R. 

It is because assuming t eT without this property, we have 

£(t)~ -log / a(rj)2 dr] = £(t0)-± -log / a(V)2 dr] = C(so)~ -log / a(V)2 dr], 
2 J At

 2 JAt0
 2 JASQ 

which is a contradiction with ato / aSo. D 

The following proposition solves the problem of the rescaling of a Wiener process. 

T h e o r e m 4.2. Let T / 0 and (W(t) ,t G R+) be a Wiener process. Let for each 
t eT constants at,(3t G R, at ^ 0, (3t > 0 be given. 

Then there is an Ornstein-Uhlenbeck process (CU(t) ,t G R+) and a function 
£ : T -> [0,1] such that 

atW(pt) = OJ(t(t)) a. s. for each t G T (29) 

if and only if 
a?.ft = l 
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and there is a constant c E R such that either 

(j3t </3s <=> f (t) < f (*)) for all t, 5 G T, £(i) = log ft + c for all t € T (30) 

OГ 

( ß <&-«-=> £(í) > £(s)) for all t,sЄT, £(i) = - log/9t + c foг all í Є T. (31) 

P r o o f . One can easily show the statement setting a = 1, At = [0,/?t] and 

applying Proposition 4.7. • 

(Received October 23, 2000.) 
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