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K Y B E R N E T I K A — V O L U M E 57 ( 2 0 0 1 ) , NUMBER 6, P A G E S 7 2 5 - 7 3 5 

NEW COPRIME POLYNOMIAL FRACTION 
REPRESENTATION OF TRANSFER FUNCTION MATRIX 

YELENA M. SMAGINA 

A new form of the coprime polynomial fraction C(s) F(s)'1 of a transfer function matrix 
G(s) is presented where the polynomial matrices C(s) and F(s) have the form of a matrix 
(or generalized matrix) polynomials with the structure defined directly by the controllability 
characteristics of a state-space model and Markov matrices HB, HAB,... 

1. INTRODUCTION 

In many practical control problems it is desirable to have the right or left coprime 
polynomial matrix fraction (or matrix fraction descriptions (MFD)) of the transfer 
matrix G(s) = C(s) F(s)~x where C(s) and F(s) are polynomial matrices in the 
Laplace operation s and F(s) is a nonsingular matrix. For example, decomposition 
of this type plays the key role in the methods of H°° problem [7] and model reduction 
techniques [9]. Polynomial matrix descriptions are widely used in the design of state 
estimators and regulators [6, 8, 14, 18]. 

In this paper we obtain a MFD formula for the transfer function matrix of a 
multi-input multi-output (MIMO) control system in the state-space. This formula 
has a special structure that is different from the existing matrix fractions [4, 8, 10, 
17]: the new MFD C(s)F(s)~1 includes the matrix polynomials C(s) and F(s) of 
the order depended on controllability characteristics of state-space system. Block 
coefficients of the 'numerator' C(s) are expressed in the terms of the Markov matrices 
HB,HAB,HA2B,... So, a new analytical expression for the polynomial matrix 
fraction introduced in the paper can be considered as a generalization of the classic 
representation of transfer functions (TF) studied in ([10], p. 38). 

It is known that important properties of TF for a classic single-input single-output 
case are related to Markov parameters (the number of a finite and infinite zeros, in-
vertibility, the relative degree of a control system [6] e tc) . Certain relationships 
between the matrices HAlB and MIMO system properties have already been stud­
ied in the works [5, 11, 15]. New MFD form presented in the paper reveals the direct 
connection between TFM of MIMO system and Markov matrices that allows to pre­
dict some TFM properties (e.g. degeneracy [3], invertibility, existence and number 
of transmission zeros etc) without performing complex calculations. These prpper-
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ties can be obtained without the MFD computation by evaluating Markov matrices 
that can be calculated from the state-space model. The method proposed in this 
paper is a development of the result presented in the IFAC Conference, Belford, 
France, May 1997 [13]. 

2. PRELIMINARY NOTIONS AND PROBLEM STATEMENT 

Let a linear multivariable time-invariant system be described in the state-space by 

x = Ax + Bu (1) 

y = Hx (2) 

where x is a state n-vector, u is an input r-vector, y is an output /-vector, _4, _5, 
H are real constant matrices of appropriate sizes, r, / < n. It is assumed that 
rank/? = r and the pair (-4,2?) is controllable. 

Consider the transfer function matrix G(s) of system (1), (2) 

G(s) = H(sI-A)-xB (3) 

that is the Ixr matrix with elements presented by strictly proper rational functions 
of complex element 5 with real coefficients. It is known [16, 17] that any / x r rational 
matrix G(s) can be always (nonuniquely) represented as the product 

GO) = C(s)F(s)-1 (4) 

where C(s) and F(s) are relatively right prime polynomial matrices of sizes I x r 
and r x r respectively with F(s) is nonsingular and column proper matrix [17]. 

Introduce polynomial matrices with an ordered structure. By a matrix polynomial 
of the order m and the size I xr we understand a polynomial matrix of the form [2] 

F(s) = F0 + FlS + • • • + Fm^sm-1 + Fmsm (5) 

where Fi, i = 0 , 1 , . . . , m are / x r real constant matrices. 
By a generalized matrix polynomial we shall understand the following polynomial 

matrix [12] 

F(s) = F0 + F1diag(/ / m_,1 , / / ls) +F 2 diag( / Z m _ / 2 , / / 2 _ / l 5, / / l 5
2 ) + ••• 

. . . + F m _ 1 d i a g ( / / m _ ^ ^ (6) 

+Fmdiag(/ / m_,m_1s, Iim_x-im_2s
2, • • •, Ihs

m) 

where U> i = 1,2, . . . , r a are some integers that satisfy the inequalities: l\ < fa < 

It is obvious that form (6) is a generalization of the matrix polynomial (5) struc­
ture represented as: F(s) = F0 + F^s) + F2(Irs

2) + • • • + Fm(Irs
m). 

Using these notions we will define the right coprime factorization (4) with the 
matrices C(s) and F(s) of structure (5) or (6). 
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3. FACTORIZATION OF TRANSFER FUNCTION MATRIX 

Asser t ion 1. The transfer function matrix of the system (1), (2) with n <rv can 
be always factored into the product 

- 1 / - . * G(s) = ОДF^s)-^ (7) 

where Q* = QMT is a constant matrix, the polynomial I x r and rxr matrices C(s) 
and F(s) are the following generalized matrix polynomials 

C(s) = [0, C_] + [0, C2]diag(L_/1, //, s) + [0,03]diag(L_,2, /,__,. s, Ih s2) + 

... + O„diag(L_/„_,, //„_! _/„_2s, •••,//, s " _ 1 ) 

F(s) = [0,F_] + [0,F2]diag(Ir-h,Ihs) + ---

• • • + [0, F„-i]diag(Ir-iv_2, //„__-/„_, s, • • • 

••-,/«, s"-2) + F„diag(/r_/„_,, /.„_,-.„__«, • • •, Ih s"-1) 

+/ r diag(L_/„_ 1 s , //„_,_/„_2s
2, •••, //jS"). 

(8) 

(9) 

If the pair matrices (A, H) is observable than the polynomial matrices C(s) and 
F(s) are right coprime. 

In (8), (9) the matrices F_, F 2 , . . . , Fv are defined from the Yokoyama canonical 
form [19] for the controllable pair (_4, B) with the transformed matrices 

' 0 
0 

[0,-i.] 
0 

0 

[o,/ia] • 

0 
0 

' 0 
0 

A^NAN-1^ ; 1 ; , B = N B M = 

0 0 

-ғ_ 
0 

-Eз • 
• [o,/.„_.] 0 

.Q 
(10) 

where N is a transformation n x n matrix. In (10) the permutation rxr ma­
trix M rearranges the columns of the matrix B such that the last columns of 
the matrices A%BM,i = 1,2, . . . ,z / — 1 are linearly independent from the first 
columns. The controllability index v is the smallest integer that satisfies the equa­
tion rank[_9, _4_3,... , Au~lB\ = n. The integers /_., l2,..., Z„ can be derived from the 
relations: 

U = rank[_3,_4i3,.. .,Av-lB] - rank[_3,_4_3,.. .^A^^B], i = 1 , . . . ,v - 1, 

lv = rank B = r 

and they satisfy the inequalities: h < h < • • • < -V, h+h^ Vlv = n. The lv x h 
blocks F_, i = 1,2,. . . , v have no special structure, [0, //.] - U x h+i submatrices, //. 
- the identity matrices of the order /. and Q is a nonsingular low triangular rxr 
matrix with unit elements on the principal diagonal. In Section 5 we describe a new 
recurrent algorithm for the matrices Q and Pi,F2,...,Fv calculations. 
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In (8) Ci are / x U blocks of the matrix 

C = HN-1 = [CuC2,...,Cu]. (11) 

The p r o o f of Assertion 1 is based on the calculation of TFM for canonical 
system (10), (11). The details are discussed in [12]. 

Consider a particular case when n = rv, l\ = l2 = • • • = lv = r and the pair 
(A, B) is reduced into Asseo's canonical form [1] with matrices 

A = 
0 / „ _ , 

B 
0 
L 

—F\, — F2 . . . , — Fv 

where Fi, i = 1,2,. . . , v are rxr blocks. It follows immediately from the Assertion 1. 

Corollary 1. The transfer function matrix of the system (1), (2) with n = ru can 
be always factored into the product G(s) = C(s) F(s)~x where the polynomial I x r 
and rxr matrices C(s) and F(s) are the following matrix polynomials 

C(s) = C1+C2s + ". + Cvs
v-X (12) 

F(s) =.Fl+F2s + -.- + Fvs"-1+Irs
1/. (13) 

Corollary 2. The transfer function vector of system (1), (2) with scalar input 
(r = 1, li = l2 = • • • = ln = 1 ) can be always factored into the product G(s) = 
C(s)f(s)~1 where the vector polynomial C(s) has structure (12) for v = n and 
f(s) = d e t ( 8 / - _ 4 ) . 

Remark 1. The similar approach may be applied to an observable pair (H, A) to 
find the left coprime fraction G(s) = N(s)~xQ(s) with I x I and I x r matrices 
N(s) and Q(s) respectively. The factorization obtained will be the left coprime for 
the controllable pair (A,B). 

In the next section we will scrutinize the block coefficients C\ and Fi, i = 
1,2, . . . , v of the generalized matrix (matrix) polynomials C(s) and PXs). First we 
analyze the relationship between the block coefficients Ci and Markov parameters 
(matrices) HB, HAB, HA2B,.... 

4. CALCULATION OF C{ 

Let us denote by R\, R2,..., Rv the n x li blocks of the matrix in the partition 

iV"1 = [_«!, _%,...,_«-,] (14) 

and express matrix C (11) in the following form 

C = HN-1 = [HRUHR2,...,HRV] = [CUC2,... ,CV]. (15) 
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Then generalized matrix polynomial (8) can be represented as 

C(s) = JJ[0,J2i] + iJ[0,fi2]diag(J r_Zl,Jh5) 

+JJ[0,J?3]diag(J r_ / 2 ,J / 2_ / l 5 ,J / lS
2) + . . . (16) 

. . . + HR^mg^r-i^,, _/„_!-iu_2s, • • •, Ih s"~l) 

where [0, Ri] are nxr blocks. We are going to express the blocks Ri via the matrices 
A, J?, F{ and Q. At first, we use the relation B = NBM: BM = TV"1 J? = 
[JJi, R2,..., RV]B = RVQ that allows to evaluate the last block of the matrix IV-1 

(14) 
RV = BMQ~\ (17) 

To find the nxr blocks [0, J?;], i = v - 1, v - 2 , . . . , 1 we apply the formula AN-1 = 
N-XA that can be written as A[R\, J ? 2 , . . . , Rv] = [R\, J ? 2 , . . . , RV]A. Taking into 
account the special structure of the matrix A we can write 

ARi = Ri-1[0Jii_1]-RvFu i = i/, i / - l , . . . , 2 (18) 

and then express the blocks J?i-i[0, J/._J as 

Ri-iiOJi^] = ARi + BMQ^Fi, i = v,v - 1 , . . . ,2. (19) 

Recurrent formula (19) can be applied to find the nxr blocks [0,Rv-i], [0,i? l /_2],..., 
[0, J?i]. For i = v relation (19) takes the following form 

Ru-i[0Jiu_x] = ARV + BMQ~1FV. 

Using the formula J?„_i[0, Iiu_1] = [Oji^-i] we can present [0,i?^_i] as 

[0, Rv-X] = ABMQ-1 + BMQ~XFV. (20) 

For i = v — 1 relation (19) can be written as 

JtV-2[0,JZl/_2] = AR^+BMQ^F,-!. (21) 

Postmultiply both sides of (21) by the lv-\ x r matrix [0,Iiu_l] where 0 is lv-\ x 
(r — lv-i) zero block. Then using the formula [0, Iiu_2] [0, Iiu_l] = [0, J/.,.,,] where 
[0, Iiu_2] is lv-2 x r matrix we can present (21) as 

[0,Rv-2] = A[0yRv-1] + BMQ~1[0)Fv-1] (22) 

where [0, Rv-2], [0, J?^_i], [0,Fi,_i] are n x r, n x r, r x r matrices respectively. 
Substitution the matrix [0, J ^ - i ] from (20) into (22) results in 

[0,Rv-2] = A2BMQ~1 + ABMQ-XFV + BMQ-^F^]. (23) 

Continue the same procedure we can obtain the nxr matrices [0, R^s],..., [0, R\] 

[0,Rv-i] = AiBMQ-1+Ai~1BMQ-1Fv + ... 
(24) 

. . . + ABMQ-1 [0 ,PU i + 2] + BMQ-1 [O .F^+ i ] . 
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Substituting Rv, [0, B„_i],..., [0,Bi] into (16) we can find the structure of C(s) 

C(s) = (HAV-1BMQ-1 + HAV~2BMQ-1FV + ••• 

••• + HABMQ-x[0, F3] + HBMQ-^O, F2]) 

+(HAU~2BMQ-1 + HAV-ZBMQ~1FV + ••• 

••• + HBMQ~x[0, E3]) diag(L_., ,/,,*) + ••• 

••• + (HABMQ-1 +HBMQ'1FV) d iag(L_,_ 2 , Ii„_2-i„_3s, •••, Ihs^2) 

+HBMQ-1di<ig(Ir-l„_l, /,„_,.-.•„__*, •••, / . . s""1). 
(25) 

Remark 2. If the system (1), (2) is reduced to Asseo's canonical form with l\ = 
l2 = • • • = lv = r, n = rv, Q = Jr, M = 7 r, [0, Fj\ = F{ then the matrix polynomial 
C(s) takes the following form 

C(s) = (HAv~lB + HAV~2BFV + • • • + HABF3 + HBF2) 

+(HAV~2B + HAV~3BFV + • • • 
(26) 

• • • + HBF3)s + • • • + (HA2B + HABFV + HBFv^)sv-3 

• • • + (HAB + HBFv)s
v~2 + HBsv-\ 

Remark 3. For system (1), (2) with scalar input the vector polynomial C(s) has 
the simple structure 

C(s) = (HAn~lb + HAn"2ban + • • • + HAba3 + Hba2) 

+ (HAn~2b + HAn~3ban + • • • (27) 

• • • + Hba3)s + • • • + (HA2b + HAban)s
n~2 + Hbs71'1 

where a2,... ,an are the coefficients of the characteristic polynomial of A : det(s/ — 
A) = sn + ans

n~l + • • • + a2s + a_. 

5. CALCULATION OF Ft 

In this section we discuss a new recurrent method for calculating the matrix Q 
and block coefficients F_, F2,..., Fv of the polynomial matrix F(s) in right coprime 
polynomial fraction (4). Contrary to the previous approach [19] the method does 
not use the calculation of the full transformation matrix IV. Moreover, the original 
formula for the characteristic polynomial coefficients can be easy obtained from the 
proposed method. 

As j t has been shown in [11] the transformation nxn matrix IV has the following 
structure 

NT=[NJ, JVj_lf ... N?] (28) 
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where (Z,/-_+i x n) blocks TV;, i -= 1,2,..., v are calculated from the formulas 

N„ = p„, N„_i Pv-l 
PVA , N„-2 = 

Pv-2 
PV-\A 
PVA

2 
,...,Ni 

Pi 
P 2 A 

P„A ľ - i 

(29) 

and (_„ - lv-\) x n, (Z^-i - lv-2) x n , . . . , (Z2 - l\) x n, _i x n blocks Pi, P 2 , . • • ,P» 
are computed from the following linear algebraic equation 

p„ 
p„-i 

BM, ABM 0 
Ií,-i 

0 0 : ••• : 

0 0 : ••• : 

0 0 : ••• : 

. I1 
_ : • • • : 

0 o 

I"-1 o 

X X 

X X 

,...,AV~XBM 

г 
X 

X 

X 

0 

II. 

(30) 

where /* are the identity matrices of the order (lv-i+i — /^_i), X are some matrices. 

Asser t ion 2. In Yokoyama's canonical form (10) the blocks Q, FI,,JF1

I/_-iv .. ,F_ are 
expressed via the r x n matrix N\ in the recurrent formulas 

Q = N\BM 
E„ = -NiABMQ-1 

E„_i = (-JViA2-E„Ati.4) P M Q - 1 0 
4,-x 

(31) 

Ei = (-N iA" - E„Ni_4"-1 - [0, E„_i] N\AV~2 -

[0,E2]iVi_4)_?MQ-1 ' ° 
Ьг 

(see the Appendix for proof). 

Corollary 3. Expressions (31) take a simple shape for the pair (-4,_9) reduced in 
Asseo's canonical form 

Q = ҖB 
F„ = -N\AB 

Fv-\ = -N\A2B - FVN\AB (32) 

-N\A"B - F„iVi.4"-1B - E„_i-ViA"-2P F2N\AB 
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where the r x n matrix Ni is calculated from the formula [11] 

Ni = [0, ..., 0, Ir][B,AB,...,Av-1B]-1Av-1. (33) 

Corol lary 4. If r = 1 (B = b is a column vector) then the recurrent formula for 
coefficients of the matrix A characteristic polynomial can be derived from 

an = -qAb, a n _ i = -qA2b - anqAb, . . . , 

a i = -qAnb - anqAn~lb a2qAb 

where n row vector q satisfies the relation: 

q = [ 0 , 0 , . . . , 0 , l ] [ M & , . - . , A n - 1 r 1 ^ 1 - 1 -

(34) 

In conclusion, we present an algorithm of calculating the right coprime MFD that 
can be easy implemented on the computer. 

STEP 1. Calculate integers v and Zi, l2,... ,/„ for the controllable pair (A, B). 

STEP 2. Calculate the matrix M and blocks Q, Fu F 2 , . . . , Fv (formulas (31) -
(34)). 

STEP 3. Using formula (9) or (13) construct the polynomial matrix F(s). 

STEP 4. Calculate HB, HAB,..., HAV~XB. Using formulas (25) - (27) find the 
polynomial matrix C(s). 

6. EXAMPLE 

Let us find factorization (7) for controllable and observable system (1), (2) with the 
matrices 

A = 

2 1 0 0 " " 1 0 
0 1 0 1 
0 2 0 0 

, B = 
0 0 
0 0 

, Я = 
' 1 

1 
- 1 1 0 

1 0 1 
1 1 0 0 0 1 

(35) 

As it has been shown in ([11], p.31) this system has v = 3, l\ = l2 = 1, h = 2. The 
pair (A,B) is transformed into Yokoyama's canonical form with M = I2. Using 
(29) - (31) we can calculate 

N1 = 
' 1 0 

0 1 

0 0 ' 
0 1 Î Q = 

' 1 
0 

0 ' 
1 

E2 = 
" - 1 ' 

- 1 , EЗ -
' - 2 

- 1 -
0 " 

-1 

FІ 
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and then construct the 2 x 2 generalized matrix polynomial using formula (9) 

F(s) = [O.Fi] + [0 ,F 2 ]diag(L_ t l , / h s) + F3diag(Ir-h,Ih-hs,Ihs
2) 

+Irdiag(Ir-i2s,Ii2-hs
2,Ihs

3) 

= [0, Fx] + [0, F2] diag(l, s) + F3diag(l, s2) + diag(s, s3) 

0 0 ' ' 0 —S ' - 2 0 ' S 0 " ' s - 2 - s 
0 0 + 0 —s + - 1 - S 2 + 0 S 3 — - 1 s3 - s2 - s 

To evaluate the the 2 x 2 generalized matrix polynomial C(s) we will apply formula 
(25) that takes the following form for Q = I2y M = I2 

C(s) = (HA2B + HABF3^HB[0,F2]) + {HAB^HBF3)dmg{l,s) + HBdmg{l,s2). 

1 0 
1 1 

HAB = 

Substituting the matrices 

HB = 

we find 

C(s) 

and write the right polynomial fraction of G(s) as follows 

'Î ] • HA2B - [ 7 

0 2 ' ' 0 —s " 1 0 ' 
0 0 + 0 0 + 1 s2 

1 2 - s 

G(s) • [ I V ] 8 - 2 

-1 
—s 

s3 - s2 - s 

This factorization is right coprime as the pair (H, A) is observable. 
Examples for the cases when n = rv, lx = l2 = • • • = l„ = r and r = 1, l\ = h = 

• •. = ln_1 = 1 can be found in [13]. 

7. CONCLUSION 

In the paper a new polynomial fraction representation for a transfer function matrix 
of a multivariable system in state-space has been discussed. The 'numerator' and 
'denominator' of the fraction have the structure of matrix or generalized matrix 
polynomial. It has been shown that the block coefficients of the 'numerator' are 
defined via Markov matrices HB, HAB, HA2B, The results presented in the 
paper can be considered as a generalization of the classic TF notions. 

APPENDIX 

Proof of the Assert ion 2. Since A = NAN'1, B = NBM then the following 
equality takes place 

[B,AB,...,ÁVB] = N[BM,ABM,...,AVBM]. (Al) 
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Using (10) we can calculate 

в = 
0 

Q 
AB [0,/.„-.]<. 

-FVQ 

Ä2B = 
[o,/.„_,] Q 

-[0,/^.JFQ 
[0 ,F„_i ]C?-F„(-F„)Q J 

Then using the following notations 

[Wi, W2,...,,Wv+1] = [0,/ r] [B, AB,..., A"B] (A2) 

we can obtain the recurrent formulas for Wi : Wi = Q, Wi = — [0,F„_j+2]Wi — 
[0, F„_ i+3]W2 - . . . - [0, F„_i]Wi_2 - F„Wi_i, i = 2,...,v+l. These relations 
allow to express Q, F„, [0, F„_ i ] , . . . , [0, Fi] (det Q ^ 0) as 

Q = wu 

F„ = - W 2 Q " 1 

[0,F„_i] = (-W3 - F„W2)Q"1 

[0,F„_2] = ( - W 4 - F „ W 3 - [ 0 , F „ _ i ] W 2 ) ( 5 - 1 
(AЗ) 

[0, F x] = ( - W „ + i - F„W„ - [0, F„_i] W„_i - . . . - [0, F2] W2)Q~1. 

On the other hand using (A2) and (Al) we can represent the blocks W{ in the form 

[WuW2,...,W„+1] = [0Jr]N[BM,ABM,...,Av 

Substitution these Wi in (A3) results in formulas (31). • 
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