
Kybernetika

Heiko Goeman; Michael Clausen
A new practical linear space algorithm for the longest common subsequence problem

Kybernetika, Vol. 38 (2002), No. 1, [45]--66

Persistent URL: http://dml.cz/dmlcz/135445

Terms of use:
© Institute of Information Theory and Automation AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135445
http://project.dml.cz

K Y B E R N E T I K A — VOLUME 38 (2 0 0 2) , NUMBER 1, P A G E S 4 5 - 6 6

A NEW PRACTICAL LINEAR SPACE ALGORITHM
FOR THE LONGEST COMMON SUBSEQUENCE
PROBLEM*

HEIKO GOEMAN AND MICHAEL CLAUSEN

This paper deals with a new practical method for solving the longest common sub
sequence (LCS) problem. Given two strings of lengths m and n, n > m, on an alpha
bet of size s, we first present an algorithm which determines the length p of an LCS in
0(ns + mm{mp,p(n — p)}) time and 0(ns) space. This result has been achieved before
[29, 30], but our algorithm is significantly faster than previous methods. We also pro
vide a second algorithm which generates an LCS in 0(ns + min{rap, m log m + p(n — p)})
time while preserving the linear space bound, thus solving the problem posed in [29, 30].
Experimental results confirm the efficiency of our method.

1. INTRODUCTION

Let x = xi...xm and y = yi.. .yn, n > m, be two strings over an alphabet
£ = {r/ i , . . . ,as} of size s. A subsequence of a: is a sequence of symbols obtained by
deleting zero or more characters from x. The Longest Common Subsequence (LCS)
Problem is to find a common subsequence of x and y which is of greatest possible
length.

It will be convenient to describe the problem in another way. An ordered pair
(k,£), 1 < k < m, 1 < £ < n, is called a match if Xk = yi. The set M of all matches
can be identified with a matching matrix of size m x n i n which each match is marked
with a dot. For example, if x = abacbcba and y = cbabbacac, then M is as shown
in Figure 1 (a). Define a partial order « on N x N by establishing (k,£) < (k',£')
iff both k < k' and £ < £'. A chain C C M is a set of points which are pairwise
comparable, i.e., for any two distinct pi,p2 € C, either pi < p2 or pi > p2 , where
Pi > p2 means p2 < pi . Then the LCS problem can be viewed as finding a chain
of maximal cardinality in M. One such chain is indicated as a path in Figure 1 (b).

Finding an LCS is closely related with the computation of string edit distances [21,
24, 34, 36] and shortest common supersequences [14]. It was first used by biologists
to study amino acids [9, 10, 27, 31]. Other applications are in data compression
[1, 14, 23] and pattern recognition [13, 22].

* Research supported by Deutsche Forschungsgemeinschaft, Grant CL 64/3-1.

46 H. GOEMAN AND M. CLAUSEN

1 2 3 4 5 6 7 8 9 i 2 3 4 5 6 7 8 9

a
c b a b b a c a c

1 a
c b a b b a c a c

1 a • • • 1 a • •
2 b • • • 2 b • •
3 a • • • 3 a • • •
4 c • o • 4 c • • •
5 b • • • 5 b • •
6 c • • • 6 c • •
7 b • • • 7 b • a •
8 a • • • 8 a ф •

(a) (b)

Fig. 1. (a) matching matrix, (b) path representing an LCS.

The LCS problem can be solved in 0(mn) time by a dynamic programming
approach [32, 35], while the asymptotically fastest general solution uses the "four
russians" trick and takes 0(nmj logn) time [24], A lot of other algorithms have also
been developed which are sensitive to other problem parameters, e. g., the length p of
an LCS. They usually perform much better than the latter algorithms, although they
all have a worst case time complexity at least of iTi(mn). To give an example, Hunt
and Szymanski [19] have presented an 0((r + n)logn) algorithm, where r := \M\.
Thus their approch is fast when r is small, e.g., r = 0(n) , but its worst-case time
complexity is 0 (n 2 l o g n) . Later, this has been improved to 0(mn) [2]. There are
also several routines [25, 26, 33, 37] which run in 0(n(n + 1 — p)) or 0(n(m + 1 —p))
time, and thus are efficient when an LCS is expected to be long. Other algorithms
have running times 0(n(p + 1)) or 0(m(p + 1)) and should be used for short LCS
[3, 4, 17, 18]. However, it might be very difficult to a priori select a good strategy
because in general the length p cannot be easily estimated. Also, when having
a small alphabet, we can expect p to be of intermediate size, e.g., for s = 4, the
average length of an LCS is bounded between 0.54-m < p < 0.71-m [7, 8, 11, 28, 32].
Then none of the above methods performs well. Therefore recent research has been
concentrated on more flexible algorithms which are efficient for short, intermediate,
and long LCS, such as the method proposed by Chin/Poon [6]. Another approach
from Rick [29, 30] with running time 0(ns + min{mp,p(n — p)}) has been widely
accepted as the fastest algorithm for the general LCS problem.

In this paper, we shall develop a new algorithm which is based on a kind of
dualization of Rick's method. A detailed description of the theoretical background
will be given in Sections 2 and 3. We do not improve the 0 (n s + min{mp,p(n — p)})
time bound, but two important advantages are obtained. First, the number of
matches processed while computing the length of an LCS is significantly decreased,
resulting in a faster execution speed. The corresponding algorithm will be presented

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 47

in Section 4. Second, when generating an LCS, we can achieve linear space through
a divide-and-conquer scheme similar to that of several other (but slower) algorithms
[5, 16, 20]. This will be explained in Section 5. The methods mentioned before all
need at least $l(nra/logn) space in their worst cases (see [28] for a survey), and
most of them, including Rick's approach, cannot be combined with the divide-and-
conquer technique. The open problem of a linear space implementation of Rick's
algorithm [30] is hereby solved. Experimental results presented in Section 6 confirm
the efficiency of our method.

2. A NEW APPROACH TO THE LCS PROBLEM

As already mentioned in the introduction, the LCS problem is equivalent to finding
a chain of maximum cardinality in M. Dilworth's fundamental theorem [12] states
that this cardinality equals the minimum number of disjoint antichains into which
M can be decomposed (an antichain of M consists of matches which are pairwise
incomparable). In our example, this number (called the Sperner number of M)
equals five. A suitable decomposition is shown in Figure. 2(f). To find such a
minimum decomposition, we first split [1 : ra] x [1 : n] into subsets denoted by T 2,
L\ Bl, and _Rl, where

rpi

V

вг

Rг

= {i} x [i : n + 1 - i]

= [i + 1 : ra + 1 - i] x {%}

= {m + 1 - i} x [i + 1 : n + 1 - i]

= [i + 1 : ra - i] x {n + 1 - i}

and 1 < i < \m/2] (see Figure 2 (a) for an illustration). Additionally, let

T ^ = M T'', L^:=\\ L\ B^:= I J B\ R^ := I J Ri.
W J < - ^ j < * ^j<i ^3<i

Now for i = 1,2,..., [ra/2], we construct four sets of antichains _4T'\ _4L>i, _4B>i, and
AR>% which decompose (a suitable subset of) T-^, L-\ B^l\ and R-1, respectively.
The decompositions are generated by updating the previous sets, using the matches
found in T \ L\ J3*, and R1' (details are given below). We use AT>1' to denote an
antichain in _4T'2, where u is an index between 1 and the size eT ' 2 := \AT>i\ of _4T'\
Therefore eTyl is also called the end index of _4T'2. For _4L'1, AB}t\ and AR>1\ we
introduce analogous notations. Furthermore, there are two start indices sTL>1' and

SBR,I i>he first one is used to split both AT>1' and AL,i into two parts. One part
contains all antichains with indices less than sT L > i, and the other part consists of the
rest. Only the latter part will be used for the updating process, whereas the former
one will be copied to _4 T ' l + 1 resp. _4L 'Z + 1 without change, sBR,i similarly splits AB,i

and AR>\

Figure 2 (b), (c), (d), and (e) give a preview of the construction in the sample
matching matrix after step i = 1, 2, 3, and 4, respectively. The centered grey box
represents the remaining part of M which has not been processed so far. By our
construction, with each step, it shrinks by two rows and columns.

48 H. GOEMAN AND M. CLAUSEN

1 2 3 4 5 6 7 8 9

c b a b b a c a c

i a

2 b

3 a

4 C

5 Ь

6 C

7 Ь

8 a

X' ©

Ľ

r Ľ
П
L
1

r-p4

© в
1

RІ
B
3

R
3

B
2

R
1

© в'

(a)

1 2 3 4 5 6 7 8 9

c b a b b a c a c

(c)

1 2 3 4 5 6 7 8 9

c b a b b a c a c

(e)

1 2 3 4 5 6 7 8 9

c b a b b a c a c

(b)

1 2 3 4 5 6 7 8 9

c b a b b a c a c

(d)

1 2 3 4 5 6 7 8 9

c b a b b a c a c

(f)

Fig. 2. (a) splitting of M, (b)-(e) construction of antichains, (f) final decomposition.

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 49

We need the following terminology for the description of the construction process.
For two antichains C, D C M the set

IP(C,D) :={pi eC\Vp2eD: ^(Pl < p 2 V p i » p 2) }

is called the incomparable part of C relative to D. Clearly, IP(C,D) U D is the
greatest antichain above D contained in C U D. We say C is incomparable to D
if JP(C, D) = C Furthermore, a single match p\ G M is incomparable to _D if

ip({pi},D) = {pi}-
We are now prepared to discuss the generation of the antichains in more detail.

Initially, there are no antichains, i.e., we have AT,° = AL,° = AB,° = AR,° = 0 by
initializing each start and end index to 1 and 0, respectively. Then, for each step
i = 1 , . . . , \m/2], we start with Tl to determine AT,i from _4T ' i _ 1 . Let 5 := sTL,i~1

and e := eT,l~1. The first 5 — 1 antichains remain unchanged and are simply copied
from AT,i~1 to AT,i. Now define AT,i as A^1'1 U IP(T{nM,AT,i~1). For example,
when processing T2 in Figure 2 (b), JP (T 2 nM, _4T'X) = {(2,2)}, and thus the match
(2,2) combined with A~,x makes up _4T'2 as shown in Figure 2(c). Next, setting
u = 5 + 1 , . . . , e, the antichain AT,l~1 is handled in the same way to set up _4T'1, but
only those matches in Tl not belonging to _4T '2 , . . . ,_4Ti\ are considered. Finally,
we establish sTL,% := s and, if there are no matches left, eT,% := e. Otherwise, we
set eT'1 to e + 1 and collect all remaining matches in a new antichain AT±\. Also, if
j^R,i-i __/. 0̂ w e check whether its last antichain AR,t_1, e := eH '1_1 , is incomparable
to Aj±\. In this case we say .Af'1-1 is inactivated by -4^\ , and we remove _4f'2_1

from AR,t by setting e^'z := eH ' z - 1 . Continuing our example with T2 in Figure 2 (b),
we see there are two matches (2,4) and (2,5) left after processing _4T'2. Therefore
a new antichain _4T'2 is created, but AR,X remains unchanged because, for example,
(2,4) <£: (4,9). The final set A7,2 is shown in Figure 2 (c) (the modifications to the
other antichains are described below). Now let us consider the work involved with
T3 . The match (3,3) cannot be put into _4f'3, but into _4T'3, and the other match
(3,6) makes up the new antichain _4T'3. This time (3,6) inactivates (3,8), and thus
AR,2t is removed. The result is illustrated in Figure 2 (d) (all matches located in
deleted antichains are indicated by grey dots).

Having determined _4T '\ we continue with the necessary calculations for AL,i

which are very similar. Again, the first 5 — 1 antichains are copied. Then, by setting
u — 5 , . . . , e L ' z - 1 , AL,% is defined as the union of AL,l~1 and the incomparable part
of 27 relative to AL,l~1, where only those matches are considered which have not
already been used. Remaining matches form a new antichain and, if they are incom
parable to the last antichain in _4B ' l _ 1 , we decrease eB,% by one. The corresponding
algorithm in Figure 3 (a) also introduces two additional sets DTR and DBL which
contain all deleted matches. Details will be given in the next section.

Before processing AB,l~1 and _4 f i ' l_1 in an analogous way, we first check whether
the first antichain in AT,% or AL,% is TL-complete, i. e., whether one of them contains
a match (k,£) such that 1 < k,£ < i. For example, in the configuration shown in
Figure 2(c), _4T'2 is TL-complete due to the match (2,2). As soon as AT,% is
detected to be TL-complete, sTL,% is increased by one, thus the first antichains in
both corresponding sets which are checked for additional matches remain unchanged

50 H. GOEMAN AND M. CLAUSEN

10

5 : = T* n M ; (* Determine AT,i *)
F o r u : = . s ^ " 1 T o e 1 ^ " 1 D o {

AT,i : = A T , i - 1 U l P (5 , A T , i - 1) ;
S:=S\IP(S,AT'i-1);

};
I f 5 ^ 0 T h e n {

e r ' ' : = e T , i " 1 + 1; e : = e T , i ; AT,i : = 5 ;
eR,i : = e f l , i _ 1 - e : = eR,i-

I f sBR,i-i < e H , t - i T h e n {
I f IP(AR,i-\AT^) = A ? ' * " 1 T h e n {

DTR :=DTRuAR,i-i.

eH,f : _ e _ 1 ;

};

15 } E l s e { e т , i : = eTti-1\
F o r u : = 1 T o в " ^ - 1 -

p н , i ,_ p я , í - i };

5 := Bi n M; (* Determine AB,i *)
For u := a 2 3 * ^ - 1 To e B , i D o {

AB>{ : = A ; ? , i - 1 U l P (5 , A * , i - 1) ;
S:=S\IP(S,AB,i-1);

};
I f 5 ^ 0 T h e n {

„B,t . _ „B,t , -, . „ «B,t. ,*B,t c .
e := e + 1; e := e ' ; -Ae •= *->;
I f s T I / , i < e L , i T h e n {

e : = e L , i ;
ItIP(AL'i,AB'i) = AL>{ T h e n {

DBL : = D B L U A | " i ;
eL,i := e - 1;

};
};

};
1 D o Aт,i : = Л т , i - 1 ; For u : = 1 To в™-*"1 - 1 D o Л f î , i := Aí

20

5 := V n M ; (* Determine AL,i *)
For w := 8

TL*i-1 T o e 1 "*" 1 D o {
AL'{ := Ai^"1 U IP (5 , A^-1);
5 : = 5 \ / P (5 , A i " i - 1) ;

};
I f 5 ^ 0 T h e n {

5 := .R* n M; (* Determine AH,i *)
For u := a1"*''"1 To e R , i D o {

Ati,t . _ A*t,

S:=S\IP(S,AÍ

U I P (5 , A Í

');

L,t ^ L . t - l

0Bti
+ 1; e : . _ pLti

P B , І - 1 . = î = p f l , i ,

2 5

; Ae ' :— o;

e~>* :— e - ' ' * -• e .— e J , i *

I f s B H , t - i < e B , i - i T h e n {
I f IP(Af^-\AL,i) = Af,i"1 T h e n {

DBL :=DBLuABti-l.

e ñ , i ; A д , i : = 5 ;

};
30 };

} E l s e { eL,i : =
F o r u : = 1 To s

L , t - 1 . B,» . _ _B,t- l ' ; e-" : = e ~ — };
1 - 1 D o AL>{ : = Л І ' * - 1 ;

};
I f 5 j - 0 T h e n {

e ' : = e ' + 1; e :
I f s

T L i < e T , i T h e n {
e : = e ' ;
UIP(Aj>i

iA
R>i) = AF T h e n {

DTR:=DTRUAV\
e T , i : = e - 1;

};
};

};
For u : = 1 To a1"*'*"1 - 1 D o AR,i : = .A?'*-1;

33 sл
0TL,І-I. BRti BRt i-1.

(a) (b)

Fig. 3. The algorithms for generating AT,i & AL,i (a), and AB,i & AR,i (b).

from now on. If there is no such antichain in AL,% (i. e. s > e L , z) , but sBR,l~l < e B , t ,
then we additionally test whether A~,z is incomparable to the last antichain in AB,l~l

and, should this situation arise, delete this antichain from AB,% by decreasing eB,x.

Now assume AL,X is TL-complete. Then, as shown in Figure 4 (a), we also increase
5 T L , t , and similarly, if s > eT,% and sBR,l~~l < eR,t, we decrease e^'2 if AL,l inactivates
the last antichain in AR,t.

The remaining work in step i concerns with the analogous construction of AB,%

and A11'1. (The analogue of TL-completeness is called BR-completeness. An an
tichain is BR-complete if it contains a match (k,£) with m — i < k < m and
n — i < £ < n.) Details are available from the algorithms shown in Figure 3 (b) and
Figure 4(b).

The main program shown in Figure 5 is straightforward. Our next task is to elab
orate the connection between the generated antichains and a minimal decomposition
of M. This is done in the next section.

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 51

10

(* Check AT,i for TL-completeness *)
UsTL,i <eT,i T h e n {

„ e TL,t .
s := s ;
If 3 (k, £) e AT,i: k,£<i T h e n {

If s > e L i T h e n {
I f s B B , t - l < eB,i - h e n |

e : = e B ' i ;
If IP(A?,i~1,AT,i) = AB,i~1 T h e n {

DBL,i ^ D ^ U A f ' 1 ' " 1 ;
eB,i : = e - l ;

};
};
eL

(* Check A B , t for BR-completeness *)
If sBR,i < eB,i T h e n {

_ BBR,i.
s := s ' ;
If 3 (k, £) e Af '*: k> m - i A £> n - i T h e n {

If s > eR,i T h e n {
HsTL,i <eT,i T h e n {

e : = e T ' * ;
HIP(Aj,i,AR,i) = Aj,{ T h e n {

DTR,i :=DTR,iUAT,i\
eT,i : _ _ e _ i ;

};
};

};
15 _™-,t . _ = s + 1;

p Я , . ._

QBR,І

• s; A я ' ť : = I

s + 1;

20

25

(* Check __L'* for TL-completeness *)
If sTL,i < eL,i T h e n {

TL,i
s := s ' ;
If 3 (k, £) e AL,i: 1 < k, £ < i T h e n {

If s > e T i T h e n {
I f s B R , t - l < c R , i - h e n {

e : = e H ' i ;
If IP(AR,i-\AL,i) = Af'1"1 T h e n {

DTR,i :=DTR,iuAR,i-i.

};
};
(* Check AR,t for BR-completeness *)
If sBR,i < eR,i T h e n {

- B i - , t .

s : = s ' ;
If 3 (k, £) e AR,i: k> m - i A £> n - i T h e n {

If s > eB,i T h e n {
If sTL,i < eL,i T h e n {

e : = e L ' f ' ;
HIP(AL,i,AB,i) = AL,i T h e n {

DBL,i := DBL,i \J AL,i\ p Д . i ._,

};
1;

};
: = ê - l ;

30 : = s; Л т,ť ._ p ß . i . _ s; Af'*' : - 0;

я T . L , t . = = s + 1 ; := s + 1;

34 };

(a) (b)

Fig. 4. The algorithms for handling complete antichains in AT'X & _4L'1 (a), and in AB,%

& AR^ (b).

3. ANALYSIS OF THE CONSTRUCTION

In this section, we study how to combine the antichains into larger ones such that a
minimal decomposition of M is obtained. We further establish some results which
later help us to construct an LCS in linear space.

Let us assume m is odd, and let i = |~ra/2"|. For technical reasons, we then put
AB^ := A**-1 and A*>* := A^-1 for all 1 < u < e3^1 and 1 < u < e ^ " 1 .
We also set sBR>1 := s3^1'1, eB>1' := e^' 1 ' - 1, and eR^ := e*'*""1. Furthermore, for
0 < i < |m/ 2l> we define ATJ := 0, AL* := 0, AB* := 0, and AR>1 := 0 for u > eT>\
u > eL ' z, u > eB>1, and u > eR'%, respectively.

Lemma 3.1. Let 1 < i < |~ra/2~|. Then the following holds:

a) V s 7 7 ^ " 1 < u < v < eT'2' Vpi G AT>* 3P2 G A^{: P l > P2.

b) Vs7 7"*"1 < u < v < eL>1 Vpi G AL>1 3P2 G A ^ : pi > p 2 .

52 H. GOEMAN AND M. CLAUSEN
I

sт,° : = 1; sL,° : = 1; S

в ' ° := 1; S

я>°
eт,° : = 0 ; eL,° : = 0 ; e в ' ° := 0; eR,°
Foг i := 0 To [m/ 2] Do D T L » ť := 0
Foг ż : = 0 T o Lm/2J D o DBR,г := 0

1; (* Initialization *)
0;

5 i := 1;
While i < [m/2j Do { (* Main loop *)

Determine AT,t and AL,t\ (* see Figure 3(a) *)
Look for TL-complete antichains in AT,t and AL,t\ (* see Figure 4(a) *)
Determine AB,t and AR,t\ (* see Figure 3(b) *)

10 Look for BR-complete antichains in AB'* and AR,t\ (* see Figure 4(b) *)
i := t + 1;

};

If Odd(m) Then {
Determine A T ' r m / 2 1 and AL,*~rn/2^\ (* see Figure 3(a) *)

15 Look for TL-complete antichains in AT,^rn/2^ and AL,[m/2^\ (* see Figure 4 (a) *)
};

Fig. 5. The main program for decomposing M.

c) V s ^ " 1 <u<v< eB,i Vpi G AB,i 3p2 G AB,i: Pl «p2.

d) Vs™**-1 < u < v < eR,i Vpi G A?»* 3 p 2 G AR,i: Pl < p 2 .

P r o o f . We only show the first claim, the other proofs are similar. Letpi = (k,£).
Since AT,t C T-^m / 2 l , p\ has been added to AT,k while processing Tk in step A;,
and k < i. Clearly, from the way S is handled in lines 1-5 of Figure 3 (a), we have
pi $ IP(Tk H M ^ P " 1) , for s77"*"1 < j < v. Since s 7^*" 1 < s^ . i - i < ^ < v?

there is some p2 G .A^'fc_1 such that p\ ^> p2 or p\ « p 2 . But the second case
would imply p2 G Tk for some k! > k which is impossible during the first k steps of
our construction. Finally observe that the algorithm never removes matches while
updating an antichain, thus p2 is still present in AT,'t. •

L e m m a 3.2. The following holds:

a) VI < i < \rn/2] Mv: v < sTL,i ^=> AT'1 or AL,i is TL-complete.

b) VI < i < [m/21 \/v: v < sBR,i <=> AB,i or AR,i is BR-complete.

P r o o f . We only prove the first claim, the other one is similar.
If. By contradiction, let i be the first step such that A^,% or AL,% is TL-complete,
but v > sTL,t. Clearly v ^ sTL,l~1, otherwise the TL-completeness would have
been detected by the algorithm shown in Figure 4(a), and thus, contradicting the
property of v, we would have v < sTL,% = sTL,l~1 + 1. Hence v > sTL,l~1. By the
TL-completeness, there is some match (k,t) G A£>% U AL,X such that 1 < k,£ < i.
Furthermore, by Lemma 3.1, there exists some match (k',£') G AT±\ U ALI\ such

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 53

that (k',£') < (k,l). But then 1 < k'J' < i, and therefore either ATi\ or ALi\
would be TL-complete after step i — 1, a contradiction .to the choice of i.
Only if. Obvious from the management of the start indices. •

Lemma 3.3. For all i ,u define ATL>1 := AT>1 U _4L'1' and A**** := _4?»* U _4?>\
Then

a) VO < i < \m/2] VI < u < min{eT ' i ,eL ' i}: ATL>{ is an antichain.

b) VO < i < \m/2] VI < u < min{eB ' i ,e / ? ' i}: A~R>{ is an antichain.

P r o o f . We prove the first claim by induction on i. The base i = 0 it trivial
because _4T'° = _4L'° = 0. For the induction step i — 1 -» i, we consider three
different cases.
Case a: 1 < u < a71'*"1. Then A*** = A^'1 - 1 and _4L)i = _4L ' i _ 1 (see lines 15
and 30 in Figure 3 (a), respectively). Thus, by the induction hypothesis, _4TL'Z is an
antichain.
Case b: a12"*'1 <u< min{e T ' i - 1 , e L ' i " 1 }. By definition the set T := IP(S, J C * " 1)

added to _4T'1 in line 3 (Figure 3 (a)) is incomparable to _4T '2_1, but it is also incom
parable to _4L>i as we now demonstrate. Let (fc,^) G IP(S, -4T ' i_1) and (k',£') G AL>\
Observe k = i and £ > i. Also note that k' > £' and £' < i because _4L>i C L - i .
Thus (k,£) < (k',£') would contradict £ > i > £'. Furthermore, (k',£') < (k,£)
would imply £' < k' < k = i, i.e., _4L '1_1 would be TL-complete, a contradic
tion to Lemma 3.2 and the choice of u. Similar arguments can be used for the set
L := JP(5,_4L ' i-1) added to _4L'2' in line 19. Finally note that T C T* and L C U
are also incomparable.

Case c: min{eT '2_1 ,eL 'z~1} < w < min{eT '2,eL '1}. Clearly, this case is only possible
if u = eT'1' = e71'2-1 + 1 or u = eL ' i = e L ' i _ 1 + 1. If both conditions hold, then
A~>{ C T f l M (lines 1 and 7) and _4L'Z' C VDM (lines 17 and 23), thus their union
obviously makes up an antichain. Otherwise, only one new antichain is generated
whereas the other one is updated, and we can argument as in the second case to
show that both antichains are incomparable.

The proof of the second claim is similar. •

Lemma 3.4. Let 1 < i < \m/2]. Then the following holds:

a) V j < max{eT ' i ,eL ' i} VPj G ATL^ 3Pl G _4TL ' \ . . . , p i _ 1 G ATL{{:

Pl < . . . <Pj.

b) V j < max{eB>\ eR>1} MPj G Af~^ 3Pl G A~R>\ . . . , P i _ i G AfR/:

Pl > . . . » P j .

P r o o f . We prove the first claim by choosing Pv for v = j — 1 , . . . , 1.

54 H. GOEMAN AND M. CLAUSEN

Consider step j ' < i when pv+\ was added to AT+^ C AT+{1. Then Lemma 3.1
implies the existence of pv if v > sTLij ~1. Otherwise, by Lemma 3.2, _4T j _ 1 or
ALfi'-1 has been detected to be TL-complete before step j ' , i.e., ATL,j _ 1 contains
a match (k',£l) such that k!,1' < j ' . But pv+i is of the form (k,f) with k,H > j ' ,
thus we can choose pv := (k' ,£').

Similar arguments can be used for the second claim. D

Lemma 3.5. For 0 < i < \m/2], there are two chains

CTi*'\ CBL>1 C T ^ U L^ U £ - 2 U R&

of length eT '1 + eR,% and eB,% + eL, t , respectively.

P r o o f . We prove the existence of the first chain CTR,% by induction on i. The
base i = 0 is trivial. For the induction step (i — 1) —r i, we have to analyse the
situations which cause eT'2 + e71'2 to be greater than e T ' l _ 1 + e^ '1 - 1 . One such
situation is given in lines 7-14 of Figure 3 (a) if the condition in line 10 is not
satisfied because then e := eT,t = e T ' l _ 1 + 1 and e := eR,t = eR,l~l. But since
IP(ARii~1 ,-4T'2) 7-= AR,l~l there exist two comparable matches cT G -4T,i and cR G
AR'i_1. More precisely, since cT G Tz and cH G -R-2"1, we must have (&,^) <C (k',£').
Thus, by Lemma 3.4, we can construct a chain

Pl < . . . < Pe-l < CT < C^ < p'g_! < . . . < p\

of length e + e.
Similar arguments can be used for the remaining situations and for the other

chain. •

Our next task is to reveal the structure in DTR and DBL. We shall show that
for each deleted match there always is some antichain which is incomparable to
this match. In order to prove this property, we keep track of each deleted match
by assigning it to some antichain during the construction process. More precisely,
whenever an antichain A is removed due to the existence of some other antichain
B which inactivates it, all matches in A are assigned to B, e.g., considering the
situation in Figure 2 (d), the match (3,8) is assigned to A['3. Furthermore, all pre
viously deleted matches assigned to A now also belong to B. The assigned matches
are inherited when an antichain is updated, e.g., in Figure 2(e), (3,8) also belongs
to Aj>4. These rules guarantee that after step i, each deleted match is assigned to
exactly one antichain in _4T,t U AL,i U AB>1 U AR>1. We write D(A) to denote the set
of matches assigned to an antichain A.

Lemma 3.6. Let 1 < i < \m/2], and assume (k,£) G D(A) for some antichain A
in _4T>\ AL>{, _4B ' \ or AR>1. Then

a) (k,£) G DTR =-=-> V (* \ 0 G A: k < k' A I > £'.

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 55

b) (k,£)eDBL = » V(k',£')eA: k>k' M<1'.

P r o o f . For the first claim, let us assume (k, £) was assigned to A while executing
line 11 in Figure 3(a) during step j < i (the following arguments can analogously
be applied to the other instructions which modify DTR). Thus A = AT>1, where
e = e T j . Now we consider two cases concerning the status of (k,£) before step j .
Case a: (k,£) E A^"1 C R^'1, e = c ^ ' " 1 . Then £ > n - j + 1. From lines 1,
6, 7, and 10 we see that (k,£) is incomparable to any match (k" JJ') in A[^. But
j\Tj Q rpj^ faus k" = j and £" < n — j + 1. Hence, the incomparability implies
k < j . Now observe that AT^ is the first constructed part of AT>1, later extensions
are taken from J P + 1 , . . . , T \ Thus every match (k',t) G A p fulfills k' > j and
^7 < n — j H-1, and the claim follows.
Case b: (k,£) is assigned to Af' J_1 . We can inductively assume

V(k",£") e - 4 F " 1 : k < k" A £ > £".

Deleted matches are never assigned to empty antichains. Thus there is at least one
match (k",£") G AR^~X, and we can prove as in the first case that k" < k' and
£" > £'. Hence we have k < k' and £ > £'.

The proof of the second claim is similar and therefore omitted. •

L e m m a 3.7. Let 1 < i < |"m/2]. Then the following holds:

a) V1 < u < eTii: DBL n D(A^{) ^ 0 => ALii = 0 A ATii is TL-complete.

b) V1 < u < eLii: DTR n D(AL>1) ^ 0 = > ATii = 0 A ALii is TL-complete.

c) V1 < u < eB^: DTR n D(AB>{) 7- 0 = * A?>1 = 0 A A?** is BR-complete.

d) V1 < u < eR>{: DBL n D(AR>{) / 0 = > A*** = 0 A ARii is BR-complete.

P r o o f . We again only show the first claim. From lines 10 and 11 in Figure 3 (a),
we see that all matches assigned there to AT,t are either placed into DTR, or they
have been assigned before to some non-complete antichain in A f i , i _ 1 . But concerning
the latter case, we see from lines 26 and 27 in Figure 3 (b) that any such match has
been put into DTR as well, or again belongs to some non-complete antichain in _4T j ,
j < i. Repeating this argument, we conclude that all matches assigned to AT'1 are
contained in DTR. The only exception is given by lines 8 and 9 in Figure 4 (a), where
deleted matches are assigned to ATi%, but added to DBL. But then, from lines 3, 4,
and 13, the claim follows. •

56 H. GOEMAN AND M. CLAUSEN

L e m m a 3.8. All matches assigned to an antichain A are pair wise incomparable,
thus by Lemma 3.6, they extend the antichain to a larger one.

P r o o f . Whenever a match is deleted, the algorithm always removes a complete
antichain. By induction, this antichain B together with its assigned matches forms a
larger antichain C. If there already is a set of matches D assigned to A (which is only
possible when A is detected to be complete), then, following the arguments given
in the proof of Lemma 3.7, C C DBL and D C DTR or vice versa, and Lemma 3.6
immediately implies that B and D are pair wise incomparable. •

We are now prepared to construct a minimal decomposition of M. We start
by decomposing M \ (DTR U DBL), the deleted matches are later considered in
Thmeorem 3.9 below. The construction is as follows. Using Lemma 3.3, we com
bine the first eTL := min{eT ' rm /2 l ,eL ' rm /2 l} antichains in AT'Tm/2l and AL^m/2^ to
larger ones. We also connect the.first eBR := min{eB,rm/2l jeR>rm/2l j . antichains in
.AB,[m/2l to the corresponding ones in AR^m/2\ For example, in Figure 2(e), we
have e

T>rW2l = e
B J m / 2 l = 3 and e

L>rW2l = e«,rW2l = 2, thus this generates four
combined antichains. Concerning the remaining antichains we consider four different
cases.
Case a: e

T>rm/2l < e ^ r m / 2 l a n d eB,\m/2] > e IU m / 2 l . Then we leave the remaining
antichains as they are and have p := e

L>rm/2l _|_ eB ,[m/2l antichains in total. But by
Lemma 3.5, there also exists a chain of this length. Thus, by Dilworth's theorem,
the decomposition is minimal.

Case b: eT'^m/2l > eL^m/2l and eB 'fm/2l < e ^ r m / 2 l . Similar to the first case we
have p := e

T>rm/2l + eI*,rm/2l antichains, and also a chain of this length. -
Casec: e

T>rm/2l < e-Vm /2 l and e
B>rm/2l < eB , rm /2 l . From the management of

the start and end indices, we have e
T>rm/2l > 5TL,rm/2l _ \m Thus, by Lemma 3.2,

^L,rm/2l i s n o t TL-complete for u > e
T 'Tm /2 l . This implies k > \m/2] and £ <

|m/2l for any match (k,£) e jl^rW2! c L-^m / 2 l . For all v > e
5>rm/2l and

\k\e) e AR^mW We similarly have k' < \m/2] and £' > n - [m/2\ > \m/2].
Thus AL^™/2] a n d ^B,[m/2i a r e inC0mparable. Now assume e

L>Tm/2l > e1^,rm/2l.
Then we can connect all remaining antichains in A^'rm/21 to corresponding ones in
_4L,rm/2l and obtain p := e

L>rm/2l _|_e-3,[m/2i antichains in total, thus again a minimal
decomposition. If e

L>r™/2l < eR,\m/2]^ then similarly p := e
T>Tm/2l -4-eR,rm/2l [s the

optimal length of a chain in M \ (DTR U DBL).
Case d: e

T>rm/2l > e^.rm /2 l and e^>rm/2l > eI-,rm/2l. Finding a minimal decompo
sition is slightly more complicated in this case. Consider the following algorithm.
Starting with u := e^171/^ and v := e

R^m^ + 1, we check whether AT^m/2^ and
j^B,\m/2] a r e incomparable. If they are not, then we backup u and v in u and {/,
respectively, and increase v by one. Otherwise the antichains are connected, u is set
to u — 1, and v is set to v + 1. We repeat this until all remaining antichains in either
^T ,[m/2l Q r ^B.rm/21 h a v e b e e n u s e d > j e ? u = eL,[m/2l Q r y > eB,[m/2l T h e n

the total number of antichains is p := u + e
B>Tm/2l m Thus, if u = e

L>rm/2l ? w e have
p = eL,\rn/2'\ _|_eB,[m/2l ^ a n (j foe decomposition is optimal. Now assume u > e

L>Tm/2l.

i

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 57

If u and v are unused, then all remaining antichains in AB^m/2^ have been connected
to corresponding antichains in AT^m/2^, and we havep = eT'Tm/2l +eR^m/2^. Hence,
in this case the decomposition is also a minimal one. Finally assume that u and v
have been used for saving u and v at least once. Then for j = v + 1 , . . . , e B ^ m / 2 l .
^B,fm/2l h a g b e e n c o n n e c t e d t 0 A[^W, and we have u = u- (eB'Tm/2l - v). Thus
p = u — (eB '^m/2l — v) + eB^m/2^ = u + v. But from the properties of u and £, it
can be shown (similar to the proof of Lemma 3.5) that there is a chain of length
u + v which contains two matches pi G AT'^m/2l and p2 G Af^m/2\ Hence, the
constructed decomposition is optimal.

Let us consider our example. Case d applies to the situation in Figure 2(e),
and A['4 is compared with Af '4. Since these antichains are incomparable, they are
connected, and we obtain a decomposition consisting of 5 antichains in total.

Theorem 3.9. The length of an LCS in M equals p as defined in the four cases
above.

P r o o f . Consider a combined antichain A of the decomposition. Assume an
antichain A[^m/2^ G AT^m/2^ is one component of it (otherwise, we can handle the
following construction in a similar way).
Case a: A[^m/2^ is the only component of A. Then we extend A with the set B of
deleted matches assigned to A[^m/2^. Lemma 3.8 guarantees that the result is still
an antichain.
Case b: A[^mW has been combined with A H m / 2 l . By Lemma 3.7, B C DTR. Let
(M) G A£JmM and (k',t') G A[^m/2\ Now (k,t) G L^m /21, the incomparability
of (M) and (k',£')> and (k'J') G T^m/21 imply that k > k' A I < £'. Now consider
a match (k",t") G B. By Lemma 3.6, we have k > k' > k" and t < t' < t".
Hence, A[^m/2^ is incomparable to B. We can use a similar way to show that the
set C of deleted matches assigned to AL^m/2^ is a subset of DBL and incomparable
to A[^m/2\ Finally, B and C are clearly incomparable as well. This implies that
^T,rm/2l ,j ^L,rm/2l [j B U C is still an antichain.

Case c: AT '^m/2l has been combined with some other antichain D G AB>1. Then,
similar to the proof of the second case, we can show that the union of A and the
two corresponding sets of assigned matches still make up an antichain.

By handling each combined antichain in this wqy, we can construct a decompo
sition of M without generating any additional antichains. The proof is complete.

•

Figure 2 (f) illustrates the corresponding decomposition for our example.

4. IMPLEMENTATION

We now describe an efficient implementation for the given algorithm and analyse its
time and space complexity.

All new antichains created in step i are extensions from antichains generated
during step i — 1. Furthermore, the only antichains used for decomposing M are from

58 H. GOEMAN AND M. CLAUSEN

the last step. Thus for the implementation it is sufficient to update the antichains
of interest. The same is true for the start and end indices, and we thus sometimes
drop the index i from now on. The necessary information for each actual antichain
can be kept in one single number as follows. Let 1 < i < [ra/2] and 1 < u < eT>1.
We define ThreshT[u] as the leftmost column used by some match in .AT'2, i.e.,

ThreshT[u] := min{^|3Jfc: (k,t) G A p } .

For example, in Figure 2 (b), ThreshT[l] = 3, and in Figure 2 (d), Top-Thresh[l] = 2,
ThreshT[2] = 3, and ThreshT[3] = 6. To update this array in each step, we use an
auxiliary array LeftPos on E x [1 : n + 1] given by

LeftPos[c, t] := min({n + 1} U {j \t < j < n A yj = c}),

i.e., LeftPos[ai,t] equals the column number of the leftmost occurence of a match
in row i located right to column^, and equals n + 1 if there is no such match. In
our example (y = cbabbacac), we obtain the following values:

a 3 3 3 6 6 6 8 8 10 10
b 2 2 4 4 5 10 10 10 10 10
c 1 7 7 7 7 7 7 9 9 10

Now it is not difficult to see that the following routine correctly updates ThreshT
when processing Tl, representing lines 1-7 in Figure 3(a). (Similar procedures are
used in [4, 29, 30] to determine contours which correspond to the antichains used
here.)

k : = LeftPos[a,i, i]\

F o r u : = sTL T o e T D o {
j := ThreshT[u]\
I f k < j A n d k < n - i + 1 T h e n {

ThreshT[u] : = k\ k : = LeftPos[<nJ + 1];

};
};
I f fc < n - i + 1 T h e n { eT : = eT + 1; ThreshT[eT] : = k };

For AL '1, AB'%, and AR'% we introduce additional arrays ThreshL, ThreshB, and
ThreshR which similarly store the topmost rows, rightmost columns, and bottom
most rows used by the corresponding antichains. To handle them analogously to
ThreshT, we also need three more auxiliary arrays given by

TopPos[c, k]
RightPos[c, t]
BottomPos[c, k]

= т т ({ ш + 1} ^ {Л к < з < т Л х^ = с}), (1 < к < т + 1),
= тах({0} 1>{з\1<з<елу,= с}), (0 < I < п),
= тах({0} ^ {] 11 < з < к Л х, = с}), (0 < к < т).

Note that in Figure 3 and Figure 4, each test for the incomparability of two antichains
can be replaced by a rather simple conditional statement. For example, considering
line 10 in Figure 3 (a), we know that all matches in Tl are located to the left of any
match in R-l~l. Thus, with e := eT ' 2 and e := eRjl, A T and AR are incomparable if

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 59

and only if AR is also completely contained in the first i rows, i.e., ThreshR[e] < i.
The algorithm presented in Figure 6 shows how the other situations are handled.
It also makes use of some special implementation details which cannot be discussed
here, e.g., the construction starts with the bottommost row instead of the topmost
one when m is even. In Figure 6 some lines are marked with a dot (•) on their left
sides. These lines are used for the construction of an LCS and should be ignored for
the moment.

The complexity of the algorithm may be deduced as follows. The four auxiliary
arrays can be easily preprocessed in 0(ns) time and space, where s = |E|. Clearly,
during one of the [m/2] iterations of the main loop, none of the four inner Wh i l e -
loops takes more than 0(p) time, and when determining p, at most [m/2] pairs of
antichains have to be compared. Thus the algorithm takes at most 0(ns + mp) time.
Furthermore, observe that the j-th. antichain in AT (which is added to AT during
some step i > j) must contain a match (k,£) with I <n — (p — j), otherwise it would
be impossible to construct a chain of length p. But then this antichain is detected
to be TL-complete after step n — (p — j), therefore it is only considered for at most
n — (p — j) — i <n — p times in the corresponding While-loop (lines 59-65). Similar
arguments can be given for antichains in AL, AB, and AR. Hence, we have shown
the following theorem.

Theorem 4.1. Let x,y G S + , m = |x|, n = |y|, m < n, and s = |E|. Then the
length p of an LCS of x and y can be computed in 0(ns + min{mp,p(n — p)}) time
and 0(ns) space.

This result has been achieved before by Rick [29, 30], and in fact, the algorithm
presented here is some kind of dualization of Rick's method, but our algorithm is
significantly faster as we shall show in Section 6.

5. CONSTRUCTION OF AN LCS IN LINEAR SPACE

This section deals with the generation of an LCS. The idea is to apply the divide-
and-conquer scheme [5, 16, 20] which first identifies at least one point of an LCS such
that this LCS is splitted into two parts of roughly the same size. Then the remainder
is computed by recursive calls. The method presented here usually determines two
LCS-neighbouring matches cTL and cBR which are located in T-^m/2l U L-^m/2l
and B-^m/2^ U R-^m/2^, respectively. This is accomplished as follows.

In each step i of the construction described in Section 2, we subsequently update
the following variables:

- pTL is the match which caused A[>1 or AL'* to become TL-complete, where
s = sTL"x — 1. For example, in Figure 2(c), pTL = (2,2), and in Figure 2(d)
and (e) ,p T L = (3,3).

- pBR has a corresponding meaning for the last BR-complete antichain in AB,t

and AR'\ e. g., in Figure 2 (d), pBR = (6,7).

60 H. GOEMAN AND M. CLAUSEN

Determine TopPos and LeftPos\
Determine BottomPos and RightPos\
For u := 0 To [m/2] Do {

ThreshT[u] := 0; ThreshL[u] := 0;
5 };

For u := 0 To [m/2j Do {
ThreshB[u] := n + 1; ThreshR[u] := m + 1;

};
t := 1; £ := 1; b := m\ r := n\

10 sIlj := 1; el 0; e ь ._ 0;
s B H := 1; ea : = 0; e " := 0;

If Odd(m) Then Goto Line 57;

While t < b D o { (* Main loop *)

k := RightPos[xb,r]\ (* Update AB *)
15 u := s B H ;

Wh i le u < e B Do {
j := ThreshB[u]\
Uk>j Then {

ThreshB[u] := k\ k := RightPos[xb, j - 1];
20 };

u := u + 1;
};
If k > £ Then {

eB := u; ThreshB[eB] := k\
25 If ThreshL[eL] > b Then eL := eL - 1

• Else Update cB, cL, £BL\
};
k := BottomPos[yr, b — 1]; (* Update AR *)
u:=sBR\

30 Whi le u < eR Do {
j := ThreshR[u]\
Uk>j Then {

ThreshR[u] := k\ k := BottomPos[yr,j - 1];
};

35 u : = u + l;
};
If k > t Then {

eR := u; ThreshR[eR] := k\
If ThreshT[eT] > r Then eT := eT - 1

• Else Update cT, cR, £TR\
};
(* Check for BR-complete antichains *)
If ThreshB[sBR] = r Then {

If sBR > eR Then {
45 If ThreshT[eT] > r Then eT := eT - 1

• Else Update cT , cR, £TR\
};
sBR:=sBR + l\

} Else If ThreshR[sBR] = b Then {
50 If sBR > eB Then {

If ThreshL[eL] > b Then eL := eL - 1
• Else Update cB, cL, £BL\

};
sBR;=sBR + \\

55 };
t := t+ 1; £ :=£+ 1;

k := LeftPos[xt,£]\ (* Update AT *)
TL

u := s \
While u < eT Do {

60 j := ThreshT[u]\
If k < j Then {

ThreshT[u] := k\ k := LeftPos[xt,j + 1];
};
u := u + 1;

65 };
If k < r Then { *? •-- u; ThreshT[eг] := k\

If ThreshR[eR] < t Then eR := eR - 1
• Else Update cT, cR, £TR\

70 };

k := TopPos[yt,t]\ (* Update AL *)
u := s ;
Whi le u < eL Do {

j := ThreshL[u]\
75 If k < j Then {

ThreshL[u] := k\ k := TopPos[yi,j + 1];
};
u := u + 1;

};
80 If k < b Then {

eL := u; ThreshL[eL] := k\
If ThreshB[eB] < £ Then eB := eB - 1

• Else Update cB, cL, £BL\
};

85 (* Check for TL-complete antichains *)
If ThreshT[sTL] = £ Then {

If sTL > eL Then {
If ThreshB[eB] < £ Then eB := eB - 1

• Else Update cB, cL, £BL\
90 };

STL _ STL + 1 ;

} Else If ThreshL[sTL] = t Then {
If sTL > eT Then {

If ThreshR[eR] < t Then eR := eR - 1
• Else Update cT , cR, £TR\

};
sTL :=sTL + l\

};
6 := b — 1; r := r — 1;

100 };
(* Determine length p of an LCS *)
If eT > eL And eB > eR Then {

If sTL < eL Then sTL := eL + 1;
If sBR < eR Then sB H := eR + 1;

105 u:= eT\ v := sBR\
Whi le u > sTL And v < eB Do {

If ThreshT[u] > ThreshB[v]
Then u := u — 1

• Else { u := u; v := v };
110 v : = v + l;

};
p := u + eB;

113 } Else p :=max{eL + e B , e T + eH};

Fig . 6. The 0(ns + min{mp,p(n — p)}) algorithm for determining the length p of an LCS.

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 6 1

- cT and cR are the two matches introduced in the proof of Lemma 3.5. They
both lie in C™'1 and are neighbours in this chain. Furthermore, cT and cR

are always located in the first i topmost rows and i rightmost columns of M,
respectively.

- cB and cL have analogous properties for CBL"%.

- £TR and lBL is the position of cT in CTR,t and of cL in CBL '2, respectively.
Also, tTR + 1 and tBL + 1 is the position of cR in C™'* and of cB in CBL>\
respectively.

Variables pTL and pBR can be easily updated. For example, consider lines 85-98 in
Figure 6 where new TL-complete antichains are handled. Let pTL = (u,v). If the
condition in line 86 is satisfied, then we know pTL has to be set to the bottommost
match located in the first t rows and column I. Therefore two additional statements
can be inserted between lines 86 and 87 such that u is set to BottomPos[yi, t] and v is
set to l. Similar statements apply for the situation in lines 92-98, and this completes
the description of the management for pTL. pBR can be handled in a similar way.

cT , cR, and £TR must be updated whenever the length of C™'1 increases. These
situations are indicated in lines 40, 46, 69, and 95 in Figure 6, and here we only
sketch how to manage them. By arguments analogous to the ones given in the proof
of Lemma 3.4, we have to distinguish two cases when updating cT. If sTL'1 > e T ' \
then cT is set to p T L , otherwise cT can be determined by some additional statements
which are similar to the ones used for updating pTL. In either case, we set £TR to
eT'* because eT'* is the position of cT in CT i ? ' \ as seen in the proof of Lemma 3.5.
The management of cB , cL, and £BL is similar.

Now let us review the construction of the final decomposition given in the end
of Section 3. If p is set to eT^m/2^ + eR^m^2\ then we can use cT and cR as the
appropriate matches for cTL and cBR. Similarly, if p = e

B>rW2l + eL,\m/2]^ w e

establish cTL = cL and cBR = cB. Finally, if a longest chain is determined by
the algorithm described in case d of the construction (corresponding to lines 103-
112 in Figure 6), and p is not set to one of the above values, then we can use
the backup values u and v to determine cTL := (BottomPostyu^yn) and cBR :=
(TopPos[yi,,t],yv), where u := ThreshT[u] and v := ThreshB[v].

Before recursively calling the algorithm for the remaining parts of the LCS, we
see it is necessary for our routine to not only work on the complete matrix of size
[1 : m] x [1 : n], but also on any subarea [ki : k2] x [£\ : £2]. The necessary changes
are quite straightforward, and we do not provide any details here. Moreover, it
might be impossible to locate both cTL and cBR (e. g., when \M\ = 1), but then one
recursive call can simply be skipped.

Theorem 5.1. An LCS can be constructed in 0(ns + min{rap,p(n - p)}) time
arid 0(ns) space.

P r o o f . Clearly, for the top-level call, the additional overhead needed to keep
track of the new variables is bounded by 0(m). Thus, not taking into account the
time consumed by preprocessing or any recursive calls, we can assume the number

62 H. GOEMAN AND M. CLAUSEN

of elementary operations to be bounded by d(m + min{mp,p(n — P)}), for some
appropriate constant d. We first examine the bound d(m + mp). Let cTL = (k,£)
and cBR = (k',C) (if only one match has been determined, the analysis is similar).
Consider the two first-level recursive calls concerning the areas Mi and M2, where
Mi := [1 : k - 1] x [1 : I - 1] and M2 := [k' + 1 : m] x [£' + 1 : n]. Let pl and p2

denote the length of an LCS in Mi and M2, respectively, i. e., p\ +p2 = p — 2. Recall
that cTL is located in the first [m/2] rows and columns, i.e., the length of one side
of Mi is bounded by [m/2] - 1. The same is true for M2, and thus the number of
operations taken for both first-level calls is bounded by

m
d(\m/2] - l)(pi + 1) + d(\m/2] - \)(p2 + 1) < dp-.

Repeating this argument, we obtain a dmp/2l bound for the at most 2l ith-level
recursive calls. Since recursion ends at level |~log(m/2)~|, this sums up to at most
2 • dmp for the complete algorithm.

Similar (but somewhat more complicated) arguments can be used to show the
other bound d(m +p(n — p)). We refer to [15] for details.

Now finally observe that when comparing the divide-and-conquer routine with
the algorithm which determines the length p of an LCS, we only need O(logm)
additional stack space, and thus the 0(ns) space bound is still valid. •

6. EXPERIMENTAL RESULTS

We compared our routine with the algorithm proposed by Rick [29, 30] which clearly
outperforms any other method when constructing longest common subsequences of
intermediate lengths. Rick's algorithm is also a flexible one, being very efficient
for short and long LCS as well. It uses a strategy similar to the one presented
here, but only constructs antichains (or contours) from the top and left side of M.
While this substantially simplifies the implementation and also the preprocessing
phase (i.e., we only have to compute LeftPos and TopPos), there are two severe
drawbacks. First, in order to recover an LCS after determining its length, the so-
called dominant matches must be saved during the construction of the contours,
and this might take ft(mn) space. Second, the number of checks of Thresh-values is
significantly increased when decomposing M from only two sides. For an alphabet of
size 8, Table 1 shows some sample results when determining p for different settings
of m, n, and p.

The corresponding running times are presented in Table 2. Both algorithms were
programmed in a straightforward way, using no special optimizations, and were
tested on an Intel Pentium II at 300 MHz. It can be seen that our algorithm only
takes about 70% of the time needed by Rick's method when computing the length of
an LCS which is of intermediate length. For very short or very long LCS our method
slightly suffers from the additional overhead during the preprocessing phase, but is
still very efficient.

Finally, we checked the running times and the consumed space when generating
an LCS. Table 3 shows that in spite of the linear space restriction, our algorithm

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 63

Table 1. Frequency of checks of Thresh-values.

m n P Rick [30] New method
500 500 100 16864 14983
500 500 200 28962 23078
500 500 300 33276 23394
500 500 400 20384 13276
1500 1500 300 145129 126796
1500 1500 600 265107 216845
1500 1500 900 280026 207000
1500 1500 1200 172846 121516

Table 2. Running times in microseconds
for determining the length p of an LCS.

m n P Rick [30] New method
500 500 100 3352 3626
500 500 200 5659 4725
500 500 300 6978 4890
500 500 400 5000 3516
1500 1500 300 24451 21868
1500 1500 600 46099 34835
1500 1500 900 54176 33791
1500 1500 1200 38791 22308

sometimes runs more than twice as fast as Rick's method. This is due to the sig
nificant overhead in Rick's routine which is caused by the additional statements
responsible for saving the contours in memory.

7. CONCLUSION

We have investigated a new algorithm for the Longest Common Subsequence Prob
lem. In spite of the quite complicated technical details necessary for the construction
and analysis, the final routines proved to be very practical. More precisely, we have
shown three results. First, we have presented a new fast method for determining
the length of an LCS. Second, we have developed a linear space algorithm for con
structing an LCS in 0(ns + min{rap,p(n -p)}) time, thus solving a previously open
problem. And third, we have shown by some experimental results that this algorithm
seems to be well-suited for many usual applications.

The presented method can be extended to find all LCS of two given strings while
preserving the time complexity 0(ns + min{mpyp(n - p)}) , which is the same time

64 H. GOEMAN AND M . CLAUSEN

Table 3. Running times in microseconds
for constructing an LCS of length p.

m n P Rick [30] New method

500 500 100 6319 6044

500 500 200 14341 9066
500 500 300 19505 9890

500 500 400 15769 7802

750 750 250 23132 16374

750 750 400 39835 20495

750 750 550 38516 16758

750 750' 700 16319 9945

Table 4. Allocated space in bytes
for constructing an LCS of length p.

m n P Rick [30] New method

500 500 100 64284 ' 34072

500 500 200 143820 34072

500 500 300 199464 34072

500 500 400 176328 34072

750 750 250 219244 51072

750 750 400 390172 51072

750 750 550 396136 51072

750 750 700 193780 51072

complexity as for Rick's algorithm. Details can be found in [15].

A C K N O W L E D G E M E N T

We would like to thank Dr. F. Kurth and the anonymous referees for helpful comments.

(Received May 12, 2000.)

REFERENCES

[1] A.V. Aho, D.S. Hirschberg, and J .D. Ullman: Bounds on the complexity of the
longest common subsequence problem. J. Assoc. Comput. Mach. 23 (1976), 1, 1-12.

[2] A. Apostolico: Improving the worst-case performance of the Hunt-Szymanski strategy
for the longest common subsequence of two strings. Inform. Process. Lett. 23 (1986),
63-69.

[3] A. Apostolico: Remarks on the Hsu-Du new algorithm for the longest common sub
sequence problem. Inform. Process. Lett. 25 (1987), 235-236.

A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem 65

A. Apostolico and G. Guerra: The longest common subsequence problem revisited.
Algorithmica 2 (1987), 315-336.
A. Apostolico, S. Browne, and C. Guerra: Fast linear-space computations of longest
common subsequences. Theoret. Comput. Sci. 92 (1992), 3-17.
F. Y. L. Chin and C. K. Poon: A fast algorithm for computing longest common subse
quences of small alphabet size. J. Inform. Process. 13 (1990), 4, 463-469.
V. Chvatal and D. Sankoff: Longest common subsequences of two random strings.
J. Appl. Probab. 12 (1975), 306-315.
V. Dancfk and M. Paterson: Upper bounds for the expected length of a longest com
mon subsequence of two binary sequences. In: Proceedings 11th Annual Symp. on
Theoretical Aspects of Computer Science (Lecture Notes in Computer Science 775),
Springer-Verlag, Berlin 1994, pp. 669-678.
M. O. Dayhoff: Computer aids to protein sequence determination. J. Theoret. Biol. 8
(1965), 97-112.
M. O. Dayhoff: Computer analysis of protein evolution. Sci. Amer. 221 (1969), 1,
86-95.
J. G. Deken: Some limit results for longest common subsequences. Discrete Math. 26
(1979), 17-31.
R. P. Dilworth: A decomposition theorem for partially ordered sets. Ann. of Math. 51
(1950), 161-166.
K. S. Fu and B. K. Bhargava: Tree systems for syntactic pattern recognition. IEEE
Trans. Comput. C-22 (1973), 12, 1087-1099.
J. Gallant, D. Maier, and J. A. Storer: On finding minimal length superstrings. J. Com
put. System Sci. 20 (1980), 50-58.
H. Goeman: Time and Space Efficient Algorithms for Decomposing Certain Partially
Ordered Sets. PhD Thesis, Department of Computer Science, University of Bonn 1999.
To appear in Bayreuther Mathematische Schriften.
D. S. Hirschberg: A linear space algorithm for computing maximal common subse
quences. Comm. ACM 18 (1975), 6, 341-343.
D. S. Hirschberg: Algorithms for the longest common subsequence problem. J. Assoc.
Comput. Mach. 24 (1977), 4, 664-675.
W. J. Hsu and M. W. Du: New algorithms for the LCS problem. J. Comput. System
Sci. 29 (1984), 133-152.
J. W. Hunt and T. G. Szymanski: A fast algorithm for computing longest common
subsequences. Comm. ACM 20 (1977), 5, 350-353.
S. K. Kumar and C. P. Rangan: A linear space algorithm for the LCS problem. Acta
Inform. 24 (1987), 353-363.
R. Lowrance and R. A. Wagner: An extension of the string-to-string correction prob
lem. J . Assoc. Comput. Mach. 22, (1975), 2, 177-183.
S. Y. Lu and K. S. Fu: A sentence-to-sentence clustering procedure for pattern anal
ysis. IEEE Trans. Systems Man Cybernet. SMC-8, (1978), 5, 381-389.
D . Maier: The complexity of some problem on subsequences and supersequences.
J . Assoc. Comput. Mach. 25 (1978), 2, 322-336.
W. J. Masek and M. S. Paterson: A faster algorithm for computing string edit dis
tances. J. Comput. System Sci. 20 (1980), 1, 18-31.
E. W. Myers: An O(ND) difference algorithm and its variations. Algorithmica 1
(1986), 251-266.
N. Nakatsu, Y. Kambayashi, and S. Yajima: A longest common subsequence algorithm
suitable for similar text strings. Acta Inform. 18 (1982), 171-179.
S .B . Needleman and C. S. Wunsch: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J . Molecular Biol. */8 (1970),
443-453.

66 H. GOEMAN AND M. CLAUSEN

[28] M. Paterson and V. Dancik: Longest common subsequences. In: Proceedings, 19th
Intern. Symp. on Mathematical Foundations of Computer Science (Lecture Notes in
Computer Science 841), Springer Verlag, Berlin 1994, pp. 127-142.

[29] C. Rick: New Algorithms for the Longest Common Subsequence Problem. Research
Report No. 85123-CS, Department of Computer Science, University of Bonn 1994.

[30] C. Rick: A new flexible algorithm for the longest common subsequence problem. In:
Proceedings, 6th Annual Symp. on Combinatorial Pattern Matching (Lecture Notes
in Computer Science 937), Springer Verlag, Berlin 1995, pp. 340-351.

[31] D. Sankoff and R. J. Cedergren: A test for nucleotide sequence homology. J. Molecular
Biol. 77(1973), 159-164.

[32] D. Sankoff and J. B. Kruskal: Time Warps, String Edits, and Macromolecules: The
Theory And Practice of Sequence Comparison. Addison-Wesley, Reading, MA 1983.

[33] E. Ukkonen: Algorithms for approximate string matching. Inform, and Control 64
(1985), 100-118.

[34] R. A. Wagner: On the complexity of the extended string-to-string correction problem.
In: Proceedings, 7th Ann. ACM Sympos. on Theory of Comput. 1975, pp. 218-223.

[35] R. A. Wagner and M. J. Fischer: The string-to-string correction problem. J. Assoc.
Comput. Mach. 21 (1974), 1, 168-173.

[36] C. K. Wong and A. K. Chandra: Bounds for the string editing problem. J. Assoc.
Comput. Mach. 28 (1976), 1, 13-18.

[37] S. Wu, U. Manber, G. Myers, and W. Miller: An O(NP) sequence comparison algo
rithm. Inform. Process. Lett. 35 (1990), 317-323.

Dr. Heiko Goeman and Prof. Dr. Michael Clausen, University of Bonn, Computer Sci
ence Department III, D-53117 Bonn. Germany,
e-mails: Heiko.Goeman@tlc.de, clausen@cs.uni-bonn.de

		webmaster@dml.cz
	2015-03-24T22:47:42+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

