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K Y B E R N E T I K A — VOLUME 38 (2002 ) , NUMBER 5, PA GES 6 1 7 - 6 2 9 

TIME-DOMAIN AND PARAMETRIC L2-PROPERTIES 
CORRESPONDING TO POPOV INEQUALITY 

MlHAIL VOICU AND OCTAVIAN PASTRAVANU 

For Popov's frequency-domain inequality a general solution is constructed in L2 , which 
relies on the strict positive realness of a generating function. This solution allows revealing 
time-domain properties, equivalent to the fulfilment of Popov's inequality in the frequency-
domain. Particular aspects occurring in the dynamics of the linear subsystem involved in 
Popov's inequality are further explored for step response, as representing a usual charac
terization in control system analysis. It is also shown that such behavioural particularities 
are directly related to the BIBO stability of the linear subsystem. 

1. INTRODUCTION 

The absolute stability is defined for a standard nonlinear closed-loop structure as 
shown in Figure 1. 

The linear subsystem is modeled by the minimal state-space description: 

(x = Ax-bv, te .R+, x e Rr> v e R, 

\y = cx, y G R, 

and the corresponding transfer function: 

n ( x (T As-ih 1 Q(s) 1 bmsm + ... + bis + l 
G(s) = c(Irs — A) b = — • —-7 = — • - , w v J su P(s) su a n 5 n + ... + a i8 + l 

(i) 

(2) 

with r = n + v > m. The gain factor of G(s) is 1. The whole gain factor of the 
open-loop is included in the nonlinear subsystem, which is described by the function: 

v = f(y). (3) 

This is a "sector function" belonging to the class of functions: 

C[0,K] = {/ € Co; 0 < ^ < K , y # o | , (4) 
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• y 

Fig. 1. Block diagram associated with the standard approach to absolute stability. 

where Co is the set of piece wise continuous functions. Class (4) may be replaced by 
one of the following classes: C[£IK] (e > 0, arbitrarily small), C(0,/<:], C[o,K)> C(0,K) 

or C(o,+oo) for which definitions similar to (4) (mutatis mutandis) may be formulated. 
With respect to the equilibrium state: 

x = 0] v = o, yw(t) = 0 , A, = 0 , l , . . . , r - 1 , (5) 

of nonlinear closed-loop system (1) and (3), the following definition is available. 

Definition 1. Nonlinear closed-loop system (1) and (3) is called absolutely stable 
if for each / G C[0iK] (or C[SiK], C(0,/r], C[o,K). C(0iK),C(0t+oo), according to the 
case considered) equilibrium state (5) is global asymptotically stable. 

According to the pole location of G(s) in the complex plane, one may distinguish 
the following two cases: 

a) Principal case: all the poles of G(s) are located in the left complex semiplane, 
i.e. in {5fte s < 0}. 

b) Critical case: at least one pole of G(s) is located on the imaginary axis of the 
complex plane, i.e. in {JJe 5 = 0}, and the rest of the poles are all located in the 
left complex semiplane. 

Regarding Definition 1, many results have been formulated. Among them, let us 
consider the following one [2]. 

T h e o r e m 1. Nonlinear closed-loop system (1) and (3), where G(s) is defined by 
(2) and: 

a) / G C[otK], 0 < K < +oo, in the principal case, 
or 

b) / G C(o,ir], 0 < K < -Foo, in the critical case, 
is absolutely stable if there exists q G R such that the following (Popov) inequality 
is met: 

Ue[(l+jqu)G(ju)]>-j- VcO > 0. (6) 

The purpose of the current paper consists in identifying time-domain properties 
for linear subsystem (1) that are equivalent to the fulfilment of inequality (6) in 
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the frequency-domain. Our approach relies on deriving the general form of the L2-
solutions to Popov inequality (6), which can be expressed in terms of a generating 
function and allow exploiting the concept of strict positive realness. Particular as
pects occurring in the dynamics of linear subsystem (1) are further explored for step 
response, as representing one of the most frequently discussed characterizations re
ferred to in control engineering. It is also shown that such behavioural particularities 
are directly related to the BIBO stability of linear subsystem (1). 

Within this context our results are primarily of mathematical interest in or
der to enlarge the theoretical knowledge and to create perspectives for alternative 
compensator-synthesis. These results can be also regarded as starting points for a 
future research on the development of testing procedures. 

2. L2-SOLUTIONS TO POPOV INEQUALITY 

In the sequel we consider only the principal case, i.e. v = 0 and rational function 
(2) is BIBO stable. However the main lines of the method to be presented can be 
also applied for addressing the critical case (v > 1 and P(s) is a Hurwitz polynomial 
in (2)) by an adequate treatment of sv = (JU))" in inequality (6). As a matter of 
fact the usual cases are i/ = l ,2 for which the condition of ^-stability, [2], is also 
requested. 

Inequality (6), in which 

G(ju)=R(u>)+jI(u) (7) 

and R(u) and I(u) are conjugate functions, i.e. related by the Hilbert transforma
tion [1], is met if 

fl(l")44'F^7T>0 (8) 

TÍ •> 1 1^ s g n g < 0 . (9) 
K q2uj2 + l_ 

The case q = 0 and/or u = 0 is obvious. 
For q > 0 and u > 0 one multiplies (9) by qu, then the result is added with (8) 

and finally one obtains (6). The case q < 0 for inequality (6) may be reduced to the 
case q > 0 according to [3]. Therefore, in the remainder of the text, our discussion 
covers only the situation when q > 0. 

Next we will examine in what extent Popov inequality (6) implies inequalities 
(8), (9). 

a) First, we show that the solution on L2(—co, +oo) of the equation: 

-RoM + gO'")i-*oM + ^ = o> (10) 

associated with inequality (6), is: 

^ - - i r i - i - T (11) 

*M-£•?&-• (12) 
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Indeed, for 

Go(ju) = RO(OJ) + j / o M = T] {goW} , (13) 

9o(t)=goP(t)+goi(t), (14) 

9oP(t) = goi(t)sgnt, (15) 

where JF2 symbolizes the unilateral Fourier direct transformation (on L2(0,+oo)), 
go(t) is the response to the Dirac impulse 5(t), and goP(t) and goi(t) are the even 
and odd parts of go(t), respectively, it results: 

9oP(t) o •-RoM, goiW o •j70(cj). (16) 

With (16), equation (10), taking into account (15), becomes: 

qDgoi(t) + g0i(t)sgnt + —<J(t) = 0, (17) 

where D symbolizes the derivation in the distribution sense. 
By integrating (17) between —0 and +0 one obtains: 

^[goi(+0)-goz(-0)] + - - = 0 (18) 

from which, with (15), it results: 

9oi{+0) = ~w <1 9 ) 

For t > 0, equation (17) has the form: 

qgoi(t) + goi(t) = 0. (20) 

With the initial condition (19), the solution of equation (20) is: 

9oi® = ~2JKB~*' t>0' (21) 

With (14) and (15), from (21), it follows: 

go(t) = - - L e - i f f ( < ) , (22) 

Go(s)=C{9o(t)} = ~ - ^ - l , (23) 

where a(t) it the unit step function and C symbolizes the Laplace transformation. 
Prom (23), for s = JLJ, one obtains: 

GoC*,) = H o H 4- jIo(») = ~ - ^ j ^ + 1 • - ^ - - , (24) 

from which it results (11) and (12). 
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b) To examine if (6) implies (8), (9), one associates to inequality (6) the following 
equation: 

R(LJ) + q(ju)jl(uj) + —=a + Rl(u>), (25) 

from which, for 
d= lim (JJ(CJ), deR, (26) 

<JJ-¥ + 00 

it results 

-d+± = a. (27) 

On the other hand, according to (6), from (25) it follows: 

a + Ri(u) > 0, ue R, (28) 

and R\(u) is an even function with R\ £ L2(—oo,+oo). 
Now let us introduce: 

G O ) = R(u) + jl(u) = T2j{9(t)}, (29) 

9(t)=9P(t)+9i(t), (30) 

9P(t) = 9i(t)sgnt, (31) 

9P{t)°-?-—R[u>), 9i(t)o^—jI(u), (32) 

and 

Gitfw) = Ri(u>)+jh(u>) = ^?{»i(*)}, (33) 

9i{t)=9iP(t)+9ii(t), (34) 

SipW =gu(t)sgnty (35) 
^ 2 ^-2 

pip(t) o • Ri(u), gu(t) o • jli(u), (36) 

in which the subscripts p and i designate the even and odd parts of functions g(t) 
and gi (t). 

Under these circumstances, equation (25) becomes: 

qD9i(t) + gi(t)sgnt + —S(t) = aS(t) + 9lp(t). (37) 

By integrating (37) between —0 and +0, one obtains: 

q[9i(+0)-9i(-0)] + -^ = a. (38) 

Using (31), from (38) it results: 

<*<+°>=^ ( a 4 ) - <39> 
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For t > 0, equation (37) has the form: 

q9i(t)+9i(t)=gip(t), (40) 

to which, for g(t) and gi(t) (with (30), (31) and (34), (35), respectively), it corre
sponds: 

95(*)+ff(*)=ffi(*), * > 0 - (41) 

Using the Laplace transformation in (41) with the initial condition: 

g{+0) = 29i(+0) = ^ ( a - ^ y (42) 

from (41) it follows: 

0W = 4-STT + i^I^ + aWl- ( 4 3 > 
One may easily ascertain from (43) (for s = ju) that, in general, inequality (6) 

does not imply (8), (9). Thus, the construction procedure developed in this section 
for the set of all L2-solutions to Popov inequality (6) can be summarized as follows: 

Theo rem 2. All the L2-solutions of Popov inequality (6) can be written in form 
(43), where G\(s) is strictly proper and a + G\(s) is a strictly positive real function. 

Once the general form of L2-solutions to Popov inequality has been found, the 
structure of transfer function G(s) should be understood in terms of a parametrisa-
tion which allows a unified approach when dealing with the strict positive realness 
of the a + Gi(s). These aspects are investigated in the next section. 

3. COMMENTS ON THE PARAMETRISATION OF THE L2-SOLUTIONS 

The strictly positive real function a + G\ (s) may be regarded as a generatrix of the 
transfer function G(s) (43), which, according to Theorem 2, provides the general 
form of L2-solutions to inequality (6). This fact and the properties of generatrix a + 
G\(s) will be exploited in the sequel, in order to derive some parametric aspects and 
time-domain properties of the linear subsystem (G(s)) involved in Popov inequality 
(6). 

To (43) one has to add the condition G(0) = 1 (see (2) for v = 0), which leads to 
the following refinement of the generatrix: 

a + G1(s)=a[f3 + G2(s)], (44) 

where a £ Ft, 0 € JR. and G2 (s) is a strictly proper rational function, with G2 (ju) = 
R2(ui) + jl2(u). For P + G2(s) one has to take into account the unit gain factor of 
G(s), i.e.: 

P + G2(0) = l. (45) 
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According to inequality (28) one obtains: 

a\J3 + R2 (u)] > 0, u>eR, 

which, together with (45), uniquely leads to: 

a > 0, 0 > 0, (3 + R2 (CJ) > 0, u e R. 

Using (44), equation (43) may be equivalently rewritten as: 

G(s) = - 1 +—^a[ß + G2(s)}. 
K qs + 1 qs + 1 

from which, for s-=0, it results: 

l = G(0) = -±+a[(3 + G2(0)} 

Taking into account (45), relation (49) yields: 

1 
a = 1 + 

K 

On the other hand, from (48) one also obtains: 

g (+0) = lim sG(s) = - — + -a/3, 
5->oo Kq q 

which, together with (50), allows to express /3 as follows: 

qKg(+0) + l 
ß K + l 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

It should be noticed that whenever /3 = 0, the strictly positive realness of (3 + 
£2(5) necessarily requires a difference of exactly one unit between the degrees of the 
numerator and denominator of G2(s). 

U 
a 

yi 
— • a tr P ^^IУ*> 

yi 
— • a 

^L - n 

1/K 

- n 

i^" 1/K 

1 y 

<7s + l 

Fig. 2. Block diagram associated with parametrisation (48) of G^s). 

Finally, in order to illustrate, graphically, the above comments on the parametri
sation of the L2-solutions of Popov inequality (6), the block diagram in Figure 2 is 
associated with expression (48) of the transfer function G(s). 
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4. TIME-DOMAIN INTERPRETATION OF POPOV INEQUALITY 

Consider G{s), given by (48), with the structure depicted in Figure 2, for which the 
following differential equation may be written: 

qy + y = ay1- —u, t > 0. (53) 

This equation (which renders evident the role played by y\{t) as the output of 
the subsystem with the strictly positive real function (5 + C?2(s)) allows deriving 
time-domain properties that are equivalent to Popov's frequency-domain inequality 
(6). According to parametrisation (48) of G{s), the cases (3 > 0 and (5 = 0 are to be 
separately addressed. 

T h e o r e m 3. Popov's frequency-domain inequality (6) is met with 0 < K < -f-oo 
and q > 0 if and only if: 

(i) for /3 > 0, there exists r\ > — j ^ such that the time-domain inequality: 

T T 

J u{t){qy{t)+y{t))dt >r,Ju2{t)dt (54) 

o o 

holds for all T > 0 and all u{t) G L2[0,T) ensuring finite values for integrals; 

(ii) for P = 0, there exists 7 > 0 such that the time-domain inequality: 

T T 

Je^u{t){qy{t)+y{t))dt > - 1 Je^u2{t)dt (55) 

0 0 

holds for all T > 0 and all u{t) G L2[0,T) ensuring finite values for integrals. 

P r o o f . Case (i). The availability of y\ {t) in the block-diagram given in Figure 2 
permits exploiting the following necessary and sufficient condition [4] for the strictly 
positive realness of )3 + G2{s): 

T T 

3 p > 0 : / u{t)yi{t)dt >p u2{t)dt (56) 

0 0 

for all T > 0 and all u{t) e L2[0,T). 
On the other hand, by multiplying equation (53) by arbitrary u{t) G L2[0,T), 

one gets: 

u{t) {qy{t) + y{t)) + ^u2{t) = au{t)Vl{t), t G [0,T), (57) 

which, by integration, yields: 

T T T 

I «(*) (qy(t) + y(t)) dt + ̂ ju2 (t)dt = aj u(t)yi (t)dt. (58) 
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Necessity. Function /? + G2(s) is strictly positive real, since G(s) in (48) defines 
all the L2-solutions of the frequency-domain inequality (6). Thus, (56) is fulfilled 
and, from equality (58), one gets: 

T T 

Ju(t)(qy(t)+y(t))dt> (^ap-^j Ju2(t)dt, (59) 

0 0 

which becomes (54), by denoting ap — j^ =: 77. 

Sufficiency. According to equality (58), time-domain inequality (54) yields: 

T T 

a f u(t)Vl(t)dt > (r)+ - M ju2(t)dt, (60) 

0 0 

which becomes (56), by denoting £ (77 + ^ ) =: p. Hence, (3 + G2(s) is a strictly 
positive real function, and inequality (6) is satisfied for G(s) given by (48). 

Case (ii). The availability of yi (t) in the block-diagram given in Figure 2 permits 
exploiting the following necessary and sufficient condition [4] for the strictly positive 
realness of G2(s) (i.e. (3 + G2(s) with fi = 0): 

T 

3 7 > 0 : Iellu(t)yi(t) > 0 (61) 

0 

for all T > 0 and all u(t) G L2[0,T) ensuring a finite value for the integral. 
On the other hand, by multiplying equation (53) by ejt and arbitrary u(t) G 

L2[0,T), one gets: 

ejtu(t) (qy(t)+y(t)) + ^ejtu2(t) = aejtu(t)yi(t), t G [0,T), (62) 

which, by integration, yields: 

T T T 

fejtu(t) (qy(t) + y(t)) dt + -^ fejtu2(t)dt = a I ejtu(t)Vl(t)dt. (63) 

Necessity. Function G2(s) is strictly positive real, since G(s) in (48) defines all 
L2-solutions of the frequency-domain inequality (6). Thus, (61) is fulfilled and, from 
equality (63), one gets (55). 

Sufficiency. According to equality (63), time-domain inequality (55) yields (61). 
Hence G2(s) is a strictly positive real function, and inequality (6) is satisfied for 
G(s) given by (48) with (3 = 0. • 
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It is worth noticing that Theorem 3 highlights a qualitative-type equivalence 
between time- and frequency-domain in interpreting Popov inequality (6). Obvi
ously, time-domain inequalities (54) and (55) cannot be applied directly to practical 
studies, as sufficient conditions, because they involve input signals u(t) for linear 
subsystem (1) belonging to the whole class L2[0,T). An experimental approach 
based on these inequalities would require a drastic limitation for the class of signals 
u(t), fact which means (along the lines of the above proof) to formulate a much 
stronger time-domain characterization for the strict positive realness, than given in 
[4]. Although such a result was not found in literature by the authors of the present 
paper, in their opinion, the possibility to restrict the input signal class appears quite 
natural, and, therefore, their future efforts will focus on this problem. However, in
equalities (54) and (55), regarded as necessary conditions for the fulfilment of Popov 
inequality (6), can be used with "standard" input signal (e.g. step, ramp, etc), for 
which the corresponding output signals y(t) of linear subsystem (1) are expected to 
exhibit some particular features. This idea is illustrated in the next section for step 
input signals. 

5. PARTICULARITIES OF THE STEP RESPONSE INDUCED BY 
POPOV INEQUALITY 

The result proved in the previous section shows that inequality (6), operating in 
the frequency-domain as a constraint for the transfer function of linear subsystem 
(1), means time-domain particular properties, expressed by (54) or (55) in terms 
of input and output signals. Such particular behavioural aspects are visible in the 
time-domain for all "standard" input signals applied to linear subsystem (1) and 
their corresponding responses. The case of step response is extremely relevant in 
this sense and requires a reasonable mathematical effort to point out the existence 
of some specific characteristics induced by Popov inequality. 

For u(t) = a(t) (unit step function) and by denoting with h\(t) and h(t) the unit 
step responses corresponding to.2/1 and y (Figure 2), equation (53) becomes: 

qh(t) + h(t) = ah1(t)-^-, t> 0. (64) 

Because h(0) = 0, it follows that (64) may be equivalently written as: 

d 

Чt í h( )d + í h( )d = a í /ц ( )d - j-t. (65) 

T h e o r e m 4. Let K > 0 with the signification issued from Theorem 1 and let 

g(+0) = h'(+0) be the slope of h(t) in t = +0. If 

(i) there exists q > 0 such that inequality (6) is satisfied 
and 

(ii) for q > 0 at (i), the following inequality is met: 

qKti(+0) + l>0, (66) 
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then there exists p > 0 such that 

t 

/łвд«>[,(i + ì)-ì][i-f(i-.-.)]. «>o (67) 

P r o o f . For /3 > 0 (see (52) and (66)), one may use in (65) the following result 
from [4]: 
There exists p > 0 such that 

/"/ц(0)d0 > p£ for each t > 0. (68) 

With (68), from (65), it follows: 

/ Л(0)d0 > ( аp - -^ J - í e-^ØdØ = P 1 + 
K / i ŕ *-« (.-.-*)] 

By multiplying this result by 1/t, t > 0, one obtains (67). 

(69) 

D 

Because in (47) we have f3 > 0, it remains to derive a result for the case (3 = 0 
when (68) is no more valid, i.e. (67) is not valid too. 

T h e o r e m 5. Let K > 0 with the signification issued from Theorem 1 and let 
p(+0) = iV(+0) be the slope of h(t) in t = +0. If 

(i) there exists q > 0 such that equality (6) is satisfied 

and 

(ii) for q > 0 at (i), the following equality is met: 

qKtí(Щ + 1 = 0, 

then there exists 7 > 0 such that: 

(70) 

Í 

le-7(t-ø)/г(ø)dö>__L i + _ _ _ ( 7 g e - i _ e - 7 í ) , t > o . (71) 

P r o o f . For/3 = 0 (see (52) and (70)), necessarily implying a difference of exactly 
one unit between the degrees of the two polynomials defining <?2(s), the following 
result from [4] may be used in (65): 



628 M. VOICU AND O. PASTRAVANU 

There exists 7 > 0 such that 

t 

I e 7 % ( 0 ) d 0 > 0 for each t > 0. (72) 

0 

By multiplying (64) by e7^, after some simple calculation, it results: 

d 

Чt 

t 1 t 
í e^ h( )d + (1 - ç7) / e70/г(ö)dö 

Lo 

t 

= a / e 7 % ( 0 ) d 0 - J - ( e
7 < - 1). (73) 

J 1& 
0 

Now, by using (72), one obtains: 

t t 

fe^h(9)d9 > l— f e-ti-'K-'He-6 - l)d6 
0 

^L-fa-І-e-т) 1 + 
jq 

l K < - . " - - - , <M) 

Finally, by multiplying this result by e~ 7 t , t > 0, one obtains (71). D 

In order to evaluate the full signification of the integrals got in (67) and (71), we 
also present two BIBO-stability results referring to arbitrary linear time-invariant 
systems, which are based exactly on these integrals. 

Theorem 6. A linear time-invariant dynamical system characterized by unit step 
response h(t) is BIBO-stable if and only if one of the following two equivalent con
ditions is met: 

t 

a) lim f jh(0)dO exists and is finite; 
t—*00 Q 

t 
b) for any 7 > 0 lim f e~lf^t~9^h(9)d0 exists and is finite. 

t—¥ CO Q 

P r o o f . Is based on the absolute integrability of the impulse response g(t) and 
t 

on the relation h(t) = f g(9)d6. D 
0 

It is eminently clear that the time-domain inequalities stated in Theorems 4 and 5 
can be considered for future studies on the development of experimental procedures, 
by applying h(t) as the input signal of an integrator (Theorem 4), or of a linear, 
first-order filter with the time-constant I / 7 > 0 (Theorem 5). The practical meaning 
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refers to the fact that , whenever time-domain inequality (67) or (71), respectively, 
is violated, Popov's frequency-domain inequality cannot be fulfilled. 

Finally, it is worth mentioning tha t results similar to Theorems 4, 5 and 6, can be 
formulated for any polynomial-type input signal applied to linear subsystem (1), in 
order to emphasize particular time-domain properties induced by Popov's frequency-
domain inequality (6). 

6. CONCLUSIONS 

The analysis of time-domain properties corresponding to Popov inequality relies on 
the general form of the L2-solutions built for this inequality (Theorem 2). Such a 
general form reveals the role played by the generatrix and its strict positive realness 
in the fulfilment of Popov inequality. A key result (Theorem 3) shows tha t the 
frequency-domain inequality formulated for the transfer function is equivalent to 
time-domain constraints expressed in terms of input and output signals for the linear 
subsystem. A deeper investigation is devoted to the particular behavioural aspects 
occurring in the case of step response (Theorems 4, 5) and the link to BIBO-stability 
(Theorem 6). It is expected tha t further researches will be able to replace, in the 
sufficiency par t of Theorem 3, the usage of the whole class of signals u(t) £ L2[0, T) 
by a considerably smaller subset of signals, appropriately selected. 

(Received March 5, 2002.) 
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