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KYBERNETIKA — VOLUME 40 (2004), NUMBER 1, PAGES 51 - 70 

NONPARAMETRIC RECURSIVE 
AGGREGATION PROCESS 

ELENA TSIPORKOVA AND VESELKA BOEVA 

In this work we introduce a nonparametric recursive aggregation process called Multi­
layer Aggregation (MLA). The name refers to the fact that at each step the results from the 
previous one are aggregated and thus, before the final result is derived, the initial values are 
subjected to several layers of aggregation. Most of the conventional aggregation operators, 
as for instance weighted mean, combine numerical values according to a vector of weights 
(parameters). Alternatively, the MLA operators apply recursively over the input values a 
vector of aggregation operators. Consequently, a sort of unsupervised self-tuning aggrega­
tion process is induced combining the individual values in a certain fashion determined by 
the choice of aggregation operators. 

Keywords: multilayer aggregation operators, power means, monotonicity 
AMS Subject Classification: 26E60, 47A64, 26A48, 47B99 

1. INTRODUCTION 

Aggregation of information in general, is occurring in one or another form in almost 
any theoretical or practical domain nowadays. Practically, any time one piece of 
knowledge, data, quantity e tc is derived from a set of multiple ones, an aggrega­
tion has been performed. An adequate aggregation process is expected to combine 
multiple values into a single one, so that the final result of aggregation reflects in 
some fashion all the individual values. The scientific literature is abundant of nu­
merous examples of aggregation constructions, each one claiming to offer a more 
fair treatment and combination of the individual values for aggregation than the 
rest. However, aggregation is no more only a pure theoretical topic, meant solely 
to deliver nice mathematical papers. Various software applications nowadays re­
quire development and implementation of effective aggregation procedures. This 
has inspired a search for new aggregation methods answering some typical software 
application requirements, as for instance, allowing for an algorithmization and ap­
plication independent definition. The latter expresses the fact that the aggregation 
process will not depend on numerous different parameters that have to be initialized, 
trained and tuned for any particular application domain. 
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The aggregation algorithm considered herein, has been inspired by and verified on 
a concrete aggregation problem occurring in speech recognition applications. Most 
speech recognizers usually assign to each output word some confidence score express­
ing the degree of certainty that the word in question has really been uttered by the 
user. All these word confidences are combined in a sentence confidence score en­
abling the speech recognition application to detect and reject any intruder sentence, 
i. e. one that does not belong to the particular application vocabulary. Naturally, the 
sentence confidence scores are expected to take into account, in a suitable fashion, 
all the individual word confidences. The choice of aggregation operator is therefore 
crucial. Some aggregation operators can lead to a significant loss of information 
since their values can be greatly influenced by extreme scores, while others are pe­
nalizing too much for low-scoring outliners. One possible solution is to select the 
best operator via some learning procedure. However, there are several problems 
associated with such an approach. On the first place, learning requires availability 
of application data, which is not always possible in the speech recognition domain. 
The enormous variability of applications (telephone numbers, names, games, etc.), 
languages (English, French, Spanish, etc) and acoustic environments (telephone, 
car, office, etc) makes data collection for speech recognition very complex and ex­
pensive process. Secondly, even one has data to learn the best aggregation operator, 
there is no doubt that this operator will be different for different applications, as for 
example an operator that is good for telephone number recognition task cannot be 
expected to suit name recognition task. However one cannot afford to build different 
speech recognizers for different applications. In general, the pragmatic approach is 
to use one speech engine for a given acoustic environment with parameters tuned 
in such a way that they serve as an optimal trade-off for a wide set of different 
applications. 

Another possible and rather straightforward solution to the described problem 
is to use different aggregation operators in order to find some trade-off between 
their conflicting behaviour. In this way different aspects of the input values will 
be taken into account in the process of aggregation. Various approaches for com­
bining aggregation operators can be found in the literature. For instance, a convex 
combination of two aggregation operators A\ and A2 has been exploited in several 
different ways: Ax(x,y)A\-x(x,y) (cf. [12]), AAi(x,y) + (1 - \)A2(x,y) (cf. [5], 
[9]), and Ax(A2(x, \),A2(y, 1 - A)) (see [6]), for A G [0,1]. Next in [4], it is proposed 
to take some aggregation operators A\,A2,... ,Am, -4m+i and then to construct a 
new aggregation operator as follows Am+i(Ai,A2,... ,Am). 

Our approach, though much more applied, follows the idea, proposed by Matkowski 
in [2, 3]. He considers A\,A2,..., Am continuous means1 and defines the functions 
Aiyn, i = 1 , . . . , m and n = 1,2,..., as follows: 

Aiti = Ai i = \,...,m 

Ai,n+i (xi, • • •, xm) = Ai(AiyTl(xi,..., xm),..., -4 m > n (x i , . . . , xm)). 

Similarly we suggested in [8] an iterative aggregation with aggregation operators 
1 Means are actually nothing more but compensatory aggregation operators as defined in the 

following section. 
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.Ai, A2,... ,Am until some stop condition is satisfied. Thus the final result is con­
ceived after passing a few layers of aggregation. At the first layer, we have the list of 
initial values that are to be combined. Using a vector of aggregation operators new 
values are obtained and if the stop condition is not fulfilled then the next step is to 
combine these new values again using the given aggregation operators. This process 
is repeated again and again until the stop condition is satisfied. Consequently, it will 
be referred to as Multilayer Aggregation (MLA). This MLA algorithm is interesting 
for the speech recognition problem considered above in two ways: (i) it is a cheap 
solution since it does not require training data for off-line parameter learning; (ii) 
it offers a more universal approach for different applications by acting as a trade-off 
between aggregation operators that are good for one application, but damaging for 
another and vice versa. 

2. MULTILAYER AGGREGATION 

2.1. Motivation 

Let us motivate our new aggregation algorithm with a particular speech recognition 
example. In general, any speech recognition application is designed for a particular 
application domain in mind. For instance, consider a digit string recognition task 
with an underlying application grammar allowing for a recognition of any length 
sequence of the digits between 0 and 9. The appendix presents output data for 
11 sentences from a recognition session on digits strings in French. The sentences 
are classified in two main groups: correct recognitions and recognition errors. The 
former refers to a correct user input (sentences 1-3 and 11), i.e. a 0-9 digit strings, 
that have been unmistakably determined by the recognizer. The latter summarizes 
two rather different cases: (i) a correct user input that for one or another reason 
has been misrecognized (see sentences 4 and 6 where "sept" and "deux" have been 
erroneously recognized as "cinq" and "neuf' respectively, and an extra "huit" has 
been added at the end of sentence 4); (ii) a user input containing words that do not 
belong to the application dictionary, i. e. only digits between 0 and 9 (all sentences 
5 and 7-10 include decimals, as for instance "vingt", "trente", etc.). 

The ultimate goal for any speech recognition application will be to accept all 
correct recognitions and to reject all recognition errors. Unfortunately, this is not 
feasible in practice since the both groups are overlapping and to distinguish between 
them is a very difficult trade-off problem causing two main types of application 
errors: rejecting correct recognitions known as false rejection (FR) errors and ac­
cepting recognition errors or so-called false acceptance (FA) errors. Therefore a 
more modest target will be to find an optimal (minimal error rate) trade-off be­
tween FR and FA errors. A rather wide spread approach in speech recognition is 
to base the acceptance-rejection decision on the comparison of an appropriately de­
fined sentence confidence score (usually in the range 0-100) against an in advance 
determined so-called rejection threshold (typically 50). If the sentence confidence is 
above the threshold then it is accepted as correct, otherwise depending on how the 
application has been designed the user might be asked to repeat or the sentence is 
just directly rejected as erroneous. 
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As it can be seen from the appendix, to each word in a given sentence a confi­
dence score has been assigned by the recognition engine. Consequently the sentence 
confidence scores can be derived from these word confidences via some aggregation 
process. Table 1 in the appendix contains various confidence scores for each of the 
11 sentences corresponding to applying several different aggregation operators. The 
first aggregation operator used is the arithmetic mean (M), which does not exhibit 
really satisfactory behaviour with an error rate of six FA errors. The choice of 
another aggregation operator, the geometric mean (G), which is known to be less 
affected by extreme values than the arithmetic mean, leads to a lower number (three) 
of FA errors, but still too many. The harmonic mean (H) corrects for all these FA 
errors, but unfortunately causes that other three sentences are falsely rejected. 

Clearly, none of the above aggregation operators leads to an acceptable trade-off 
between FR and FA errors. If we assume that the different scores are not equally 
important than the situation can be modelled by means of weighted aggregation 
operators. For instance, a well-known phenomenon in speech recognition is that 
the longer words tend to have more reliable confidences than the ones for rather 
short words, i.e. the word lengths can serve as weights. However such an approach 
can cause sometimes a considerable performance degradation due to the fact that 
wrongly recognized long words with high scores would dominate the final decision. A 
more robust solution will be to determine the weights via some training process, but 
as discussed in the introduction, this is not always possible due to the lack of reliable 
training data. Moreover introducing weights still does not help us in choosing an 
appropriate aggregation operator since any of the operators mentioned above can 
be used in a weighted form. 

A more pragmatic approach will be to try to combine in some way the three 
operators M, G and H. For instance, the initial aggregation of the word confidences 
with these operators will produce three new values. Further these values can be 
combined again with the same aggregation operators and again until ultimately the 
difference between the maximum and minimum values will be small enough to stop 
further aggregation. The confidences for our 11 sentences produced via such an 
aggregation process are presented in the last column of Table 1. The resulting error 
rate is very balanced, one FR against one FA. 

2.2. Recursive Aggregation Algorithm 

The aggregation process described above can be formally defined as follows: 

• Initialization 

(1) Initial Values: x\,... , x n , where X{ G [0,1], for all i. 

(2) Aggregation Operators: A\,..., Am. 

(3) Initial Aggregation Step: 

2/i = .Ai(zi,...,xn) 

Vm — ^ m ( ^ l ) • • • j xn)' 
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• Recursion 

(1) Stop Condition: If (max(?/i,... ,ym) - mm(y\,... ,ym)) < e, for a very 
small 6 G R~*~, then the final result from the aggregation of x\,..., xn is 

min(y\,..., ym) « max(?/i,. . . , 2/m). 

(2) Aggregation Step: 

zi = -4 i (y i , . . . ,y m ) 

zm — -^m (2/15 • • • j 2/m)• 

(3) Iteration Step: 

2/i = z\,..., ym = zn 

Now, let us show for which conditions the above algorithm is convergent. It is clear 
that the convergence is closely related to the ability to compensate between low and 
high scores. Recall that an aggregation operator A : Rn -> R (n > 2) is called 
compensatory if 

m in (x i , . . . , x n ) < A(x\,.. .,xn) < max(x\,... ,xn), 

for any (x\,... ,xn) (cf. [12]). Observe that the latter always implies idempotency 

Jx\X, . . . , X) — X. 

The compensatory property alone though, will not be enough to claim that conver­
gence is always guaranteed. It can easily be demonstrated, for instance, that the 
convergence cannot be achieved whenever min and max operators are used together, 
although they are both compensatory. Therefore, a further refinement of the com­
pensatory property is required. An aggregation operator A : Rn —> R (n > 2) will 
be referred to as left-strict compensatory if 

min(x i , . . . , xn) < A(xi,..., xn) < max(x i , . . . , xn) 

and as right-strict compensatory if 

m in (x i , . . . , x n ) < A(x\,...,xn) < max(xi , . . . ,xn), 

for any (x\,... ,xn) with at least two different values-. 

Obviously, an aggregation operator will be strictly compensatory whenever it is si­
multaneously left-strict and right-strict compensatory. 

Theorem 1 . (Convergence) Any set of continuous and either all left-strict or all 
right-strict compensatory aggregation operators A\,..., Am defines a convergent 
recursive aggregation process. 
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P r o o f . Assume that A : Rn -> R. is a ML A operator defined by a set 
{.4i,..., Am} of continuous and left-strict compensatory operators. Let 

a0 = min(xi, . . . ,a; n ) 
/30 = m a x ( x i , . . . , x n ) , 

and for any further step i > 0 of the above algorithm, 

Q ť = m i n ( y i , . . . , y . 
ßi = max(yi , . . . ,г/ 5 

m) 

m) 

Since the aggregation operators {Au... ,Am} are all compensatory, we have that 
at each recursive step i > 0 their values will be contained in the interval [a^,^] . 
Moreover due to the left-strict compensatory property of the aggregation operators, 
it holds that 

a0 <a\ < ... <oti < ... and . . . < /?» < f3t-i < ... < (50. 

Therefore we have a (Pi — ai) sequence that is strictly decreasing and non-negative. 
Further since {A\,..., Am} are continuous it holds that lim (/3i — ai) = 0. • 

i—>oo 

Consequently, whenever further in this paper we refer to a multilayer aggrega­
tion operator (MLA), we will mean an operator defined via the above algorithm 
and a vector of continuous and either all left-strict or all right-strict compensatory 
aggregation operators Ai,A2,..., Am and it will be denoted as A[AuA2i#i.^mj. Note 
that if all the aggregation operators are left-strict compensatory then the MLA is 
also left-strict compensatory, and respectively right-strict compensatory aggregation 
operators determine a right-strict MLA. In general, any MLA is always continu­
ous, compensatory, and consequently idempotent -4[,41,...,^m](x,... , x) = x. Further 
MLA is also idempotent w.r.t. the aggregation operators, i.e. -4[v4,...,,4] = -4, for any 
aggregation operator A. 

The result in Theorem 1, though more general, is very close to Matkowski results 
on iterations of mean-type mapping in [2]. There it has been proven that a sequence 
of iterates of mean-type mappings defined via continuous and all but (at most) one 
strict compensatory operators converges to a unique continuous and compensatory 
mean-type mapping K, which rather obviously satisfies: 

K(Ai(xx,..., x n ) , . . . , Am(xi,..., xn)) = K(xx,..., xn). 

Clearly both the results in [2] and Theorem 1 imply that min and max cannot be 
present at the same time in the definition of MLA otherwise convergence will never 
be achieved. Moreover, it always holds that 

-4[yl1,...,min,...,Am] = 1 ™ 

^4[A1,...,max,...,Am] = m a x , 

where in the first equation all the aggregation operators are right-strict compensatory 
and in the second respectively left-strict compensatory. Therefore min and max can 
be regarded as the extreme values (operators) for MLA. 
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2.3. Basic Properties 

Besides the compensatory and idempotency properties, a number of other useful 
properties can be associated with an aggregation operator. Consider an aggregation 
operator A : Rn -> R (n > 2). 

• Boundary conditions: 
A(0, . . . ,0) = 0 
A ( l , . . . , l ) = l . 

• Monotonicity with respect to each argument: 

xk < %k ^ A(X\ , . . . , £ & , . . . , xn) < -4( .x*i , . . . , # £ , . . . , x n ) . 

The monotonicity is strict if strict inequality holds. 

• Commutativity: The indexing of the arguments does not matter, i.e. 

A(x\,...,xn) = A(y\,...,yn), 

for any permutation (yi,j/2, •-- ,J/n) of ( x i , x 2 , . . . , x n ) . 

• Decomposability: 

A(x\,..., Xk, • • •, xn) = A(z,..., z, -Efc+i, • • •, x n ) , 

where 2 = A(x\,... ,£*•). 

Observe that any idempotent and strictly monotonic aggregation operator is strictly 
compensatory. Therefore according to Theorem 1 any set of idempotent and strictly 
monotonic aggregation operators will define an MLA operator. For example, all 
the mean operators (arithmetic, geometric, quadratic, harmonic, etc.) are idempo­
tent and strictly monotonic and hence strictly compensatory. Besides they are also 
continuous and commutative. 

It is rather straightforward to verify that an MLA operator will satisfy the con­
tinuity, the boundary condition, the (strict) monotonicity and commutativity prop­
erties if it is composed of aggregation operators that satisfy respectively these prop­
erties. Moreover commutative aggregation operators define an MLA operator that 
is also commutative with respect to the aggregation operators present in its defini­
tion. For instance the MLA operator -4[H,G.M] from the appendix can equivalently 
be denoted as -4[M,G,H] or -4[G,H,M] since H, G, and M are all commutative. In 
general, any MLA defined via an arbitrary combination of the arithmetic, geometric, 
quadratic, harmonic, etc. means will satisfy the boundary conditions and will be 
continuous, strictly compensatory and commutative with respect to both, the input 
values for aggregation and the aggregation operators present in its definition. 

Observe further that the arithmetic, geometric, quadratic, harmonic, etc. means 
are also decomposable. However, an MLA operator defined via decomposable aggre­
gation operators is not necessarily decomposable. This can easily be verified with 
a counter example. Let us consider the operator A[H,G,M] composed by the har­
monic, geometric and arithmetic means and a vector x = (0.8,0.4,0.7). We have 
that A [H)G)M](0.8,0.4,0.7) = 0.606, while -4[H)G)M](0.566,0.566,0.7) = 0.607, where 
-4[H G Mj(0.8,0.4) = 0.566 and therefore - 4 [ H G , M ] 1s not decomposable. 



58 E. TSIPORKOVA AND V. BOEVA 

2.4. Advanced P rope r t i e s 

In this subsection, we consider two interesting monotonicity properties of MLA op­
erators. Thanks to these properties a very useful ranking among MLA operators 
composed of power means is established in the following section. 

Let us now consider a set of aggregation operators Ai,... ,Ak,A'k ..., Am,Am+i 
which, in accordance to Theorem 1, are assumed to be continuous and either all left-
strict or all right-strict compensatory. The first monotonicity property states that 
when an aggregation operator in the definition of an MLA operator is substituted 
with a new one that produces higher or lower aggregation values then consequently 
the MLA operator will produce higher or respectively lower aggregation values. This 
is formally presented in the proposition below and it can be regarded as monotonicity 
with respect to each aggregation operator in the MLA definition. 

Proposi t ion 1. If Ai ..., Ak,..., Am are all monotonic aggregation operators and 
Ak < A'k

 2 then it holds 

A[Au...,Aki...tAm] < -4[Ai,...,A 'fc,...,Am]-

P r o o f . Assume that all A\,... ,A{,... ,Am are monotonic. At the first layer of 
aggregation, we have that A{(xi,... ,xn) = y*, for all i, and A'k(xi,... ,xn) = y'k, 
and moreover yk < y'k. Next due to the monotonicity of Ai we obtain, for any i / k, 

Zi = Ai(yi,...,yk,...,ym) < At(yi,... ,y'k,... ,ym) = z\. 

Further from Ak < A'k and the monotonicity of Ak 

Zk = -4*(yi , - . . ,yk , . . . ,ym) < ^U(yi , . . . ,yJ k , . . . ,y m ) 
< -4 /

fc(yiJ.-.>y£,--.,ym) = 4 -

Then at the iteration step we will have that yi = Zi and y\ — z[ and yi <y[, for all i 
and consequently the same inequalities as above can be applied and so on until the 
stop condition is reached. ---

Now let us consider another interesting type of monotonicity of MLA opera­
tors dealing with adding or removing aggregation operators from their definitions. 
Clearly the latter is closely related to adding and removing arguments from the ar­
gument list of an ordinary aggregation operator. In [10], an aggregation operator A 
is called monotonic in cardinality if 

A(xi,...,xn) < A(xi,...,xn,xn+i). 

This property says that the addition of elements to the input values cannot result in a 
decrease of the aggregated value. Similarly, monotonicity in cardinality with respect 
to the aggregation operators can be introduced, i.e. A[Au„mfAm] < -4[A1,...,Am,Am+i]-

2Further on in this paper, for any two aggregation operators A and B , A < B will mean 
A(xi,...,xn) < H(xi,...,xn), for any ( x i , . . . , x n ) . 
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Thus adding a new aggregation operator to the MLA operator cannot result in a 
decrease of the final result. 

Although the monotonicity in cardinality property is interesting mathematical 
abstraction, it is rather strong as a unconditional requirement on an aggregation 
operator. For instance, no one of the arithmetic, geometric, quadratic, harmonic, 
etc. means is monotonic in catdinality. Moreover, it is doubtful whether such a 
property is really desirable in practical applications. In the context of our speech 
recognition problem, it will imply that longer sentences will in general be assigned 
higher confidences than any subsentences contained in them. Such a behaviour can 
only be justified if words with higher confidences have been added. Thus some sort 
of conditional monotonicity in cardinality can be considered, instead. 

Lemma 1. If A is an idempotent, decomposable and monotonic aggregation oper­
ator then the following properties hold: 

xn+\ > A(x\,..., xn) -> A(x\,..., xn,xn+\) > A(x\ ,...,xn) 
xn+ \ S A\X\ , . . . , Xn) -=> A\X\ , . . . , Xn, Xn+\) < A{X\, ..., xn). 

P r o o f . Let us prove the first implication. Assume z = A(x\,... ,xn) and hence 
xn+\ > z. Then applying in turn, the decomposability, monotonicity and idempo-
tency of A, we obtain: 

A(x\,..., xn,xn+\) = A(z, ...,z, xn+\) 
> A(z,.. .,z,z) = z. • 

The above property claims that adding a new input value higher than the already 
aggregated value results in a higher final result and analogously, an input value lower 
than the already obtained one decreases the new aggregation result. This property 
has also been considered in [11], where it is derived from the monotonicity and 
self-identity properties. An operator A satisfies the self-identity [11] if for z = 
A(x\,..., xn) it follows that 

A(x\,..., xn, z) = A(x\,..., xn) = z. 

It is easy to see than any idempotent and decomposable aggregation operator satisfies 
self-identity. 

Next, Lemma 1 enables us to derive another interesting monotonicity property 
of MLA operators. Namely, an increase (respectively decrease) of the MLA scores 
can be achieved by adding a new aggregation operator that is proven to produce 
consistently higher (or respectively lower) aggregation values than the aggregation 
operators already present in the MLA definition. 

Proposition 2. If A\,...,Am are all decomposable and monotonic aggregation 
operators then the following properties hold: 

Am+\ > {A\,...,Am}=> A[AlimmmiAm^] > -4[Alf...fAm] 

-4m+i < {-4i,. . . ,Am}=> -4[i4lf...fi4m+1] < A[Au„mtAm]. 
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P r o o f . Let us prove the first property. At the initialization phase, we have 
yt = Ai(xu...,xn) and also, due to Am+i > A{, ym+i = Am+l(xu... ,x n ) > yu 

for i = 1,... ,ra. Then at the first recursive iteration, due to the monotonicity and 
the idempotence of _4i, it follows that 

-4i(yi,...,l/m) < -4t(ym+l,.--,ym+l) = J/rn+1, 

for i = 1, . . . , m. Recall that the aggregation operators -4i, . . . , _4m, _4m+i are as­
sumed to be either all left-strict or all right-strict compensatory and hence they are 
also idempotent. Therefore Lemma 1 can be applied, for _ = 1,.. . ,ra, 

Zi = Ai(yu...,ym) < Ai(yu...,ym,ym+1) = z\, 

and moreover due to -4m+i > -4i, 

z'm+l = ^m+l( j / l - . . . ,ym-J/m+l) > -4»(j/l, . • . , J/m, 3/m+l) = *i > *i-

Consequently, at the iteration step, we will have that yi = Zi, for i = 1, . . . ,ra and 
similarly y\ = z\, for i = 1, . . . , m + 1. Moreover y'm+l > y\ > yi, for i = 1, . . . , m. 
Thus the same approach as at the previous layer can be applied. When the stop 
condition is met, we will again have y'm+i > y[ > yi, for i = l , . , . , r a and hence 
m a x ( y i , . . . , y ^ , y ^ + 1 ) > max(yi, . . . , y m ) . • 

As we will see in the following section, from an application point of view this is a 
rather important result since it provides us with a means to influence the final result 
by adding or removing aggregation operators from the ML A definition. 

3. MULTILAYER AGGREGATION VIA POWER MEANS 

As shown in the previous section, any set of idempotent and strictly monotonic 
aggregation operators define an MLA operator. Moreover MLA operators exhibit 
special monotonicity properties in case the aggregation operators in their definition 
are decomposable. Naturally our further investigations are focused on MLA opera­
tors defined via a combination of so-called power means operators since these power 
means are idempotent, continuous, strictly monotonic, commutative and decompos­
able. 

The power means belong to the class of quasi-arithmetic means, see e.g. [1]. 
If / : [0,1] -r [-co, +oo] is a continuous strictly monotone function, then quasi-
arithmetic means Mf are defined by 

M/(i1,...,xn) = Г 1 ^ t / W j 

Further, the means Mp, defined by 

M p ( x i , . . . , x n ) = < 

' / n \ -/P 

/ 'n \ -/" 

(n*i j ifp=o, 
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for p 6 R and x i , . . . , x n > 0, are called power means. It can be easily verified 
that Mi, Mo and M_i are the arithmetic M = 1 /n^ iLi x*> ^he geometric G = 
(IliLi *T*) a n d the harmonic H ---- n / ( J ]^_ 1 l/x*) means, respectively. Note that 
the power means are indeed quasi-arithmetic means with a function / p , given by: 

( xp ifp^O 
U{X) H i -f n [ lnx it p = 0. 

The basic facts about power means are summarized in the following lemma [7]. 

Lemma 2. The power means Mp have the following properties: 

(1) Mp is homogeneous, i. e. Mp(txi,..., txn) = tMp(x\,..., xn) for all t > 0; 

(2) If p < g then M p ( x i , . . . ,x n ) < M g (x i , . . . , x n ) ; 

(3) For all fixed n and ( x i , . . . , x n ) , the function p -» M p (x i , . . . ,x n ) is continuous 
on [—oo,-hoo]. 

Let -4[MP ,...,MPm] be an ML A operator defined via a combination of power means 
MPl,..., Ai"Pm. Moreover, without loss of generality, we assume that pi < pi+i, for 
i = 1,... ,m — 1. 

Proposition 3 . For any vector ( x i , . . . ,xn) there exists p E [pi^Pm], such that 

^ [ M P 1 , . . . , M P m ] ( z i , . . - , Z n ) = M p ( x i , . . . , X n ) . 

P r o o f . Recall that the power means are idempotent and strictly monotonic and 
thus strictly compensatory. Consequently the operator -4[MP ,...,MPm] W1H a i S O be 
strictly compensatory and moreover by Lemma 2(2) we have that 

MPi (xi,..., xn) < Mp.+1 ( x i , . . . , x n ) , 

for any i = 1 , . . . , m — 1. Therefore using the obvious property 

^[MP1 ,...,MPm](zi, • • •, xn) = A[Mpi ,...,MPm](Mi(xi,..., x n ) , . . . , MPm ( x i , . . . , x n)) , 

it follows that 

M P l ( x i , . . . , x n ) < A [ M p i v . . ) M p m ] (x i , . . . ,x n ) < M P m ( x i , . . . , x n ) . 

Further due to the continuity property in Lemma 2(3), there exists p G [pi,Pm] such 
that -4[Mpi,...,MPm](zi,...,Zn) = M p ( x i , . . . , x n ) . • 

The foregoing proposition highlights an interesting phenomena: an MLA opera­
tor, defined via a combination of power means is, in fact, an aggregation operator 
that compensates between the powers of the different power mean operators in its 
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definition. This is illustrated in Figure 1, where the function p —> Mp(c) for the con­
fidence vector c = (94.44,88.21,92.86,98.38,5.66,65.76,98.41, 99.46,95.21, 72.76) of 
the first sentence in the appendix, is depicted. The aggregation value of 57.98 
obtained for this vector via the MLA operator -4[ H ,G,M] c a n a i S° be attained via a 
power mean operator of power p = —0.34, resulting between the powers of H and G. 

Further observe that any MLA operator defined via power means can be inter­
preted as a selftuning family of power mean operators, or a power mean with an 
variable power, applying different powers to different input vectors. For instance, 
Table 2 in the appendix contains for each of the 11 sentences from our speech recogni­
tion example the sentence confidence scores aggregated with -4[H,G]> ^[H,M]> ^4[G,M]> 
and -4[H,G,M] operators. Consequently, the powers of the corresponding power mean 
operators generating these confidence scores are presented in Table 3. 

100 

Fig. 1. p -> Mp(c), where 
c = (94.44,88.21,92.86,98.38,5.66,65.76, 98.41, 99.46, 95.21, 72.76). 

It is interesting to observe that the confidence values in the first three columns 
of Table 2 are ordered in an increasing fashion. This is not a coincidence, due to 
H < G < M and Proposition 1 it is always true that 

-4[H,G] < -4[н,м] < -4[G,M]. 
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Moreover from Proposition 2, it also holds that (see Table 2) 

-4[H,G] < -4[H,G,M] < -4[G,M]- • 

The latter relationship is generalized in the proposition below. 

Proposition 4 . For any 1 < kj < m, it holds: 

A[MPlt...,MPk] < A[MPl,...,MPrn] < A[MP/,...,MPm]-

P r o o f . From Lemma 2(2), we have that MPi < MPi+l, for any i = 1 , . . . ,m — 
1. Then applying in turn the first property in Proposition 2, we obtain the left 
inequality: 

^4[MP1,...,MPm] > ^ [ M P 1 , . . . , M P T T I _ 1 ] > . . . >^4[MP1,...,MPJ. 

The right one can be derived analogously. • 

The existing relationships between the MLA operators, composed via all possible 
combination of H, G and M operators, can be summarized as follows: 

H < -4[H,G] < {G, A[H,M],-4[H,G,M]} < ^4[G,M] < M . 

The operators in the middle, G, -4[H ,M]
 a n d -4[H,G,M]> appear not to be related 

in general. For instance, consider two input vectors x\ = (0.98,0.09,0.08) and 
x2 = (0.74,0.94,0.06). Then, we have that 

G(zi) =0.192 G(x2) =0.347 

A[H,GM](xl) = ° ' 2 0 8 ^[H,G,M](^2) = 0.315 
-4[H,M](*I) =0.216 A[UM](x2) =0.302. 

Clearly, G, -4[H,M]
 ar-d -4[H,G,M] values are very close, but there exists no consis­

tent ordering between them. In the example above, -4[H,M] and -4[H,G,M] operators 
score either above or below G. However, a special relationship between the three 
middle operators can be established in case of two arguments. The latter is gener­
alized in the next proposition. 

Proposition 5. For any (x\, x2) G [0, l ] 2 and pi G i?"1", i = 1,..., m, it holds 

M 0 ( x i , X 2 ) = -4 [M_ P m , . . . ,M_ P 1 ,M P 1 , . . . ,M P m ] (^1^2) 

= ^ [ M _ P m ,...,M_P1 ,M0,MP1 , . . . ,MP m](^ l , X2). 

P r o o f . Recall that M0 = G and consider pi G R+, i = l , . . . , m . The proof 
is based on the general property M_Pi < G < MPi and the special relationship 
between these three means in case of two argument list: 

M_ p . (x i ,x 2 )M p . (x i ,x 2 ) = (G(xi ,x 2)) 2 , 
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Let us now show for instance t ha t 

M0(xi,x2) = -4[M_Pm,...,M_P1,M0,MP1,...,MPm](^i,a;2). 

Initially we have t ha t 

r/i = M-Prn (xi, x2) ym+2 = MPl (xi, x2) 

ym = M-Pl ( x i , x2) y2m+\ = MPm (xY, x2) 

ym+i = G(xux2) = yjxix2, 

and 2/i2/2m+2-i = 2/m+i2 = xix2, for i = 1 , . . . , m . Applying the lat ter at the next 
aggregation layer, we obtain t ha t 

zi = M _ P m ( y i , . . . , 2 / 2 m + i ) zm+2 = Mpi (yx,..., y2m+\) 

zm = M-Pl (yx,..., y2m+\) z2m+\ = MPrn (yi,..., y2m+\) 

/ 2 m + l \ 2m + l /2m+l \ 
zm+l = G ( j / i , . . . , J / 2 m + l ) = í Eí y i ) 

( m 
j/m+i n yíí 

t = l 

2ттv-f 1 

2m + l 
2m+l 

i2/2m+2-i = J/m+1 = V^1^2-
\ i = l 

Similarly, it can be shown t h a t 

/ \ 

M-Pi(yi,...,y2m+i) = ym+i 

v ,=! wj ; 
Hence it holds t h a t 

2i22m+2-i = M-Pi(yu ... ,y2m+i)MPi(yu ... ,y2m+i) = ym+\2 = x\x2, 

for i = 1 , . . . , m . Continuing in the same fashion, at each aggregation layer we will 

have t h a t 

G ( j / i , . . . , y 2 m + l ) = yJX\X2 

and therefore the aggregation process will finally converge to G ( x i , X 2 ) . n 

The particular case of the left equality in the above proposition for only two 

mappings has already been derived in [2], i .e. it has been shown t h a t a sequence of 

iterates of the mean-type m a p p i n g (M-P,MP) converges to G . 

Note t h a t the result in Proposi t ion 5 provides an interesting insight about MLA 

operators constructed via a set of power mean operators which is symmetrical with 

respect to G. In general, these MLA operate as a trade-off between the different 

power mean operators and only in case of two arguments they will converge into G . 



Nonparametric Recursive Aggregation Process 65 

Thus, they can be interpreted as some sort of approximation of G . For instance, 
Figure 2 in the appendix presents the ROC (receiver operator characteristic) curves 
for each of the operators G, -4[H,M]

 ar1d -4[H,G,M]
 i n c a s e of a digit string recognition 

task (the 11 sentences in the appendix are a small subset of the whole experiment 
of more than 2000 utterances). The ROC curves are constructed by plotting the 
false rejection rates against the corresponding false acceptance ones for a varying 
rejection threshold. It can be observed that the rejection performance of G, -4[H,M] 

and -4[H,G,M] is indeed very comparable, but still not identical as it would be in the 
two-argument case (for instance sentences consisting of two words only). 

4. CONCLUSION 

In this paper, we suggest a new way for aggregating a list of values. A vector of ag­
gregation operators is applied repeateadly first over the input values, and then over 
the results of the previous aggregation step, and so on until certain stop condition 
is met. We have called this process Multilayer Aggregation (MLA) and determined 
the conditions under which it is convergent. It has been shown that the properties 
associated with such MLA operators ultimately depend on the choice of aggrega­
tion operators. Interesting monotonicity properties have been derived in case of 
monotonic, idempotent or/and decomposable aggregation operators. Further MLA 
operators defined via a combination of power means have been introduced. It has 
been encountered that these MLA operators compensate between the power values of 
the different power means and in this way act as a trade-off between the power mean 
operators present in their definition. Finally, an interesting ranking between some 
MLA operators defined via power means has been established due to the mentioned 
above monotonicity properties. 

APPENDIX: SPEECH RECOGNITION EXAMPLE 

1) pronounced: cinq six zéro quatre huit un sept trois deux neuf 
recognized: cinq six zéro quatre huit un sept trois deux neuf 

correct recognition(CR) 

confidences: cinq(94.44) six(88.21) zéro(92.86) quatre(98.38) huit( 5.66) 

un(65.76) sept(98.41) trois(99.46) deux(95.21) neuf(72.76) 

2) pronounced: cinq huit un deux zéro trois quatre neuf sept six 

recognized: cinq huit un deux zéro trois quatre neuf sept six 

correct recognition(CR) 

confidences: cinq(46.51) huit(27.54) un(68.71) deux(46.88) zéro(47.65) 
trois(79.53) quatre(86.68) neuf(94.24) sept(96.07) six(84.61) 
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3) pronounced: quatre un cinq six zéro sept trois huit neuf deux 
recognized: quatre un cinq six zéro sept trois huit neuf deux 

correct recognition(CR) 

confidences: quatre(16.25) un(36.44) cinq(16.74) six(46.04) zéro(98.81) 

sept(75.95) trois(91.85) huit(80.90) neuf(59.03) deux(73.44) 

4) pronounced: cinq zéro huit six deux trois neuf sept quatre un 

recognized: cinq zéro huit six deux trois neuf cinq quatre un huit 

récognition error(RE) 

confidences: cinq(61.37) zéro( 6.82) huit(70.30) six(41.06) deux(52.20) 

trois(92.94) neuf(93.04) cinq(74.83) quatre(98.50) un( 7.02) huit(27.55) 

5) pronounced: zéro trois quatre vingt quarante neuf trente quatre zéro cinq 

recognized: zéro trois quatre cinq zéro neuf trois quatre zéro cinq 

récognition error(RE) 

confidences: zéro(94.30) trois(99.70) quatre(99.44) cinq(68.40) zéro( 5.30) 

neuf(88.59) trois(98.28) quatre(88.55) zéro(98.12) cinq(43.59) 

6) pronounced: six cinq neuf deux zéro trois un huit sept quatre 

recognized: six cinq neuf neuf zéro trois un huit sept quatre 

récognition error(RE) 

confidences: six(14.16) cinq(65.98) neuf(95.15) neuf(11.55) zéro(38.55) 

trois(97.24) un(48.35) huit(23.55) sept(92.81) quatre(94.36) 

7) pronounced: zéro quatre soixante et onze cinquante sept vingt quatre 
quatre vingt treize 

recognized: zéro quatre cinq un cinq sept cinq quatre quatre quatre 

récognition error(RE) 

confidences: zéro(54.71) quatre(53.59) cinq( 1.80) un( 7.89) cinq(13.46) 

sept( 4.44) cinq(74.31) quatre( 2.65) quatre(77.66) quatre( 5.10) 

8) pronounced: zéro deux quatre vingt dix sept quatre vingt cinq trente trois 
soixante deux 
recognized: zéro deux quatre six sept quatre cinq trois trois quatre deux 

récognition error(RE) 

confidences: zéro(99.34) deux(91.02) quatre(19.78) six(79.15) sept(96.00) 
quatre(72.38) cinq(99.48) trois(29.77) trois(99.65) quatre( 0.07) deux(88.06) 
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9) pronounced: zéro trois quarante quatre cinquante deux quatre vingt seize trente 
trois 
recognizcd: zéro trois quatre quatre cinq deux quatre sept trois 

récognition error(RE) 

confidences: zéro(98.94) trois(99.71) quatre(12.97) quatre(87.72) cinq(62.06) 
deux(58.33) quatre(88.85) sept( 7.74) trois(96.05) 

10) pronounced: zéro trois vingt quatre vingt dix neuf cinquante huit vingt quatre 
recognized: huit zéro trois cinq quatre huit six neuf quatre huit cinq quatre 

récognition error(RE) 

confidences: huit(41.7Q) zéro(99.08) trois(94.36) cinq(93.20) quatre(97.07) 
huit(49.88) six(86.97) neuf(94.16) quatre( 3.29) huit(55.76) cinq(36.48) 
quatre(57.34) 

11) pronounced: six cinq neuf deux zéro trois un huit sept quatre 
recognized: six cinq neuf deux zéro trois un huit sept quatre 

correct recognition(CR) 

confidences: six(93.14) cinq(32.85) neuf(88.44) deux(67.46) zéro(99.94) 
trois(99.44) un(60.66) huit(10.37) sept(59.60) quatre(74.17) 

Table 1. Sentence confidence scores and false 
rejection/acceptance statistics for rejection threshold 50. 

Sentence Classification M G H л fн,o.мi 
1) (CR) 81.11 67.35 35.82(FR) 57.98 
2) (CR) 67.84 63.33 58.26 63.02 
3) (CR) 59.55 50.61 40 .40(FR) 49 .56(FR) 
4) (RE) 56.88(FA) 42.31 24.75 39.04 
5) (RE) 78.43(FA) 63.80(FA) 33.35 54.98(FA) 
6) (RE) 58.17(FA) 45.54 32.94 44.35 
7) (RE) 29.56 13.45 6.18 13.67 
8) (RE) 70.43(FA) 37.02 0.76 16.95 
9) (RE) 68.04(FA) 51.80(FA) 30.74 47.65 
10) (RE) 68.44(FA) 53.52(FA) 25.28 44.94 

П ) (CR) 68.61 58.92 43 .37(FR) 55.96 
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Table 2. Sentence confidence scores for different ML A operators. 

Sentence - 4 [ H , G ] -4[H,M] A G , M ] A H , G , M I 

1) 47.92 53.90 74.07 57.98 

2) 60.72 62.87 65.57 63.02 

3) 45.07 49.05 54.99 49.56 

4) 31.79 37.52 49.32 39.04 

5) 44.94 51.14 70.92 54.98 

6) 38.48 43.77 51.66 44.35 

7) 8.78 13.51 20.72 13.67 

8) 2.55 7.32 52.38 16.95 

9) 39.23 45.73 59.64 47.65 
10) 35.53 41.29 60.28 44.94 

П ) 50.26 54.55 63.67 55.96 

Table 3. Powers of the corresponding power mean operators 
generating the sentence confidence scores in Table 2. 

Sentence -4[ H ,G] A H , M ] A G , M ] -4[H,G,MI 

1) -0.64 -0.46 0.35 -0.34 

2) -0.52 -0.09 0.47 -0.06 

3) -0.54 -0.15 0.45 -0.10 

4) -0.56 -0.26 0.42 -0.18 

5) -0.63 -0.44 0.36 -0.32 

6) -0.53 -0.13 0.46 -0.09 

7) -0.48 0.005 0.47 0.016 

8) -0.64 -0.42 0.25 -0.25 

9) -0.57 -0.27 0.40 -0.19 
10) -0.64 -0.46 0.37 -0.33 

П ) -0.59 -0.31 0.41 -0.22 
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Fig. 2. ROC curves for G, J4[H,M] and ^4[H,G,M] for a digit string recognition task. 

(Received September 8, 2003.) 
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