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K Y B E R N E T I K A — V O L U M E 40 ( 2004 ) , NUMBER 4, P A G E S 4 7 7 - 4 8 9 

A N T I - P E R I O D I C SOLUTIONS TO 
A PARABOLIC HEMIVARIATIONAL INEQUALITY 1 

JONG YEOUL PARK, HYUN MIN KIM AND SUN HYE PARK 

In this paper we deal with the anti-periodic boundary value problems with nonlinearity 
of the form b(u)y where b £ L[^C(R). Extending b to be multivalued we obtain the existence 
of solutions to hemivariational inequality and variational-hemivariational inequality. 

Keywords: hemivariational inequality, variational-hemivariational inequality, anti-periodic 
boundary value problems 

AMS Subject Classification: 35K50, 35K55, 47J20, 35B10 

1. INTRODUCTION 

The purpose of this paper is two-fold. First, we discuss the existence of solutions 
to the discontinuous nonlinear nonmonotone parabolic anti-periodic boundary value 
problem, i.e. a parabolic hemivariational inequality (P) : 

u'(t) + Au(t) + E(t) = f(t) a.e. in (0,T), (1.1) 

E(t,x) e b(u(t,x)) a.e. (t,x) G Q = (0,T) x ft, (1.2) 

u(T) = -u(0). (1.3) 

The nonlinearity and the discontinuity is assumed to be in the lower order term b 
and whereas the operator A is linear and continuous. Secondly, we shall consider a 
parabolic variational-hemivariational inequality (P)c : 

f(t)-u'(t)-Au(t)-E(t) ed*(u(t)) a.e. in (0,T), (1.4) 

E(t,x) e b(u(t,x)) a.e. (t,x) <E Q = (0,T) x ft, (1.5) 

u(T) = -11(0), (1.6) 

where \P is a lower semicontinuous convex functional defined on a real Hilbert space 
H. The precise hypotheses on the above two systems will be given in the next section. 
The background of these problems are in physics, especially in solid mechanics, where 

^ h i s work was supported by grant No. (R01-2002-000-00491-0) from the Korea Science and 
Engineering Foundation. 
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nonmonotone, multivalued constitutive laws lead to hemivariational inequalities. 
The concept of a hemivariational inequality is introduced by Panagiotopoulos in 
[10]. Recently, anti-periodic boundary value problems to the various systems have 
been studied in a series of papers [1,2,3,7,8] after Okochi's pioneering work [9]. An 
important advantage of anti-periodicity is that one can handle non-coercive evolution 
equations which generally cannot be shown to admit classical periodic solutions. It 
is also worth noting that anti-periodic solutions arise naturally in the mathematical 
modelling of a variety of physical processes. There are some papers [5,6] dealing with 
these kinds of problems concerning the initial value problem, that is, (1.1)-(1.2) or 
(1.4) -(1.5) together with u(0) = u0. M. Miettinen [5] proved the existence results 
to the system (1.1)-(1.2) with such a given initial value. However, in this paper, 
we prove the existence of anti-periodic solutions for (1.1)-(1.2) and (1.4)-(1.5) 
with anti-periodic boundary condition (1.3) and (1.4), respectively. Our technique 
employs some ideas of [3] and [11]. The plan of this paper is as follows. In Section 2, 
the assumptions and the problems are formulated. In Section 3, the existence of 
a solution to the problem (P) is proved by using the Galerkin method. The paper 
concludes with a discussion of existence of a solution to the problem (P)c in Section 4. 

2. FORMULATION OF THE MAIN PROBLEM 

Let Q C EN be a bounded domain with Lipschitz boundary dfi,0 < T < co and 
Q — (0, T) x Q. Let us denote by H the real Hilbert space L2(Q) and by | • | the norm 
and (•, •) the inner product of L2(Ct). Let V be a real Hilbert space with the norm 
|| • ||v such that V <—> iI1(f)). V* denotes the dual space of V with the norm || • \\y* 
and (•, •) is the corresponding duality. Assume that the imbedding V c-> H is dense, 
continuous and compact. Let X = L 2(0,T;V),X* = L2(0,T\V*) and their norms 
|| • | |x, || • ||x* and the duality (•, -)x- It is well known that space W(V) = {u G X : 
u1 G X*} forms a real Hilbert space with the norm \\u\\\y = \\u\\x + ll^'llx* and is 
continuously imbedded in C([0,T];H). 

We formulate the following assumptions 

(HA) A : V -» V* is linear, continuous, symmetric and coercive, i. e. 

3 C i > 0 : | | A i ; | | v < CilMlv, Vv G V, 

3C2 > 0,C3 > 0 : (Av,v) > C2\\v\\2
v - C3\v\2, Vv G V 

(HB) (1) bGL£c(E), 

(2) 3 s 0 > 0 : 0 < ess infSo<t<oo &(*)> 

(3) b(-s) = -b(s) a.e. s > s0. 

(HF) / G L 2 ( 0 , T ; t f ) , f(t + T) = - / ( * ) V* > 0. 

The multi-valued function b : E -> E is obtained by filling in jumps of a function 
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b : R -r E by means of the functions b^, b€, 6, b : R —> R as follows 

6,(0 = ess inf|s_ t |<£ 6(5), be(t) = ess sup|s_,|<c 6(s); 

b(t)= lirn 6,(0, 6 ( 0 = Hrn 6£(0; 
e->0+ e->0+ 

6(0 = [fe(0. &(*)]• 

We shall need a regularization of b defined by 

/

oo 
b(t - T)P(TIT) dr, 

-OO 

where p e CQ°((—1, l ) ) ,p > 0 and / _ 1 p ( r ) d r -= 1. It is easy to show that bn is 
continuous and odd for all n e N. Moreover (HB) implies that there exist positive 
constants So and v such that for all n G N, 

tbn(t) > 0 for |*| > So, (2.1) 

|6n(0l <v for |*| <So . (2.2) 

Since we shall use the Galerkin method for proving the existence of a solution of 
the problem (P), we need a family of finite-dimensional subspaces Vn C C 0 0 ^ ) f) V 
such that Un

G
=l Vn is dense in V = V C\ C(f2) in the following sense: 

Vv eV]3vneVn such that vn -> v in y n C ( J l ) . (2.3) 

Further assume that V C\ C(Cl) is dense in V. Let us formulate a regularized Galerkin 
equation (P)n : 

Find un e W(Vn) = {ue L2(0,T;Vn) : u' e L2(0,T;Vn)} such that 

(u'n(t) + Aun(t) + bn(un(t)),vn) = (f(t),vn), Vvn e Vni a.e. t e (0,T),(2.4) 

un(0) = -un(T). (2.5) 

Substituting of un = _2]=i Cjn(t)ipjn, where {v?jn}j=i is a basis of Vn, to (P)n 

gives a first-order system of ordinary differential equations for the real functions 
t -> Cjn(t), j = 1,2,... , n. The solvability of the problem (P)n is guaranteed by the 
Caratheodory theorem and a priori estimates. 

3. HEMIVARIATIONAL PROBLEMS 

Definition 3.1. A function u e W(V) is a solution of the problem (P) if there 
exists E e Ll(Q) H X* such that 

T T 

(1) / (u'(t) + Au(t)+S(t),$(t))dt= f (f(t),$(t))dt, V $ € X 
Jo Jo 

(2) u(0) = -u(T), 

(3) E(t,x) e b(u(t,x)) a.e. (t,x) 6 Q. 
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Theorem 3.1. Assume that (HA),(HB) and (HF) hold. Then the problem (P) 
has at least one solution. 

P r o o f . We divide the existence proof into three steps. 

Step 1: A priori estimates. 
Let un be a solution of the (P)n. Choose un as a test function in (P)n and integrate 
the resulting equation over (0,T) to obtain 

T T 

\K\\ho,T;H)+ [ (Aun(t),U'n(t))dt+ [ (bn(Un(t)),u'n(t))dt (3.1) 
JO Jo 

T 

= f (f(t),u'n(t))dt. 
Jo 

By using (HA) and (2.5), we have 

rT -i rT i 

I (Aun(t),u'n(t))dt = - -(Aun(t),un(t))dt = 0. 

T 
Next, let us rewrite / 0 (bn(un(t)),u'n(t)) dt in the more useful form 

/ / bn(un(t,x))un(t,x)dxdt (3.2) 
Jo JQ 

-n7„(s r"" >6"HixAt 
f ( PUn(Ttx) rUn(Otx) \ 

= / / bn(r)dr- / bn(r)dr dx. 

Using the anti-periodicity un(T, x) — — un(0,x) and the oddness of bn, we observe 
from (3.2) that 

T 

[ (bn(un(t)),u'n(t))dt = 0. 
Jo 

Hence, from (3.1), we have 

lKn||L2(0,T;H) < ll/IIL2(0,T;H)- (3-3) 

This inequality and Poincare's inequality for anti-periodic functions (see e.g. [3]) 
yields, 

IKIU~(o,T;H) < \y/T\\f\\L2(0tT.H). (3.4) 

Substitute vn by un(t) to (2.4) and integrate over (0,T). Using (HA) and (2.5), we 
arrive at 

T 

C2\\un\\x+ [ f bn(un(t,x))un(t,x)dxdt (3.5) 
Jo JQ 

T 

< O3|K||i2(0,T;H) + / (f(t),Un(t))dt. 
Jo 
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Define Qx = {(t,x) G Q : | u n ( t , x ) | > S0} and Q2 = {(t,x) G Q : \un(t,x)\ < 5 0 } . 
Observe that 

/ / bn(un(t,x))un(t,x)dxdt (3.6) 
Jo Jn 

= / bn(un(t, x))un(t,x) dxdt + / 6 n(w n(t,x))u n(t,x) dxdt, 
JQi JQ2 

where the integral over Qi is nonnegative (see (2.1)), Combining (3.5) and (3.6), we 
get 

T 

C2\\un\\\ < C3\\un\\lH0tT.H)+ [ (f{t),u„{t))dt (3.7) 
Jo 

— / bn(un(t,x))un(t,x)dxdt. 
JQ2 

In what follows, we use C to denote a generic positive constant independent of n. 
On account of (2.2), we conclude that 

/ \bn(un(t,x))un(t,x)\dxdt < C. (3.8) 
JQ2 

Now, using (3.4), (3.7) and (3.8), we infer that 

IKH2x < C. (3.9) 

Returning to (3.5) we deduce by (3.4) that 

/ / bn(un(t,x))un(t,x)dxdt < C. (3.10) 
JO JQ 

Next, we show the weak precompactness of the subsequence {bn(un(t,x))} in Ll(Q). 
Using (3.8) and (3.10), we get 

/ \bn(un(t,x))un(t,x)\dxdt (3.11) 
JQ 

= I bn(un(t,x))un(t,x)dxdt+ I \bn(un(t,x))un(t,x)\dxdt 
JQI JQ2 

= / bn(un(t,x))un(t,x)dxdt - / bn(un(t,x))un(t,x)dxdt 
JQ JQ2 

+ / \bn(un(t,x))un(t,x)\dxdt 
JQ2 

< / bn(un(t,x))un(t,x)dxdt + 2 / \bn(un(t,x))un(t,x)\ dxdt 
JQ JQI ІQ JQ2 

<C. 
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Using (3.11) we can show that for each e > 0, there exist K so large and 6(e) > 0 
such that 

7 7 / \bn(un(t,x))un(t,x)\dxdt < - and 
K

 JQ
 2 

<5(e)esssup |s|<K+1 |6n(s)| < ^. 

If u C Q with meas(u;) < <5(e), then 

I \bn(un(t,x))\Axdt 

< I — \bn(un(t,x))un(t,x)\dxdt+ I sup \bn(un(t,x))\ dxdt 
JLJ K JLJ \un(t,x)\<K+l 

< / —\bn(un(t,x))un(t,x)\ dxdt + esssup\Un{tx)l<K_[.1 \bn(un(t,x))\ • meas(cj) 

<e, VnGN, 

where we used the estimate |bn(s) | < ^|sbn(5)| + sup\s\<k+i\bn(s)\, VA: > 0. Thus, 
applying the Dunford-Pettis criterion, we conclude that {bn(un)} is weakly precom-
pact in Ll(Q). 

Step 2: Convergences of subsequences. 
By using the priori estimates (3.3), (3.4) and (3.9), the compactness of the imbedding 
of V into H and Arzela Ascoli's theorem, we have subsequences (in the sequel we 
denote subsequences by the same symbols as original sequences) such that 

un -> u weakly in X n W(V) and stronly in C([0,T]; H), (3.12) 

u'n -> u1 weakly in L2(0,T;H), (3.13) 

bn(un) -> E weakly in Ll(Q), (3.14) 

Aun -> Au weakly in X*. (3.15) 

Step 3: (u,E) is a solution of (P). 
From (P)n we get 

T 

[ (u'n(t) + Aun(t)+bn(un(t)),v(t))dt (3.16) 
Jo 

T 
= [ (f(t),v(t))dt,VveC([0,T}',Vn). 

Jo 

Letting n tend to infinity in (3.16) and taking into account (3.12) - (3.15), (2.3) gives 

T 

f (u'(t) + Au(t)+E(t),v(t))dt (3.17) 
jo 

T 
= f (f(t),v(t))dt,VveC([0,T];V). 

Jo 



Anti-periodic Solutions to a Parabolic Hemivariational Inequality 483 

Since C([0,T]-,V) is dense in X (see e.g. [6]), (3.17) holds for all $ G l and hence 
E G A"*. Because un —> u strongly in C([0,T];H) and un(T) = — un(0), it is clear 
that u(T) = — u(0). It remains to show that E(t,x) G b(u(t,x)) a.e. in Q. Since 
un -» u strongly in L2(Q), we can assume that 

un(t,x) —> u(t,x) a.e. in Q as n —» oo. 

Let 77 > 0. Using the theorems of Lusin and Egoroff, we can choose a subset u C Q 
such that meas(uj) < r\, u G L°°(Q \ LJ) and un —r u uniformly on Q \ UJ. Thus, for 
each 6 > 0, there is an JV > 2 such that 

\un(t,x) -u(t,x)\ < -, V(t,x) G Q\u. 

Then, if \un(t,x) - s\ < ^, we have \u(t,x) — s\ < e for all n > N and (t,x) G Q\LO. 
Therefore we have 

be(u(t,x)) <bn(un(t,x)) <be(u(t,x)), V n > N,(t,x) eQ\u. 

Let (/)GLOO(Q),0>O . Then 

/ be(u(t,x))(f)(t,x)dxdt < / bn(i/n(^,x))0(^,.r)dxd^ (3.18) 
JQ\UJ JQ\U 

< / be(u(t,x))(j)(t,x) dxd£. 
JQ\U 

Letting n -> 00 in (3.18) and using (3.14), we obtain 

/ b€(ii(^,.2:))0(i,2;)d.rd^ < / E(t,x)(j)(t,x) dxdt (3.19) 
JQ\U JQ\LJ 

< / be(u(t,x))(j)(t,x) dxdt. 
JQ\UJ 

Letting e -> 0 + in (3.19), we infer that 

E(t, x) G b(u(t, x)) a. e. in Q \ UJ, 

and letting 77 -> 0 + we get 

E(t,x) G b(?j(^,x)) a.e. in Q. 

Remark 3.1. If we impose the following additional linear growth condition on b: 

(HB*) 3 c > 0 : | 6 ( t ) | < c ( l + | t | ) a .e . in R, 

we can obtain stronger results on bn(un), i.e. bn(un) —> E weakly in L2(Q). 
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Indeed, from (HB*), it follows that 
T 

ll&n(«n(-))lli-(0) = / f \bn(un(t,x))\2dxdt (3.20) 
Jo Jn 

T 
< f f (c(l + \un(t,x)\))2dxdt 

jo jfi 
T1 

< / / ( c i ( l + |un(£,x)|2))d.xd£ 
JO Jfi 

< c2(i + i K i i i 2 ( Q ) ) . 

Since it is shown that {un} is bounded in L2(Q), {bn(un)} is bounded in L2(Q). 
Thus we may assume that bn(un) -> E. weakly in L2(Q). 

Remark 3.2. If b satisfies the condition (HB*), it is easily shown that b, b, 6 ,̂ be, b
n 

defined in Section 2 satisfy the same condition (HB*) with a possibly different con­
stant c. 

4. VARIATIONAL-HEMIVARIATIONAL PROBLEMS 

This section is devoted to study the variational-hemivariational problem (P)c : 

f(t)-u'(t)-Au(t)-Z(t)ed9(u(t)) a.e. in (0,T), (4.1) 

u(0) = - u ( T ) , (4.2) 

E(t,x) e b(u(t,x)) a.e. (t,x) E Q, (4.3) 

where ^ is a proper convex, lower semicontinuous and even functional from H to 
R U {+00} and d$ is a subdifferential of * defined by 

d9(u) = {zeH : *(v) - *(u) > (2,1; - u), Vv G H}. 

We show that under the linear growth condition (HB*) on b the above problem has 
a solution. The proof is based on the following approach (see [6]): We approximate 
^ by a sequence of even and convex Gateaux differentiable functions \I/C,e > 0, on 
H and prove the solvability of (P)C€ defined by (P)c in which * is replaced by ty€. 
Then we show that (P)ce tends to (P)c as e —> 0+. We denote by *'€ the Gateaux 
derivative of * e , e > 0. First we need impose some conditions for the approximating 
sequence {\-/£} : 

T T 

(H¥) (1) / tft(w(t))dt-> / *(u(t))dt , V u € L 2 ( 0 , T ; H ) as e-> 0+. 
jo jo 

(2) *;(0) = 0, e > 0 . 

(3) If vt -> v weakly in L2(0, T; H), v[ -> v' weakly in L2(0, T; H) 

fT 
and / ^((ve(t)) dt < M, where M is a constant independent of e, then 

T T 
Um€_>0+ / # e M ť ) ) d ť > / *( W (ť))dt. 

jo Jo 
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(4) The family {*c} is uniformly proper, i.e. there exists an element g G H 
and a constant C > 0 such that 

*e(v) > (g,v)~C, VveH,e>0. 

Let ip : H —> ( — oo, +oo] be a proper, convex, lower semicontinuous function with 
effective domain D(ip) = {x G H : tp(x) < +00} . Then </?c : H —r 1R defined by 

^ e ( x ) = inf (y?(y) + | y ~ 3 : | } , x G I Y , 6 > 0 , 
yen { ze ) 

is convex and Gateaux differentiable on H. Once ip is taken to be even, then it is easy 
to check that 0 G d<p(0),(pe is even and ip'e and dtp are odd. Moreover, (p€ satisfies 
all the conditions stated in (H\£) (see [4] for details). Thus our assumptions (H\I>) 
make sense. Also, we need the following assumption: 

(HA*) A is the operator stated in (HA) with C3 = 0. 

Definition 4 .1. A function u G W(V) is a solution of the problem (P)c if there 
exists E G L2(Q) n X* such that 

(1) f V(v(t))dt- f 9(u(t))dt 
Jo Jo 

> / (f(t)-u'(t)-Au(t),v(t)-u(t))dt- f (E(t),v(t) -u(t))dt, Vv G X, 
Jo Jo 

(2) E(t,x) G b(u(t,x)) a.e. (t,x) G Q, 

and 

(3) u(0) = -u(T). 

Theorem 4 .1 . Assume that (HA*), (HF), (HB) and (HB*) hold. Then the prob­
lem (P)c has at least one solution. 

Since \Pe,e > 0, is Gateaux differentiable, we can consider the following approxi­
mating problem (P)C€ : 

T 

f (u'((t) + Au((t) + E((t) + V((u((t)),v(t)) At 
Jo 

T 

= f (f(t),v(t))dt, v . a , 
Jo 

E€(t,x) G b(u€(t,x)) a.e. (t,x) G Q. 
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4.1. Existence of solutions of the differentiable problem (P)Ce 

The regularized Galerkin problem (P)n
€ is formulated as follows: 

Find a solution uen G VV(Vn) such that 

(u[n(t),v) + (Au€n(t),v) + (bn(uen(t),v) + (V'€(u€n(t)),v) 

= (f(t),v), V v G K i , a.e. «G(0,T) . 

and u£n(0) = -u€n(T). 

The solvability of this problems is guaranteed by the same arguments as for (P)n. 
By using the evenness of \PC and u€n(0) = —u£n(T), we have 

J (*'((u(n(t)),u'in(t))dt = J ft(*((u(n(t)))dt (4.4) 
= * £ ( u e n ( T ) ) - * £ ( u e n ( 0 ) ) 

= 0. 

Due to the monotonicity of * £ and (H\P)(2), we háve 

<*€(u€ n( t)) ,u ť B (ť))dť>0. (4.5) L 
Equations (4.4) and (4.5) enable to accomplish similar estimate as in Section 3 and 
Remark 3.1. Thus we get the convergence results: 

u€n -> u€ weakly in X D W(V), (4.6) 

u€n -> u€ strongly in C([0,T];H), (4.7) 

u'€n -> u'€ weakly in L2(0,T;Lf), (4.8) 

bn(uen) -> H£ weakly in L2(Q), (4.9) 

Au€n -> Au€ weakly in X*. (4.10) 

Since {u€n} is bounded in L°°(0,T; H), {%(u€n)} is bounded in L°°(0yT]H). Thus 
we can extract a subsequence {u€n} such that 

%(u€n) -> Z weak-star in L°°(0,T;H). (4.11) 

Now, we shall show that u€ is a solution of (P)Ce- The only thing we need to prove 
is that Z = ty'€(u€). Indeed, the monotonicity of \t'c implies that 

T 

Xn = / (V'€(u(n)-*'€(v),u(n-v)dt>0, VveX. (4.12) 
Jo 

On the other hand, by (HA*), we get 

-(Au(n(t),u((t)) - (Au((t),u(n(t)) + (Au((t),u((t)) (4.13) 

> -(Au(n(t),u(n(t)). 
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Letting n -> co in (4.13) and using the above convergence results (4.6) and (4.10) 
and Fatou's lemma, we get 

fimn->oo / (-Au€n(t),u€n(t))dt< / (-Au€(t),u€(t))dt. (4.14) 
Jo Jo 

Applying (P)Ce, we have 

Xn = / (-Auen + f,uen)dt- [ (bn(uen),uen)dt (4.15) 
JO .10 

- / (V€(uen),v)dt- / (*'€(v),u€n-v)dt>0. 
Jo Jo 

Using the convergence results (4.6)-(4.10), (4.12) and (4.15), we conclude that 

T T 

f (-Au((t) + f(t),u((t))dt- f (E((t),u((t))dt (4.16) 
Jo Jo 

T T 
> [ (Z(t),v(t))dt+ [ (%(v(t)),ue(t)-v(t))dt, VveX. 

Jo Jo 

On the other hand, by the convergence results (4.6)-(4.10), it is easy to see also 
that 

T T 

f (u'((t) + Au((t) + Z(t),v(t))dt+ f (E((t),v(t))dt (4.17) 
Jo Jo 

T 
= [ (f(t),v(t))dt, V . E I 

Jo 

Substituting v by ue in (4.17) and combining the result with (4.16), we have 

T 

[ (Z(t)-Ve(v(t)),u€(t)-v(t))dt>0, VveX. (4.18) 
Jo 

Note that we have used the fact that 
r-T 

J <u€(i),«.(t)>dí = / i | U e (ť) | 2 dí = 0 

in deriving (4.18). Thus, from Minty's monotonicity argument (see [12]), we have 

4.2. Existence of solutions of the problem (P)c 

As a result of the previous subsection for each e > 0, we have 
T 

f (u[(t) + Au((t)+E((t) + V'e(u((t)),v(t))dt 
Jo 

T 

= f (f(t),v(t))dt, Vt,GX, 
Jo 
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or equivalently 

ГT 

/ ¥ . 0 ( 0 ) d * - / *e(u((t))dt (4.19) 
JO Jo 

T 

> [ (f(t) - u[(t) - Aue(t) - Ee(t),v(t) ~ ue(t)) dt, Vv e X. 
Jo 

Because of the same arguments as Step 1 in previous subsection (see, e. g. (4.4), (4.5)), 
we can easily get a priori estimates and the convergence results 

ue -> u weakly in X n W(V), (4.20) 

ue -* u strongly in C([0,T] : II), (4.21) 

u'e -> u' weakly in L2(0,T;II), (4.22) 

Aue -> Au weakly in X*, (4.23) 

Ee -> E weakly in L2(Q). (4.24) 

т 

í ФЛuЛt)). 
J0 

ľт 

< 

Substituting v(t) = tt0 € o(#) in (4.19), we get 

/ «(j) + Aue(t) + st(t) - /(0,«o - ««(*)>d< + *«(«o)r 
./o 

< C, Ve > 0. 

Thus, all the assumptions of the condition (H\t)(3) are satisfied and we have 

T T 

[ 9(u(t)) dt <!im€_>0+ / Ve(ue)dt. (4.25) 
Jo Jo 

Taking into account (H*)(l) and equations (4.20)-(4.24) and (4.25), the limit e -> 
0+ of equation (4.19) yields 

T T 

/ V(v{t))dt- [ V(u(t))dt (4.26) 
Jo Jo 

> / (f(t)-u'(t)-Au(t),v(t)-u(t))dt- f (Z(t),v(t)-u(t))dt, 
Jo Jo 

V v G l . 

This completes the proof of Theorem 4.1. O 

(Received March 4, 2003.) 
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