Kybernetika

Pavel Ranocha

Efficiency of some algorithms for prediction in finite stationary time series

Kybernetika, Vol. 40 (2004), No. 6, [703]--714
Persistent URL: http://dml.cz/dmlcz/135628

Terms of use:

© Institute of Information Theory and Automation AS CR, 2004
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

EFFICIENCY OF SOME ALGORITHMS FOR PREDICTION IN FINITE STATIONARY TIME SERIES

Pavel Ranocha

Important characteristics of any algorithm are its complexity and speed of real calculations. From this point of view we analyze some algorithms for prediction in finite stationary time series. First, we review results developed by Bondon [1] and then we derive complexities of Levinson and innovations algorithm. It is shown that time needed for real calculations of prediction is proportional to theoretical complexity of the algorithm. Some practical recommendations for selection of the best algorithm are given.
Keywords: stationary time series, multistep prediction, Levinson's algorithm, innovations algorithm

AMS Subject Classification: 60G25

1. INTRODUCTION

Let $\left\{X_{n}, n \in \mathbb{N}\right\}$ be real-valued, (weakly) stationary process with zero mean and covariance function $\gamma(k)$ defined on probability space $(\Omega, \mathcal{A}, \mathrm{P})$. Let $L^{2}(\Omega, \mathcal{A}, \mathrm{P})$ denote the Hilbert space with inner product $\langle X, Y\rangle=\mathrm{E} X Y$. Let $H\left\{X_{n}, n \in M\right\}$ be the Hilbert subspace of L^{2} generated by variables $X_{n}, n \in M$. If $M=\{l, \ldots, n\}$, we simply write $H\left\{X_{n}, n \in M\right\}=H_{l, n}$. We use the symbol $P_{l, n}$ for orthogonal projection operator onto $H_{l, n}$. Finally, assume that $H_{1, n} \varsubsetneqq H_{1, n+1}$ for all $n \in \mathbb{N}$.

It is well-known that if we write the optimal linear prediction of variable X_{n+h} based on the knowledge of X_{1}, \ldots, X_{n} in the form

$$
\hat{X}_{n+h}(n)=P_{1, n} X_{n+h}=\sum_{i=1}^{n} a_{n, i}^{h} X_{n+1-i}
$$

then the prediction coefficients $\boldsymbol{a}_{n}^{h}=\left(a_{n, 1}^{h}, \ldots, a_{n, n}^{h}\right)^{\top}$ can be obtained by solving the system of linear equations

$$
\begin{equation*}
\Gamma_{n} a_{n}^{h}=\gamma_{n, h} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{n}=(\gamma(i-j))_{i, j=1}^{n}, \quad \gamma_{n, h}=(\gamma(n+h-1), \ldots, \gamma(h))^{\top} \tag{1.2}
\end{equation*}
$$

Mean square error is given by

$$
v_{n}^{h}=\mathrm{E}\left[X_{n+h}-\hat{X}_{n+h}(n)\right]^{2}=\gamma(0)-\gamma_{n, h}^{\top} \Gamma_{n}^{-1} \gamma_{n, h} .
$$

The main disadvantage of the direct method is its high numerical complexity. It is necessary to find the solution of the system, the dimension of which is n, where n is usually large. Moreover, if we get a new observation, we have to repeat the whole procedure.

It is natural to ask whether it is possible to solve the described problem more efficiently. Probably, the first effective method derived for the construction of predictions with finite past was the Levinson algorithm (see [5]). It is based on the existence of relations between prediction coefficients recurrent with respect to number of observations which is equal to order of matrix Γ_{n}. Innovations algorithm, which was derived later (see e.g. [4]), works with the properties of projection operator and orthogonal decomposition but it does not use the assumption of stationarity. That is why its complexity is still very high (see below).

The procedures using also recursion with respect to prediction step were deduced by Bondon in [1]. The author derived several methods enumerating prediction coefficients and mean square errors. (Similar relations for infinite time series were derived earlier, see e.g. [2].) Quite recently, Brockwell and Dahlhaus [3] deduced some recursive properties of orthogonal projections which lead to a variety of different prediction algorithms (e.g. Durbin-Levinson, Burg and Whittle algorithms).

For the calculation of their numerical complexity, Bondon supposed that multiplications (divisions) are much more time demanding than summations (subtractions). No other operations occur. With the help of our programme implementation we show that these simplifying assumptions do not effect the results significantly and theoretical complexities computed on their basis may be used to compare the effectiveness of the rated procedures. We use the same programme to measure time needed for the calculations. In conclusion we deduce the numerical complexity of Levinson and innovations algorithm and find out that their efficiency is far beyond Bondon's methods.

2. CLASSICAL METHODS

Levinson's algorithm (see [5]), which we describe now, can be generally used for solving the system of linear equations with so called Toeplitz matrix. It is a square matrix with elements $t_{i, j}$, for which there exist real numbers $u_{-n+1}, \ldots, u_{0}, \ldots, u_{n-1}$ such that $t_{i, j}=u_{i-j}, i, j=1, \ldots, n$. It is obvious that the matrix (1.2) satisfies this condition. The system (1.1) can be written in the form

$$
\sum_{n=0}^{M} a_{M, n} \gamma(k-n)=\delta_{k}, \quad k=0,1, \ldots, M
$$

where $\delta_{k}=\gamma(M+h-k)$. Its solution is given by

$$
\begin{equation*}
a_{0,0}=\frac{\delta_{0}}{\gamma(0)} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
a_{M+1, M+1}=\frac{\delta_{M+1}-\sum_{k=0}^{M} a_{M, k} \gamma(M+1-k)}{\gamma(0)-\sum_{k=0}^{M} C_{k}^{M} \gamma(M+1-k)} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{M+1, k}=a_{M, k}-C_{k}^{M} a_{M+1, M+1}, \quad k=0,1, \ldots, M . \tag{2.3}
\end{equation*}
$$

The constants C_{k}^{M} are computed from

$$
\begin{gather*}
C_{0}^{0}=\frac{\gamma(1)}{\gamma(0)}, \tag{2.4}\\
C_{0}^{M}=\frac{\gamma(M+1)-\sum_{k=1}^{M} C_{k-1}^{M-1} \gamma(k)}{\gamma(0)-\sum_{k=0}^{M-1} C_{k}^{M-1} \gamma(M-k)} \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
C_{k}^{M}=C_{k-1}^{M-1}-C_{0}^{M} C_{M-k}^{M-1}, \quad k=1,2, \ldots, M \tag{2.6}
\end{equation*}
$$

The next method, which was derived later, was the innovations algorithm (see e.g. [4]). If we write the prediction in the form

$$
\begin{equation*}
P_{1, n} X_{n+h}=\sum_{j=h}^{n+h-1} \theta_{n+h-1, j}\left(X_{n+h-i}-\hat{X}_{n+h-j}\right) \tag{2.7}
\end{equation*}
$$

then the prediction coefficients $\theta_{n, j}$ are obtained from

$$
\begin{gather*}
v_{0}=\kappa(1,1) \\
\theta_{n, n-k}=v_{k}^{-1}\left(\kappa(n+1, k+1)-\sum_{j=0}^{k-1} \theta_{k, k-j} \theta_{n, n-j} v_{j}\right), \quad k=0,1, \ldots, n-1 \tag{2.8}
\end{gather*}
$$

and

$$
\begin{equation*}
v_{n}=\kappa(n+1, n+1)-\sum_{j=0}^{n-1} \theta_{n, n-j}^{2} v_{j} \tag{2.9}
\end{equation*}
$$

where $\kappa(t, s)=\operatorname{cov}\left(X_{t}, X_{s}\right)$. Mean square error is computed using

$$
\begin{equation*}
v_{n}^{h}=\kappa(n+h, n+h)-\sum_{j=h}^{n+h-1} \theta_{n+h-1, j}^{2} v_{n+h-j-1} \tag{2.10}
\end{equation*}
$$

The main disadvantage of this procedure is its high numerical complexity (see further). On the other hand, it can be used more generally, namely when predicting in non-stationary processes. It can also be easily modified for the ARMA processes in order to reduce the number of operations being made during the computations (see [4]).

3. BONDON'S PROCEDURES

In this section we introduce several propositions and some very effective algorithms, which were derived by Bondon, [1].

Proposition 3.1. For any step $h \geq 1$ and any $n \geq 1$,

$$
\begin{equation*}
a_{n, i}^{h}=a_{n+h-1, i+h-1}^{1}+\sum_{j=1}^{h-1} a_{n+h-1, j}^{1} a_{n, i}^{h-j}, \quad i=1, \ldots, n . \tag{3.1}
\end{equation*}
$$

Proof. See [1], Proposition 3.1.

Proposition 3.2. For any step $h>1$ and any $n \geq 1$,

$$
\begin{equation*}
a_{n, i}^{h}=a_{n+1, i+1}^{h-1}+a_{n+1,1}^{h-1} a_{n, i}^{1}, \quad i=1, \ldots, n \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}^{h}=v_{n+1}^{h-1}+\left(a_{n+1,1}^{h-1}\right)^{2} v_{n}^{1} . \tag{3.3}
\end{equation*}
$$

Proof. See [1], Proposition 3.2.
Proposition 3.3. For any step $h \geq 1$ and any $n \geq 1$,

$$
\begin{gather*}
v_{0}^{h}=\gamma(0) \\
a_{n, n}^{h}=\left[\gamma(n+h-1)-\sum_{i=1}^{n-1} a_{n-1, i}^{1} \gamma(n+h-i-1)\right]\left(v_{n-1}^{1}\right)^{-1}, \tag{3.4}\\
a_{n, i}^{h}=a_{n-1, i}^{h}-a_{n, n}^{h} a_{n-1, n-i}^{1}, \quad i=1, \ldots, n-1, \tag{3.5}
\end{gather*}
$$

and

$$
\begin{equation*}
v_{n}^{h}=v_{n-1}^{h}-\left(a_{n, n}^{h}\right)^{2} v_{n-1}^{1} \tag{3.6}
\end{equation*}
$$

Proof. See [1], Proposition 4.1.

The first method described (denoted by A_{1}) is based on Proposition 3.3 only. Another possibility $\left(A_{2}\right)$ consists of calculating $a_{n, i}^{1}$ for $1 \leq n \leq p+s-1$ from (3.4)-(3.6) and enumerating $a_{p, i}^{h}$ for $2 \leq h \leq s$ with the help of (3.1). The mean square errors $v_{p}^{h}, 2 \leq h \leq s$ can be obtained from

$$
\begin{equation*}
v_{p}^{h}=\left\|X_{p+h}-P_{1, p} X_{p+h}\right\|^{2}=\gamma(0)-\sum_{i=1}^{p} a_{p, i}^{h} \gamma(i+h-1) . \tag{3.7}
\end{equation*}
$$

Proposition 3.4. For any step $h>1$ and any $n>1$,

$$
\begin{equation*}
a_{n, i}^{h}=a_{n, i+1}^{h-1}+a_{n, 1}^{h-1} a_{n-1, i}^{1}-a_{n, n}^{h} a_{n-1, n-i}^{1}, \quad i=1, \ldots, n-1 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}^{h}=v_{n}^{h-1}+\left[\left(a_{n, 1}^{h-1}\right)^{2}-\left(a_{n, n}^{h}\right)^{2}\right] v_{n-1}^{1} . \tag{3.9}
\end{equation*}
$$

Proof. See [1], Proposition 4.2.
In the first step of A_{3} coefficients $a_{n, i}^{1}$ and errors $v_{n}^{1}, 1 \leq n \leq p$ are computed from (3.4)-(3.6). In the second stage we use the equalities (3.4), (3.8) and (3.9) to enumerate $a_{p, i}^{h}$ and v_{p}^{h} for $2 \leq h \leq s$.

The next alternative $\left(A_{4}\right)$ is the procedure, in the first stage of which we calculate $a_{n, i}^{1}$ and v_{n}^{1} for $1 \leq n \leq p+s-1$ according to (3.4)-(3.6). These values are used in the second stage, when we get $a_{n, i}^{h}$ and $v_{n}^{h}, 2 \leq h \leq s, p \leq n \leq p+s-h$ from (3.2) and (3.3).

The next proposition shows a different approach for calculating prediction coefficients based on the orthogonal decomposition of the space $H_{1, n}$.

Proposition 3.5. For any step $h \geq 1$ and any $n \geq 1$,

$$
\begin{equation*}
P_{1, n} X_{n+h}=\sum_{i=1}^{n} c_{i}^{h}\left(X_{i}-P_{1, i-1} X_{i}\right) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}^{h}=\gamma(0)-\sum_{i=1}^{n}\left(c_{i}^{h}\right)^{2} v_{i-1}^{1} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{i}^{h}=\left[\gamma(n+h-i)-\sum_{j=1}^{i-1} a_{i-1, j}^{1} \gamma(n+h-i+j)\right]\left(v_{i-1}^{1}\right)^{-1} . \tag{3.12}
\end{equation*}
$$

Proof. See [1], Remark 4.2.

Proposition 3.5 is used to construct algorithm A_{5}. First, $a_{n, i}^{1}$ and v_{n}^{1} for $1 \leq n \leq p$ are computed from (3.4)-(3.6). The coefficients $a_{p, i}^{h}$ and errors $v_{p}^{h}, 2 \leq h \leq s$, are then be obtained according to (3.10) - (3.12).

4. COMPARISON OF EFFICIENCIES

In this section we derive the complexity of both Bondon's and classical algorithms described above, namely innovations and Levinson, and compare them.

When using A_{1}, the number of multiplications and divisions needed for computation of all the prediction coefficients and mean square errors concerning $\hat{X}_{p+1}(p), \ldots$, $\hat{X}_{p+s}(p)$ is summarized in Table 1.

Table 1. The complexity of algorithm A_{1}.

Coefficients to be computed	Used relation	Number of multiplications	Range of indices
$a_{n, n}^{h}$	(3.4)	n	$n=1, \ldots, p, h=1, \ldots, s$
$a_{n, i}^{h}$	(3.5)	$n-1$	$n=1, \ldots, p, h=1, \ldots, s$
v_{n}^{h}	(3.6)	2	$n=1, \ldots, p, h=1, \ldots, s$

The total complexity of A_{1} is

$$
N_{1}=s \sum_{n=1}^{p}(2 n+1)=p^{2} s+2 p s
$$

The numerical complexity of procedure A_{2} is shown in Table 2.
The total complexity of the algorithm is

$$
N_{2}=p^{2}+\frac{p}{2}\left(5 s+s^{2}-2\right)+s^{2}-3
$$

The difference between A_{1} and A_{2} is

$$
N_{2}-N_{1}=p^{2}(1-s)+\frac{p}{2}\left(s^{2}+s-2\right)+s^{2}-3
$$

We can see that the sign of the difference depends on the length of the series p and the maximum step s.

The complexity of operations made when A_{3} is used can be found in Table 3.
The total complexity of the procedure is equal to

$$
N_{3}=p^{2}+p(3 s-1)+s-1
$$

Comparing it with the complexity of A_{1}, we can see that

$$
N_{1}-N_{3}=(s-1)\left(p^{2}-p-1\right)>0
$$

for any $p>1$. We come to the same conclusion when we compare A_{3} and A_{2} since for $s>1$ we have

$$
N_{2}-N_{3}=\frac{p s}{2}(s-1)+(s-2)(s+1)>0
$$

Table 2. The complexity of algorithm A_{2}.

Coefficients to be computed	Used relation	Number of multiplications	Range of indices
$a_{n, n}^{1}$	(3.4)	n	$n=1, \ldots, p+s-1, h=1, \ldots, s$
$a_{n, i}^{1}$	(3.5)	$n-1$	$n=1, \ldots, p+s-1, h=1, \ldots, s$
v_{n}^{h}	(3.6)	2	$n=1, \ldots, p+s-2, h=1, \ldots, s$
$a_{p, i}^{h}$	(3.1)	$p(h-1)$	$h=2, \ldots, s$
v_{p}^{h}	(3.7)	p	$h=2, \ldots, s$

Table 3. The complexity of algorithm A_{3}.

Coefficients to be computed	Used relation	Number of multiplications	Range of indices
$a_{n, n}^{1}$	(3.4)	n	$n=1, \ldots, p$
$a_{n, i}^{1}$	(3.5)	$n-1$	$n=1, \ldots, p$
v_{n}^{1}	(3.6)	2	$n=1, \ldots, p$
$a_{p, i}^{h}$	(3.8)	$2(p-1)$	$h=2, \ldots, s$
v_{p}^{h}	(3.9)	3	$h=2, \ldots, s$
$a_{p, p}^{h}$	(3.4)	p	$h=2, \ldots, s$

The numerical complexity of the next method $\left(A_{4}\right)$ is summarized in Table 4. Its total complexity is

$$
N_{4}=(p+s-1)^{2}+2(p+s-1)+\sum_{h=2}^{s} \sum_{n=p}^{p+s-h}(n+2)
$$

Since

$$
\sum_{h=2}^{s} \sum_{n=p}^{p+s-h}(n+2)=\frac{1}{6}\left(s^{3}+3 p s^{2}+3 s^{2}-3 p s-4 s\right)
$$

we have

$$
N_{4}=p^{2}+\frac{1}{2} p s(s+3)+\frac{1}{6}(s-1)\left(s^{2}+10 s+6\right)
$$

However, algorithm A_{4} is still less effective than A_{3}, since for every $s \geq 2$,

$$
N_{4}-N_{3}=(s-1)\left[\frac{1}{2} p(s-2)+\frac{1}{6} s(s+10)\right]>0 .
$$

Table 4. The complexity of algorithm A_{4}.

Coefficients to be computed	Used relation	Number of multiplications	Range of indices
$a_{n, n}^{1}$	(3.4)	n	$n=1, \ldots, p+s-1$
$a_{n, i}^{1}$	(3.5)	$n-1$	$n=1, \ldots, p+s-1$
v_{n}^{1}	(3.6)	2	$n=1, \ldots, p+s-1$
$a_{n, i}^{h}$	(3.2)	n	$n=p, \ldots, p+s-h, h=2, \ldots, s$
v_{n}^{h}	(3.3)	2	$n=p, \ldots, p+s-h, h=2, \ldots, s$

Table 5. The complexity of algorithm A_{5}.

Coefficients to be computed	Used relation	Number of multiplications	Range of indices
$a_{n, n}^{1}$	(3.4)	n	$n=1, \ldots, p$
$a_{n, i}^{1}$	(3.5)	$n-1$	$n=1, \ldots, p$
v_{n}^{1}	(3.6)	2	$n=1, \ldots, p$
$P_{1, i-1} X_{i}$		$\sum_{i=1}^{p}(i-1)$	
c_{i}^{h}	(3.12)	$\sum_{i=1}^{p} i$	$h=2, \ldots, s$
v_{p}^{h}	(3.11)	$2 p$	$h=2, \ldots, s$

The number of operations made when using A_{5} is shown in Table 5.
The total complexity of this procedure is

$$
N_{5}=p^{2}\left(\frac{s}{2}+1\right)+p\left(\frac{5 s}{2}-1\right) .
$$

Since for every $p \geq 2$

$$
N_{5}-N_{3}=\frac{s}{2}(p-2)(p+1)+1>0
$$

A_{3} is still the most efficient method among those we mentioned.
The number of multiplications made during the application of the innovations algorithm is summarized in Table 6. It is important to realize that coefficients $\theta_{n, n-k}$ and errors v_{n}^{h} do not need to be computed for all values of their indices [see (2.7) and (2.10), the lower bound is h, not 1].

Table 6. The complexity of innovations algorithm.

Coefficients to be computed	Used relation	Number of multiplications	Range of indices
$\theta_{n, n-k}$	(2.8)	$2 k+1$	$k=0, \ldots, \min (p, n)-1$,
			$n=1, \ldots, p+s-1$
v_{n}	(2.9)	$2 n$	$n=1, \ldots, p-1$
$P_{1, i-1} X_{i}$		$\sum_{i=1}^{p}(i-1)$	
v_{p}^{h}	(2.10)	$2 p$	$h=1, \ldots, s$

The total complexity of the innovations algorithm is equal to

$$
\begin{aligned}
N_{I} & =\sum_{n=1}^{p+s-1} \sum_{k=0}^{\min (p, n)-1}(2 k+1)+\sum_{n=1}^{p-1} 2 n+\frac{p}{2}(p-1)+2 p s \\
& =\frac{1}{3} p^{3}+p^{2}(s+1)+p\left(2 s-\frac{4}{3}\right)
\end{aligned}
$$

When deducing the complexity of the Levinson algorithm, it is essential to realize that the constants C_{k}^{M} (for any k, M) have to be calculated only once, since their values are identical for any step h. It results from the fact that they depend only on the elements of the matrix Γ which does not change when h differs. The total complexity of the method is summarized in Table 7.

Table 7. The complexity of Levinson algorithm.

Coefficients to be computed	Used relation	Number of multiplications	Range of indices
C_{0}^{0}	(2.4)	1	
C_{0}^{M}	(2.5)	$2 M+1$	$M=1, \ldots, p-1$
C_{k}^{M}	(2.6)	1	$k=1, \ldots, M, M=1, \ldots, p-1$
a_{0}^{0}	(2.1)	1	$h=1, \ldots, s$
a_{M}^{M}	(2.2)	$2 M+1$	$M=1, \ldots, p, h=1, \ldots, s$
a_{k}^{M}	(2.3)	1	$k=0, \ldots, M-1, M=1, \ldots, p$,
			$h=1, \ldots, s$
v_{p}^{h}	(3.7)	p	$h=1, \ldots, s$

The total complexity of the algorithm is equal to

$$
N_{L}=\frac{3}{2} p^{2}(s+1)+\frac{1}{2} p(7 s-1)+s
$$

Comparing innovations and Levinson algorithm with the so far best method A_{3} we get

$$
N_{I}-N_{3}=\frac{1}{3} p^{3}+p\left[s(p-1)-\frac{1}{3}\right]-s+1>0
$$

for every $p \geq 2$ and

$$
N_{L}-N_{3}=\frac{1}{2} p^{2}(3 s-1)+\frac{1}{2} p s+1>0
$$

respectively.
We come to a conclusion that the algorithm denoted A_{3} is the most effective among the methods described. On the contrary, the highest number of operations has to be done when applying the innovations algorithm. It is partially caused by its generality. As we noted above, it can be used when predicting in non-stationary time series.

Table 8. The complexity of the algorithms for $p=50$.

	Maximum step						
Algorithm	1	2	3	5	7	10	
A_{1}	2600	5200	7800	13000	18200	26000	
A_{2}	2598	2801	3056	3722	4596	6297	
A_{3}	2600	2751	2902	3204	3506	3959	
A_{4}	2600	2755	2965	3544	4375	6059	
A_{5}	3825	5200	6575	9325	12075	16200	
Innovations	46800	49603	52511	58650	65233	75975	
Levinson	7651	11577	15503	23355	31207	42985	

To make a better idea about theoretical complexity of described methods, we summarize the results for values $p=50$ and $p=200$ in Tables 8 and 9. It is obvious that the difference between the most efficient method A_{3} and the classical algorithms is really large.

For the practical application of described methods we chose a series from [2] (p. 525, series A, 11th -60 th observation), which was identified as ARMA $(1,1)$ with parameters $\varphi_{1}=0,92, \vartheta_{1}=-0,58$ and $\sigma^{2}=0,097$. Solving the Yule-Walker system, we get

$$
\gamma(k)= \begin{cases}0,17 & \text { for } k=0 \\ 0,1 \times 0,92^{k-1} & \text { for } k \geq 1\end{cases}
$$

Numerical results are resumed in Table 10.

Table 9. The complexity of the algorithms for $p=200$.

	Maximum step					
Algorithm	1	3	5	10	20	
A_{1}	40400	121200	202000	404000	808000	
A_{2}	40398	42206	44822	54897	90197	
A_{3}	40400	41602	42804	45809	51819	
A_{4}	40400	41815	44054	53309	87919	
A_{5}	60300	101300	142300	244800	449800	
Innovations	2747200	2830011	2914450	3132775	3601250	
Levinson	120601	242003	363405	666910	1273920	

Looking at Tables 8 and 10, we find out that the real and theoretical complexities of the algorithms are almost directly proportional. Furthermore, the computer used for testing (processor Intel Pentium $4,1.8 \mathrm{GHz}$, operational memory 256 MB , programmed in Borland Pascal) was able to make approximately 1.5 to 2 million operations per second. Hence, if we do not have to compute thousands or more predictions, all algorithms give the desired results in real time.

Table 10. Real time complexity of the algorithms for $p=50$ in milliseconds.

	Maximum step					
Algorithm	1	2	3	5	7	10
A_{1}	1,60	3,24	4,83	8,07	11,26	16,09
A_{2}	1,65	1,76	1,92	2,37	2,92	3,96
A_{3}	1,59	1,65	1,76	1,87	1,98	2,19
A_{4}	1,64	1,70	1,86	2,25	2,86	3,96
A_{5}	2,03	2,91	3,79	5,49	7,14	9,45
Innovations	23,60	24,70	26,30	29,10	32,40	37,30
Levinson	4,61	7,03	9,39	14,28	19,17	26,42
Direct method	142,30	143,40	145,60	148,30	151,10	155,50

During computations another advantage of algorithm A_{3} appeared, namely the numerical stability. While the results obtained by other methods showed some inaccuracies, results given by A_{3} were quite precise. It could be caused by lower number of divisions and operations overall.

REFERENCES

[1] P. Bondon: Recursive relations for multistep prediction of a stationary time series. J. Time Ser. Anal. 22 (2001), 399-410.
[2] G.E.P. Box and G. M. Jenkins: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco 1970.
[3] P. J. Brockwell and R. Dahlhaus: Generalized Levinson-Durbin and Burg algorithms. J. Econometrics 118 (2004), 129-149.
[4] P. J. Brockwell and R. A. Davis: Time Series: Theory and Methods. Second edition. Springer, New York 1991.
[5] N. Levinson: The Wiener RMS (root mean square) error criterion in filter design and prediction. J. Math. Phys. 25 (1946), 261-278.

Pavel Ranocha, Charles University, Faculty of Mathematics and Physics, Department of Probability and Mathematical Statistics, Sokolovská 83, 18675 Praha 8. Czech Republic. e-mail: ranocha@karlin.mff.cuni.cz

