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A FEEDFORWARD COMPENSATION SCHEME 
FOR PERFECT DECOUPLING 
OF MEASURABLE INPUT FUNCTIONS 

GIOVANNI MARRO AND LORENZO NTOGRAMATZIDIS 

In this paper the exact decoupling problem of signals that are accessible for measurement 
is investigated. Exploiting the tools and the procedures of the geometric approach, the 
structure of a feedforward compensator is derived that, cascaded to a linear dynamical 
system and taking the measurable signal as input, provides the control law that solves the 
decoupling problem and ensures the internal stability of the overall system. 

Keywords: geometric control theory, disturbance decoupling, measurable input functions, 
model matching, unknown input observation 
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1. INTRODUCTION 

In recent years, much attention has been devoted to the localization and rejection 
of input functions, which can be either disturbances or references. Necessary and 
sufficient conditions for the solvability of the perfect decoupling of inaccessible signals 
by state-feedback with stability were first presented by Basile and Marro in [2] and 
proved by Schumacher in [9]. These conditions involve the relevant concept of self-
bounded controlled invariance, that has two important advantages. On the one 
hand, it enables these conditions to be expressed in a simple and concise form. On 
the other, self-bounded controlled invariant subspaces involve the minimum number 
of fixed poles. 

The measurable signal decoupling problem (MSDP) by state-feedback and alge
braic feedforward was first presented by Bhattacharyya in [5] in strict structural 
terms, and then extended by Basile, Marro and Piazzi in [4] in order to ensure in
ternal stability by adding a suitable stabilizability condition, expressed in terms of 
self-bounded controlled invariant subspaces. Hence, a pair of necessary and sufficient 
conditions are obtained, that directly extend the ones concerning inaccessible input 
functions. 

In this paper, a full feedforward compensation scheme is proposed for the solution 
of the MSDP. In fact, if the signal to be localized is accessible for measurement and 
if the geometric conditions for its rejection are satisfied, perfect decoupling can 
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be achieved by means of a suitable feedforward unit, that also guarantees internal 
stability of the overall system. Hence, all the free poles of the internally stabilizable 
controlled invariant subspace on which the trajectory lies are properly chosen in the 
design of the feedforward unit, and the concept of self-boundedness is used to derive 
a compensator of minimum dimension. 

The procedure presented is based on a detailed analysis of the internal free and 
fixed eigenstructure of a generic controlled invariant subspace. This approach is 
alternative to that presented in [3, p. 217], where the assignment of the internal 
and external eigenvalues of a controlled invariant subspace is carried out through a 
change of coordinates in the state and input space. Conversely, the method herein 
presented is particularly convenient for computational purposes. In fact, it can be 
easily exploited to derive new and efficient algorithms for the assignment of the free 
internal and external eigenvalues of a controlled invariant subspace by means of a 
state-feedback, as well as an alternative way to compute the invariant zeros of a 
linear system. 

Furthermore, in recent^years it has been pointed out that different tracking and 
filtering problems can be recast as measurable signal decoupling problems. For 
example, it is an easily established fact that the unknown input observation problem 
is exactly dual to the MSDP (see to this purpose [7] and references therein). Hence, 
the structure of the feedforward unit herein presented can be dualized so as to 
obtain the matrices of an observer whose input is the sole informative output of 
the given system and whose output is an estimation of a linear combination of the 
state variables of the system, which is exact if the geometric conditions are satisfied. 
These are in their turn dual to the ones presented in [4]. Moreover, in [8] it has 
been shown that the feedforward model matching problem can be reformulated as 
an extended MSDP. Hence, the signal to be decoupled is, in this case, a tracking 
reference. 

The paper is organized as follows: in the second section the statement of the 
problem, its geometric solvability conditions and the motivations are presented, while 
the third section deals with the assignment of the free poles of a generic controlled 
invariant subspace by state-feedback. This is the preliminary result for the fourth 
section, where the main theorem is presented, which provides a way of deriving the 
matrices of the feedforward compensator if the conditions of exact solvability are met. 
In the fifth section, these results are extended to the case of non-purely dynamical 
systems. The last section presents all the steps for the design of the feedforward 
unit as an algorithm, that can be used as a trace for software implementation. 

Nota t ion . Throughout this paper, the symbol Rnxm denotes the space o f n x m 
real matrices; matrices and linear maps are denoted by slanted capitals. The image 
and the null-space of matrix A are denoted by im A and ker A, whereas AT and A+ 
denote the transpose and the Moore-Penrose pseudo-inverse of A respectively. The 
symbol In stands for the nxn identity matrix, while 0n denotes the origin of the 
vector space E n . 
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2. STATEMENT OF THE PROBLEM 

Consider a linear, time-invariant continuous-time system E, described by 

f x(t) = A x(t) + B u(t) + H d(t) x(0) = 0 

\ y(t) = Cx(t) ( 1 ) 

where, for all t > 0, x(t) G En denotes the state, u(t) G Em the control input, d(t) G R8 

a measurable input signal, y(t) G Rp the output. Matrix A G Kn x n is assumed to be 
stable1. Without loss of generality, assume that matrices B G E n x m and H G Enxs 

have linearly independent columns and C eWxn has linearly independent rows. 
The measurable signal decoupling problem (MSDP) herein considered is stated 

as follows. 

Prob lem 1. Find, if possible, a feasible control law u|[0i+oo) ensuring 

y(t) = 0 for all * > 0 (2) 

for any piecewise continuous and bounded d\ [o,+oo) a n d such that the state-trajectory 
is bounded. 

The same problem can also be formulated for a discrete-time system 

j x(k + 1) = A x(k) + B u(k) + H d(k) x(0) = 0 

{ y(k) = Cx(k). 

It is well-known (see for example [3, p. 212]) that the necessary and sufficient condi
tions for Problem 1 to be solvable can be expressed in geometric terms as 

(CI) imH CV*+\mB 

(C2) Vm is internally stabilizable 

where V* :=maxV(A,imi?,kerC) denotes the largest (A, i?)-controlled invariant 
subspace contained in kerC, and Vm:= V* n min5(-4,kerC,imB + imH) is the 
smallest (A, ^-controlled invariant subspace self-bounded with respect to kerC 
and containing im H. 

The structural condition (CI) was first presented in [5], and then extended in [4] 
to include the stability condition (C2), stated in terms of self-bounded controlled 
invariant subspaces. 

The aim of this paper is that of finding the exact structure of a feedforward 
dynamical unit whose input is d and whose output is the control input u that solves 
Problem 1 as shown in Figure 1. in terms of a quadruple of matrices (Ac, Bc, Cc, Dc). 

Notice that Problem 1 can be reformulated as follows. 
^ o t e that this condition is necessary as long as a pure feedforward solution is sought. However, 

it can be easily relaxed to the stabilizability of the pair (A,B). In fact, in this case, a preliminary 
stabilizing state-feedback can be performed, and what follows will be applied to the system thus 
obtained. 
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Fig. 1. Feedforward measurable signal decoupling scheme. 

Problem 2. Consider Figure 1, and let conditions (CI) and (C2) be satisfied. I 
Find an LTI compensator Sc such that (2) holds, and such that the overall system | 
is stable. ' 

3. SOME PRELIMINARY RESULTS 

We begin by presenting an algorithm that, for a given /i-dimensional (.A, £>)-controlled[ 
invariant subspace V, enables a matrix F £ R n x m to be found such that V is ! 
(A-f-BF)-invariant, while assigning all the free poles, i.e., all the internal eigenval
ues of Tlv, the reachable subspace on V, defined as the minimum (A + BF)-invariant 
subspace containing V n i m i ? (see [3, p. 216] and [10, p. 84]). 

Consider a basis matrix V of the controlled invariant subspace V. It is well-known 
that two matrices X eRhxh and UeRmxh exist such that 

AV = V X + BU (3) 

(see [3, p. 207]). By definition of controlled invariance 

AVCV + imB 

(see [3, p. 204]). As a result, it is found that A V C im [ V B ]. Hence, the set of 
solutions of (3) can be parametrized as 

X 
U 

= [V B]+ AV + KФ (4) 

where K is a basis matrix of ker [ V B ], whose dimension is denoted by g, and $ 
is an arbitrary g x h matrix. Now, notice that the following identities are equivalent: 

1. VnimJB = 0 n 

2. ker[K B] = 0n+m 

3. Kv = 0 n . 

Therefore, if 7£y is zero, then the pair of matrices (X, U) satisfying (3) is unique. 
Once two matrices X and U satisfying (3) are determined with (4), a matrix F such 
that U = — FV can be computed. Hence equation (3) yields the identity 

(A + BF)V = VX (5) 
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which points out that the eigenvalues of X are the poles of V. If 7£y is not zero, 
then X and U can be expressed in a form that enables a matrix F to be derived, 
thus assigning all the free poles of V. 

To this purpose, consider a basis matrix V = [ Rv Vc ] of V adapted to 7£y, 
i. e., such that Rv is a basis matrix of 7£y; denote by r the dimension of 7£y. With 
respect to this basis, the matrices in (4) can be partitioned as 

X\\ 
X2\ 
U\ 

X\2 
X22 

u2 

= [RV Vc B]+ A[RV Vc] + 
K\ 
K2 

K3 

[ Фi Ф2 ] (6) 

with Xn G l r x r , X21 € R{h " r ) x r , Ui G Em x r , Kx e R r x ^ $ i G » x r . 
It is easy to show that K2=z0: in fact, if one chooses $ = 0, the pair (X, U) 

solving (3) is such that X21 = 0 since, if F is such that U = — F V, from 

(A + BF) [Rv VC] = [RV Vc] 
Xn 

X21 

x12 
x22 

(7) 

it follows that X2i = 0, since 7£y is (A + J5F)-invariant. Any other choice of $ cannot 
modify X in a way that X2\ differs from zero because, since 7£y is (A -F BF)-invariant 
for any choice of $, then X2i is zero for any choice of $. Owing to the arbitrariness 
of H this is possible only if K2 = 0. 

Since X2i = 0, from (7) it follows that the eigenvalues of Xn are the internal 
eigenvalues of 7£y, while those of X22 are the fixed poles of V. 

By suitably partitioning [Rv Vc B]+ A[RV Vc] likewise, equation (6) can be 
written as 

Xn x12 —11 —12 K\ 
0 x22 = 0 н22 + 0 
U\ u2 

Yl Y2 K3 

[Фl ф 2 ] . (8) 

Note that the eigenvalues of E22 cannot be modified by any choice of $. The pair 
(E11 j Ki) is controllable, since the internal eigenvalues of 7£y are all arbitrarily 
assignable. If our aim is that of assigning the free poles of V, then 3>2 can be taken 
equal to zero, because its value does not modify the internal eigenstructure of 7£y. 

Matrix F can be computed with the relation 

ғ = -u(V v)~lv (9) 

This choice, in fact, ensures that U = — FV, and yields an important property: with 
respect to a basis adapted to V through its basis matrix V, F assumes the structure 

F=[-U O]. (10) 

Hence, F does not modify any of the external eigenvalues of V. 

4. MAIN RESULT 

In this section, the geometric approach is applied to derive the linear dynamical 
system S c that solves the decoupling problem with internal stability. To this purpose, 
we introduce three important lemmas. 



80 G. MARRO AND L. NTOGRAMATZIDIS 

Lemma 1, The subspace Vm is an (A, Z?)-controlled invariant subspace contained 
in ker C. 

Lemma 2. Hv*, the reachable set on V*, is a subspace of V77 

Lemma 3. Let im H C V* -f- im B. Then 

imH C Vm + imB. ( Ц ) 

These results are proved in [1] and [3]. Inclusion (11) ensures that two matrices | 
n i G Rh x s and n 2 E » m x s exist such that | 

H = VU1+BU2 

where V is a basis matrix of Vm, whose dimension is denoted by h. The matrices i 
n i and II2 project the subspace imH on Vm and i m B respectively, and by virtue | 
of (11), they can be computed by | 

п 2 
= [V B]+ H + KЪ (12) 

where K G E ^ + m)x9 is a basis matrix of the subspace ker [ V B ], whose dimen
sion is denoted by g, and \l> is an arbitrary g x s matrix. 

Let Hv := V II x and HB ~BU2. It follows that 

Hd(t)=Hvd(t)+HBd(t) V * > 0 

with Hy d(t) G Vm and HB d(t) G im B for all t > 0. Since the pair of projecting 
matrices (111, II2) computed by means of (12) is parametrized on ker [ V B ], the 
projection of d(t) on Vm and im B is not unique in general, unless Vm fl imF?=-0n, 
i.e., unless the system is left-invertible. 

The following theorem provides the matrices of the dynamical compensator E c 

in Figure 1 that solves the decoupling problem. 

Theorem. Let A be stable and suppose that conditions (C1)-(C2) hold; let V 
be a basis matrix of Vm adapted to 7£v*> the reachable subspace on V*. Let h 
be the dimension of Vm, and X G Rh x h and U G Em x h be matrices satisfying (3) 
referred to Vm and such that, with F defined as in (9), Vm is an internally stable 
(A + jf3F)-invariant subspace. 

Let (III, II2) be the projecting pair of imi I on Vm and iml? respectively. A 
dynamical compensator Ec, whose input is d and whose output is u solving Problem 2 
is described by the quadruple (Ac, Bc, Cc, Dc) = (X, III, —C7, — II2). If Vm = 0n it 
reduces to an algebraic unit Dc= — B+ H. 
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P r o o f . First consider the discrete-time case. Denoting by z the state of Ec, the 
equations of the compensator are 

f z(k + l)=X z(k) + Ui d(k) z(0) = 0 

\ u(k) = -Uz(k)-Il2d(k). 

By virtue of Lemma 2, a basis matrix of Vm adapted to Rv* exists. The choice of 
matrix F is such that the output equation of the compensator is 

u(k) = FVz(k)-Il2d(k) 

which, once substituted in the state equation of E, leads to 

x(k + 1) = Ax(k) + BFVz(k) + VIII d(k). (13) 

The state functions x(k) and z(k) are linked by the relation 

x(i) = Vz(i) V i > 0 (14) 

that can be proved by induction. Equation (14) holds for i = 0 since the initial 
conditions of both E and Ec are supposed to be null. Suppose that (14) holds for 
i = k; then, from (13) 

x(k + l) = AVz(k) + BFVz(k) + VU.xd(k) 

= V X z(k) + VUxd(k) = V z(k + 1) 

by virtue of (5). As a consequence, equation 

x(k + 1) = (A + BF) x(k) + VUt d(k) 

describes a motion on IR" which is all contained in Vm, hence invisible on the output. 
If Vm = 0n , the control law 

u(k) = -B+ H d(k) 

cancels the part of the disturbance on im B. 
Now consider the continuous-time case. The dynamics of Ec are described by 

f z(t) = X z(t) + III d(t) z(0) = 0 

\ u(t) = -Uz(t)-U2d(t). 

Then u(t) = FVz(t)-Il2 d(t). This leads to 

x(t) = Ax(t) + BFVz(t) + VIli d(t). 

We prove that x(t) = V z(t) for each positive t if x(0) = 0. Let t be such that 
x(t) = Vz(t): 

x(t) = (A + BF)Vz(t) + Vn!d(t) 

= VXz(t) + VUi d(t) = Vz(t) 
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It follows that the whole state-trajectory lies on Vm. 
Both in the discrete and in the continuous time-domain, the closed-loop system 

with the compensator described by the quadruple (X, IIi, —U, — II2) has state ma
trix 

" A -BU 
0 X 

which is strictly stable. D 

Notice that the order of the feedforward unit E c is minimum. In fact, it is not 
necessary to reproduce the state components corresponding to (A + BF)^n/Vm in 
E c since they are not influenced by input d. 

Internal stabilizability of Vm is ensured if the plant is minimim-phase, since the 
internal fixed eigenvalues of Vm are part of those of V *. 
Observe that if the classical structural condition for decoupling of inaccessible signals 

i m H C V* 

holds, the compensator is purely dynamical, i. e. Dc = —II2 = 0. In fact, in this case, 
there is no need for a component of the control input u that cancels the projection 
of d on imB. 

5. NON STRICTLY PROPER SYSTEMS 

The procedures of the previous sections can be easily extended to systems charac
terized by an algebraic feedthrough between the output y and the inputs u and d 
(see for example [3], pp. 245-247). 

First, consider a discrete-time linear system E^ with null initial state 

J x(k + 1) = A x(k) + B u(k) + H d(k) 
\ y(k) = Cx(k)+Du(k) + Gd(k) 

where D G IF x m and G G W x s are such that the matrices [ BT DT ] and [ HT GT ] 
are full row-rank. 

It is possible to define a new variable z satisfying z(k + 1) = y(k) for all k, and 
consider it a state extension of E^: 

x{k + l) 
z(k+l) 

z(k) = C 

x(k) 
z(k) 

+ Bu(k)+ Hd(k) 

x(k) 
z(k) 

where 

A = 

C = [0 1, 

A O 
C O 

B 
D 

H 
H 
G 

(15) 
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The new variable z can be interpreted as the state of a unit delay connected at 
the output of T,d. Note that z(0)=y(-l) =0: the conditions and the standard 
procedures to solve the decoupling problem of a measurable signal can be applied 
to the extended system above since it is purely dynamical and characterized by null 
initial conditions, thus ensuring 

z(k)=0 V k > 0 

and, as a consequence, y(k) =0 for each k > 0. 

The same artifice can be adopted for the continuous-time system 

J x(t) = A x(t) + B u(t) + H d(t) x(0) = 0 

\ y(t) = Cx(t) + Du(t) + Gd(t). 

In this case define z(t) = y(t) as the state of an integrator stage connected in cascade 
at the output y. Since z is a primitive of H, it is continuous on [0, +oo): it follows that, 
since y(t) = 0 for all t < 0, it is also z(0) = 0. The extended system with null initial 
conditions thus obtained is of the kind of system (1). This allows the application of 
the conditions (CI) -(C2) and of the results of Theorem, thus ensuring y(t) = 0 for 
any t > 0. 

6. AN ALGORITHMIC PROCEDURE 

The results expounded in the previous sections are collected here as an algorithm 
for the calculation of the matrices of the feedforward unit that solves Problem 2. 

Step 1. If S is non purely dynamical, a state extension has to be performed as 
pointed out in Section 5, by re-defining matrices A,B,H and C according to 
(15). 

Step 2. If Vm differs from zero, a basis matrix V of Vm is computed, and the two 
conditions (CI) - (C2) are tested: if they are not satisfied, the algorithm stops. 

Step 3. A basis matrix of ker [V B] is computed; if that subspace is zero, then the 
matrices X and U such that (4) holds are directly determined by (5). 

Step 4. If on the contrary 7^y* differs from zero, the basis matrix of Vm can be 
chosen in a way that its first columns are a basis matrix of Tly*. The ma
trix [V B]+AV is then computed and, by defining the submatrices En and 
K\ as in (9), a matrix H can be derived that arbitrarily places the poles of 
Eii + K\H\, the internal assignable eigenvalues of Vm. Choosing H2 = 0, then 
X and U follow from (8). 

Step 5. Taking for example * =0 in (12), the matrices 111 and Il2 are determined. 

Step 6. If Vm differs from zero, then the quadruple of matrices (Ac, Bc1 Cc, Dc) is 
obtained by simply assigning them the values of (X, IIi, -U, — II2); if, on the 
contrary, Vm -=0n, then the feedforward compensator reduces to an algebraic 
unit with a gain B+ H. 
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7. CONCLUDING REMARKS 

It has been shown that the geometric approach provides a simple way to derive a 
linear compensator that solves the measurable signal decoupling problem. The exact 
design of the feedforward unit for this problem can also be applied for the solution 
of another fundamental control problem, the unknown-input observation of a linear 
function of the state, which is the dual of the problem herein considered, as shown in 
[7], and the model matching problem, both feedforward and feedback, as considered 
in [8]. 

The theory is supported by simple software routines for MATLAB: see in particu
lar the functions ef f esta.m, gazero.mand hud.m, which can be freely downloadable 
with the toolbox ga at 
www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm. 

(Received April 5, 2004.) 
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