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E N T R O P Y O N E F F E C T A L G E B R A S 

W I T H T H E RIESZ D E C O M P O S I T I O N P R O P E R T Y I: 

B A S I C P R O P E R T I E S 

ANTONIO DI NOLA, ANATOLU DVURECENSKU, MAREK HYCKO AND 

CORRADO MANARA 

We define the entropy, lower and upper entropy, and the conditional entropy of a dy­
namical system consisting of an effect algebra with the Riesz decomposition property, a 
state, and a transformation. Such effect algebras allow many refinements of two partitions. 
We present the basic properties of these entropies and these notions are illustrated by many 
examples. Entropy on MV-algebras is postponed to Part II. 
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1. INTRODUCTION 

Suppose that (ft,c>, P) is a probability space. We recall that the entropy of a mea­
surable partition A = {.Ai,... , An} of $1 is the number 

H(Л) = -J2P(AІ)ЫP(AІ)). 
i=l 

If T : ft —> ft is a measure preserving transformation, and if VIS)1 T~l(A) denotes 
the common refinement of the partitions A,T~1(A),... , T~(n - 1)(.4), then there is 
a finite limit 

h(A, T) := lim - I I f W T~\A) ) . 
n n \Zo J 

The Kolmogorov-Sinai entropy is the expression 

h(T) = sup{/i(*4, T) : A is a measurable partition of fi}. 

The Kolmogorov-Sinai entropy was introduced to distinguish two dynamical sys­
tems in the classical probability theory: Every two isomorphic dynamical systems 
have the same entropy (see e.g. [19, Sec. 10]). 
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This notion was generalized in many directions ([12, 15,' 16, 18, 19], etc). A great 
problem appears when we take into account a system of fuzzy sets instead of a a-
algebra of sets. The crucial notion of entropy is a finite partition and the refinement 
of two or more partitions. In the classical probability theory the common refinement 
of A = {-4i,... ,Am} and B = {Bu... , Bn} is simply C = {A{ n Bj : 1 < i < 
m, 1 < j < n}. This way cannot be used in more general structures containing 
fuzzy sets or effect algebras or MV-algebras. For example, if we take two fuzzy 
(crisp) sets XA and XB, then for C = AC\B we have at least three same expressions 
Xc = XA ' XB = min{xA,XB} = maxfoA + XB - 1,0}. For non-crisp fuzzy sets 
we can obtain three different fuzzy sets. We recall that the main idea of entropy 
suitable for these more general cases of fuzzy sets allowing many joint partitions was 
for the first time suggested in [12]. 

In [19, Sec. 10] the authors defined the refinement simply as the product of fuzzy 
sets assuming that the system of fuzzy sets is closed under natural product, and 
in [18, Sec. 4.2] it is defined on MV-algebras with product. In such a case, the 
refinement is uniquely defined and is unique.. Riecan in [17] defined the entropy 
in MV-algebras using the well-known fact that they have the Riesz decomposition 
property (RDP) which is well-known in theory of ^-groups. (RDP) is a kind of 
distributivity of + and A. For this case we have more, sometimes infinitely many 
refinements, and Riecan gave only the basic properties of entropy. 

In the present paper, we generalize the notion of entropy for situations when 
our probability space is an effect algebra. Effect algebras were introduced by Foulis 
and Bennett [8] (see also [11]) and they play a very important role in the theory 
of quantum structures. A crucial class of effect algebras are those having (RDP) 
(they admit a po-group representation [20]). A special class of effect algebras are 
MV-algebras introduced by Chang [1]. 

The paper is divided into two parts. In the first one, we introduce effect algebras 
and partitions (Section 2). The entropy, lower and upper entropies of partitions 
with respect to a state (= probability measure) are studied in Section 3. Section 4 
is dedicated to entropy of dynamical systems connected with effect algebras. In 
Section 5, we present many examples calculating their entropies. Boolean partitions 
roughly speaking are connected with crisp fuzzy sets, Section 6. The elements of 
conditional entropies are presented in Section 7. Due to many possible refinements, 
the known results cannot be always generalized to our case. 

The second part deals mainly with the state space of effect algebras and entropies 
on MV-algebras. Some results known only for product MV-algebras from [18] are 
generalized to all a-complete MV-algebras without any product, simultaneously we 
present some solution to open Problem 7 from [18] and extend it also for effect 
algebras with (RDP) asking how we can proceed with entropy not assuming the 
product on the MV-algebra. 

2. PARTITIONS OF EFFECT ALGEBRAS 

The probability space in our situation will be modelled by effect algebras. 
An effect algebra ([8]) is a partial algebra E = (E\ +, 0,1) with a partially defined 



Entropy on Effect Algebras with (RDP) I: Basic Properties 145 

operation + and two constant elements 0 and 1 such that, for all a,b,ce E, 

(i) a + b is defined in E iff b + a is defined, and in such the case a + b = b + a; 

(ii) a + b,(a + b) + c are defined iff b + c and a+(b + c) are defined, and in such 
the case (a + b) + c = a + (b + c); 

(iii) for any a G E, there exists a unique element a' € E such that a + a' = 1; 

(iv) if a + 1 is defined in E, then a = 0. 

If we define a < b iff there exists an element c G E such that a + c = b, then < is 
a partial ordering, and we write c := b - a. It is clear that a' = 1 — a for any a e E. 

For example, if (G, u) is an Abelian unital po-group with a strong unit u, l and 
if T(G,u) := {g G G : 0 < # < u) is endowed with the restriction of the group 
addition +, then (T(G,u); +,0,u) is an effect algebra. 

We say that an effect algebra E satisfies (i) the Riesz interpolation property, 
(RIP) for short, if, for all x\,x2,y\,y2 in E, X{ < yj for all i, j implies there exists 
an element z G E such that x% < z < yj for all i,j; (ii) the Riesz decomposition 
property, (RDP) for short, if a; < y\ + y2 implies that there exist two elements 
x\,x2 G E with x\ < 2/1 and x2 < y2 such that x = x\ + x2. 

We recall that (1) if E is a lattice, then E has trivially (RIP); the converse is not 
true. (2) E has (RDP) iff, [7, Lem 1.7.5], x\ + x2 = y\ + y2 implies there exist four 
elements C\\,c\2,c21,c22 G E such that x\ = cu +c12, x2 = c2l +c22, y\ — c\\ +c2l, 
and 7/2 = C12 + C22- (3) (RDP) implies (RIP), but the converse is not true (e.g. if 
E = L(H), the system of all closed subspaces of a Hilbert space H, then E is a 
complete lattice but without (RDP)). On the other hand, every finite poset with 
(RIP) is a lattice. 

Ravindran [20] ([7, Thm. 1.7.17]) proved the following important result which is 
analogical to Mundici's representation of MV-algebras [14]. 

Theorem 2 .1 . Let E be an effect algebra with the Riesz decomposition property. 
Then there exists a unital interpolation group (G, u) with a strong unit u such that 
T(G,u) is isomorphic to E. 

Moreover, if 0* is an isomorphism of the effect algebra E with (RDP) onto F(G, u) 
and if </>: E -> H is a mapping preserving +, and H an Abelian group, then there 
is a group homomorphism 7 : G -+ H such that 0 = 7 0 $ * . This 7 is unique. 

In addition, there is a categorical equivalence, F, between the category of unital 
po-groups with interpolation and the category of effect algebras with (RDP) given 
by T : (G,u) K> T(G,U), see [6]. 

A most important example of effect algebras with (RDP) is the class of MV-
algebra introduced by Chang [1]. 

Let M = (M;®* ,0,1) (0 ^ 1) be an MV-algebra, that is an algebra of type 
(2,1,0,0) such that, for all a,b,c€ M, we have 

xAn element u G O+ is said to be a strong unit for a po-group C7, if given an element g G G, 
there is an integer n > 1 such that -nu <g<nu\ the couple (C,u) is said to be unital po-group. 
If (RIP) holds for elements of G + , G is said to be an interpolation group. 
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(i) a © b = b © a; 

(ii) (a®b)®c = a®(b®c); 

(hi) a © 0 = a; 

(iv) a © 1 = 1; 

(v) (a*)* = a; 

(vi) affia* = 1; 

(vii) 0* = 1; 

(viii) (a* © b)* © b = (a © &*)* © a. 

We note that one of the most important examples of MV-algebras is the MV-
algebra [0,1] = T(M, 1). 

We recall that according to the famous result of Mundici [14], every MV-algebra 
M = T(G, u), where (G, u) is an *?-group with strong unit u, and a © b = (a + b) A u, 
a* = u — a, 1 = u. 

Two elements a and & of M are said to be summable if a < &*, and in such a case, 
we set a + b = a © b. It is possible to show that (a + b) + c = a + (b + c) whenever 
one of the sides exists (see e.g. [7, 11]). Then (M;+,0 ,1) is an effect algebra with 
(RDP), [7]. It is possible to show that an effect algebra E can be converted into an 
MV-algebra iff E is a lattice satisfying (RDP). 

Let E be an effect algebra. A finite sequence A = {a*}J^ of elements of E is a 
partition of unity 1 if a\ + h am = 1. 

A partition B = {bj}™=l is a refinement of a partition A = {ai}£L1?
 a n d w e write 

4̂ -< B, if for any element a* (i = 1 , . . . , ra) there is a subset a* C { 1 , . . . , n} such 
that ai = ]£--Ga. &j> Ui l i a* = { 1 , . . . , n} and a» n a* = 0 for i ^ fc. 

Let .4 = (ai}m
=1 and 5 = {bj}™=1 be two partitions of 1 in an effect algebra E with 

(RDP). Due to (RDP), there is a joint refinement C = {cij : 1 < i < m, 1 < j < n} 
of { a ; } ^ and {6j}"=1 such that, for all 1 < i < m and all 1 < j < n, we have 

ai = Cii -.-•*• + Cim 

Oj = Cij H- * • * T - Cmj. 

Any such refinement C = {c^ : 1 < i < m, 1 < j < n} is said to be a /fo'esz 
refinement of { a i } ^ ! and {6j}^=1. 

Moreover, if E is a lattice (i. e., £7 is an MV-algebra), we may assume that 

(ci+ij + ••• + cmj) A (cij+i +••• + cin) = 0 (2.1) 

for all i < m and all j < n, and under this condition the Ci/s are uniquely determined 
(with respect to the given orders of elements in A and B). 

Let Ak = {a1-}^ for k = 1 , . . . ,n be partitions of unity in an effect algebra 
E with (RDP). Using the Riesz decomposition property, there is a refinement C = 
{ci!...in : 1 < ii < m i , . . . , 1 < i„ < m n } of all Ak's such that 

aj = X {̂c*--••*» : ** = J> 1 < ii < mi, . . . , 1 < in < mn} (2.2) 
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for 1 < j < n& and k = 1 , . . . ,n. This C is said to be a Riesz refinement of 
*4i, • • • , «̂ ln* 

We denote by Ref^(*4i,... , An) and Ref(.4i,... , An) the set of all Riesz refine­
ments and the set of all refinements of the partitions Ai,... ,Anj respectively. 

It is worth recalling that if E is a Boolean algebra, then a Riesz refinement 
of two partitions A = {ai}£i and B = {bj}n

=1 consists only of all intersections 
C = {ai A bj : 1 < i < m, 1 < j < n}, and is unique (see also Section 6). For a 
general case of effect algebras with (RDP) it can happen that Ref-ji(A,B) may have 
more elements (even infinitely many) as the following example shows. 

Example 2.2. Let A = (0.2,0.8) (A = (0.8,0.2)) and B = (0.3,0.7) be two 
partitions of 1 in the MV-algebra [0,1]. Then the partitions C = (0.2,0,0.1,0.7) and 
C = (0.3,0.5,0,0.2) give Riesz refinements of A, B and of A, B, respectively, such 
that C12 A C21 = 0 = C12 A C21 but C ^ C. 

3. ENTROPY 

The notion of a probability measure is replaced by a state for effect algebras. 
Let E be an effect algebra. A mapping s : E -» [0,1] is said to be a state if (i) 

s(a + b) = s(a) + s(b) whenever a + b is defined in E, and (ii) s(l) = 1. A state on 
MV-algebras was introduced in [2] and [14]. It is well-known [10, 7] that not every 
effect algebra possesses a state. However if E satisfies (RDP) and 0 ^ 1 , then E has 
at least one state [7], in particular, every non-degenerate MV-algebra (i.e., 0 7-= 1) 
has a state. 

We define a real-valued function (/>: [0,1] -> E+ by 

(*) = { ., , . —xlogx if x e (0,11 
<Kx) = < 0 if x = 0. 

Then </> is a concave continuous function. It is clear that the function Yl7=i <rKx-) 
defined on [0, l ] n takes it maximum, logn, under the condition Yl7=iXi = 1 1n 

Xi = 1/n for i = 1 , . . . , n. ] 

Let 5 be a state on E. The entropy of the partition A = {ai}^ of 1 in the state 
s is the expression 

771 m 

H(A) := J2 ^ ( a i ) ) = - £ *(o<) log(s(a.))- (3.1) 
2 = 1 2 = 1 

Proposition 3.1. Let C G R e f ^ ^ i , . . . ,An). Then 

ni3x{H(Ai),.. • , H(An)} < H(C) < H(Ai) + • • • 4- H(An). (3.2) 

P r o o f . Let n = 2 and set ft = { 1 , . . . ,m} x { 1 , . . . , k}, S = 2 n , and let P 
be a probability measure on S defined by P({i, j}) = s(cij) for all i and j . Then 
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(tt,S,P) is a probability space which easily proves (3.2) due to entropy on the 
classical probability spaces. The general case can be obtained by induction. r-j 

We recall (1) that in view of Example 2.2, different Riesz refinements of { a i } ^ 
and {bj}"=l can give different values of its entropies. (2) Let ai = 1/m and bj = 
l/n. Then for their Riesz refinement Cij = l/(mn) we have H({cij}) = log run = 
H({ai}) + H({bj}). 

Proposi t ion 3.2. Let A -< B. Then 

H(A) < H(B). (3.3) 

P r o o f . Assume that A = {ai}£i and B = {bj}r-=l. Without loss of gener­
ality, we can assume that all c^'s from the definition of refinements satisfy ai = 
{ 1 , . . . , n i } , a 2 = {ni + 1 , . . . , n 2 } , . . . , a m = {nm_i + 1 , . . . , n m } where nm = n. 
We define a Riesz refinement C = {c^ : 1 < i < m, 1 < j < n} of A and B such that 

{? if j € a{ 

otherwise. 

Then by Proposition 3.1, we have H(A),H(B) < H(C). But it is clear that H(C) = 
H(B). D 

We now show that the right-hand inequality of (3.2) does not hold for any refine­
ment CofAi,... , A i , i.e., (3.2) holds only if C is a Riesz refinement of A\,... ,An. 

Example 3.3. If C is an arbitrary refinement of A and 23, then it can happen that 
H(C) > H(A) + H(B). 

Indeed, let M = [0,1] be the standard MV-algebra of the real interval [0,1]. Take 
two partitions A = { l / n , . . . , l/n} and B = {1/m,... , 1/m}, where n ,m > 1 are 
integers. For any integer k > 2, we define Ck = {l/(knm),... ,l/(knm)}. Then 
any Ck is not a Riesz refinement of A and B, and H(Ck) = \ogk + logn + logm > 
log n + log m = H(A) + H(B). 

In analogy with the classical case ([19]), for given partitions ^4i , . . . , An of unity 1, 
we define two pairs of expressions, H^(Ai V • • • V An) and H^(Ai V • • • V An), and 
H*(.4i V • • • V An) and H*(A\ V • • • V An), respectively, defined by 

fffWiV-VA) ":= mf{H(C):CeRefn(Au...,An)}, 

H^iV-Vi) := sup{H(C):CeRefn(Ai,... ,An}, 

HMi V • • • V An) := inf{H(C) : C e R e f ( A , . . . , A i ) } , 

i T ( * 4 i V . . . V . 4 n ) := s u p { i f ( C ) : C G R e f ( A , . . . M n ) } . 

In view of (3.2), H?(Ai V • • • V An) and H^(Ai V - V i ) are finite, 

m a x { # ( A ) , . - . , t f ( A i ) } < H?{AiV---VAn)<Hk(AiV--'VAn) 

< H{Ai) + ~- + H(An), (3.4) 
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.ff,(.4i V- • • V AO < H?{Ai V- •. \/An) but H*{AiV---VAn) can attain the infinite 
value +00, see Example 5.2. 

We recall that in view of Proposition 3.2, if A -< B, then 

H{A) <H?{AVB) = H{B). 

Proposition 3.4. Let Ai,... , An, B be partitions of unity in an effect algebra E 
with (RDP). Then 

H?{AiV>>-VAn) < ^ i V - V ^ V f i ) , 

P r o o f . Take C = {ch...inj} G Refn{Au... ,An,B). If c,-....^ := £jc*i»--:»ji 
then C = { c n - i j e R e f ^ ^ i , . . . , An}. Hence, H?{AX V • - • V-4„) < II(C) < H{C) 
which yields ^ ( A V • - • V An) < H?{Ai V • • • V An V B). 

In a similar way we prove the second inequality. r-j 

4. ENTROPY OF DYNAMICAL SYSTEMS 

A mapping T : B -> B is said to be a transformation of an effect algebra P7 if 
(i) T(a + b) = T(a) + T(6) whenever a + 6 is defined in £ , and (ii) T(l) = l.2 A 
transformation T is said to be preserving the state s (or s-preserving) if s{T{a)) = 
5(a) for any a € E. Let 8 be a state on an effect-algebra E. A triple {E, s, T) is said 
to be a dynamical system if T is a transformation of JS preserving the state 5. We 
recall that every effect algebra E with (RDP) has a state, and, for any state 5, there 
is an s-preserving transformation (e.g., the identity of E). In what follows, we will 
assume that T is ^-preserving. 

If A = {ai}^ is a partition of unity, so is T{A) := {Tfa)}^, and H{A) = 
H{T{A)). 

For any partition A of unity 1 and for any integer n > 1, we define 

Я ľ ( Л T ) т г 

Я ; ( Л T ) т г 

Щ(A,T) 

H*n(A,T) 

= H^L(AyT(A)V---VTn-1(A)), 

= Hn(AVT(A)V---VTn-l(A)), 

= H.(AVT(A)V •••VTn-1(A)), 

= H*(A\ZT(A)y---yTn~1(A)). 

In view of (3.2)-(3.3), we have, similarly as for MV-algebras in [17], 

0 < H{A) < H?{A,T) < H?{A,T)n < H*n{A,T)n < nH{A). (4.1) 

2 I f (n,«S,P.T) is a classical dynamical system, then the mapping T 1 : S -> S is our transfor­
mation. 
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Theorem 4.1. Let (E, s, T) be a dynamical system connected with an effect alge­
bra E with (RDP). For any partition A, there exist limits 

hf(A,T) :=\im ±H?(A,T)n, h*n(A,T) := lim ±H*n(A,T)n. 

P r o o f . First of all, we show that Hn+m(A,T)n < Hn(A,T)n + Hm(A,T)n 

holds for all positive integers n and m. 
Assume that the partition A = {ai}i=l. Let C be a Riesz refinement of partitions 

A,T(A),... ,Tn~l(A), and V be a Riesz refinement of A,T(A),... , Tm~l(A), re­
spectively. They consist of kn and km elements, respectively. Then Tn(V) is a Riesz 
refinement of T n ( ^ 4 ) , T n + 1 ( ^ ) , . . . , Tn+m~l(A). 

Let now £ be any Riesz refinement of C and Tn(V) consisting of knkm elements. 
Then £ y A,£ y T(A),... , £ y Tn+m~l(A) and, in addition, C is their Riesz 
refinement. By (3.2), we have 

Hn+m(A,T)n < H(£) < H(C) + H(Tn(V)) = H(C) + H(V). 

Since V\s arbitrary, Hn+m(A,T)n-H(V) < H(C), so that Hn+m(A,T)n-H(V) < 
Hn(A,T)n while C is a Riesz refinement of A,T(A),... ,Tn~l(A). By a similar 
argument we have H?+m(A,T)n - Hn(A,T)n < Hm(A,T)n. 

By a well known argument, if a sequence of non-negative numbers, {an}, has the 
property an+m <an + am, then there is a finite limit limn an/n. 

The second limit can be proved by analogous reasoning, we only stress that in 
view of H(£) < H(C) + H(V), we have H(£) < Hn(A,T)n + Hm(A,T)n. Q 

In analogy with Theorem 4.1, we can introduce also h*(A,T) as a limit of 
Hn(A,T) whenever it exists. 

The lower and upper entropy, ti^(T) and h\(T), of a dynamical system (E, s, T), 
where E satisfies (RDP), are defined as follows 

h?(T) := sup{hf(A, T) : A is a Riesz partition of E}, 

hn(T) := sup{hn(A,T) : A is a Riesz partition of E}. 

The notion of entropy of a dynamical system was introduced by Kolmogorov 
and Sinai. Their aim was to characterize isomorphic dynamical systems, and they 
proved: Two isomorphic dynamical systems have the same entropy. They showed 
that some Bernoulli schemes are not isomorphic. An analogical result can be proved 
also for effect algebras. 

We recall that two dynamical systems (Ei,si,Ti) and (E2,s2,T2) are isomorphic 
if there exists a bijective mapping -0 : Ei -+ E2 such that ip(a) + ip(b) = ip(c) iff 
a + b = c, V>(1) = 1, and s2(tp(a)) = sx(a) and T2(ip(a)) = ^(T^a)) hold for all 
ae Ex. 
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Theorem 4.2. If (£ i , s i ,T i ) and (E2,s2,T2) are isomorphic dynamical systems, 
where Ex and E2 have (RDP), then /i^(Ti) = hf(T2) and h*n(Tx) = h*n(T2). 

P r o o f . If A is a partition in Eu so is ip(A) in E2 and vice versa, and H(A) = 
H(il>(A)). If a refinement C G ^in(A,Ti(A),... ,Tn~l(A)), then a refinement 
</)(C) G Ref^(7/J(^),T2(7/)M)),... j T ^ ^ M ) ) ) and vice versa. Therefore, it is 
easy to prove that Hn(A,Tx)n = H?(iP(A),T2)n and consequently, ti*(A,Ti) = 
h?(ip(A),T2) and ti**(T{) = hf(T2). In a similar way we can prove the second 
equality. rj 

We recall that the equality hf(Tx) = ti*(T2) does not imply that two dynamical 
systems (Fri,8i,Ti) and (E2,s2,T2) are necessarily isomorphic as examples below 
show. 

5. EXAMPLES 

In the present section, we give some examples of dynamical systems and calculate 
their entropies. 

Example 5.1. Let Mk = {0, l/k,2/k,... , k/k} be a finite MV-algebra, k > 
1. Then Mk possesses a unique state 5 and a unique transformation T, namely 
s(l/k) = T(l/k) = 1/k. Then {1/k,... , 1/A;} is the finest refinement of unity in 
Mk. Therefore, 0 < Hn(A,T)n < Hn(A,T)n < Hn(A,T) < log A;, which implies 
0 = h?(A,T) = l im n H n (A ,T ) n / n < \imnH*(A,T)n/n < limn(logfc)/n = 0. So 
that hf(T) = h*n(T) = 0. 

Example 5.2. Let MQ = [0, ljflQ be the MV-algebra of all rational numbers in the 
real interval [0,1]. Then M Q possesses a unique state s and a unique transformation 
T, namely s(t) = T(t) = t for any t G M Q . 

Let Ak = {1/A;,... , 1/k} for any integer k > 1. Then Hn(Ah,T)n = sup{H(C) : 
C G R e f ^ ( A , T ( A ) , . . . ,Tn~l(Ak)} =nlogk and h*n(Ak,T) = logk. 

H*n(Ak,T) = sup{H(C) : C y Ak} > sup{H({l/(mfc)}) : m > 1} = sup{logm + 
log/:) : m > 1} = co. 

Let A = {U,... , tk} be an arbitrary partition in MQ. Then by (3.3), -fiT^AT) = 
inf{H(C) : C y A} = H(A), i.e., K(A,T) = 0. 

Define a partition V = {th • • • tin : t{j G {h,... , tk}, j = 1,... ,n}. Then V is 
a Riesz refinement of A,T(A),... ,Tn~\A). Therefore, nH(A)_ > H*n(A,T)n > 
H(V) = nH(A), consequently, H*n(A,T)n = nH(A), and h*n(A,T) = H(A), 
h*n(T) = oo. 

We define a partition C = {c^...^ : 1 < ij < k, j = 1,... ,n}, where ch..An = U 
if ii -= i2 = . . . = in = i and c^.,.^ = 0 otherwise. Then C is a Riesz refinement of 
A,T(A),... ,Tn^(A). Hence, H(A) < Hn(A,'T)n < H(C) = H(A), which gives 
hK(A,T) = Oandh?(T) = 0. 
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Example 5.3. Let now M = [0,1] be the standard MV-algebra of the real interval. 
Then M possesses a unique state s and a unique transformation T, namely s(t) = 
T(t) = t for any t G M. Then the same statements on entropies as in Example 5.2 
hold, i.e. h*n(T) = oo, and hf(T) = h?(A,T) = 0 for any partition A in M. 

Since two MV-subalgebras of [0,1] are isomorphic iff they are same ([3, Cor. 7.2.6]), 
we have infinitely many non-isomorphic MV-subalgebras of [0,1], and we now calcu­
late their entropy. We recall that each of them has a unique state, 8, and a unique 
transformation, T, namely s(t) = T(t) = t for any t G M. 

Example 5.4. Let D = {k/2n : 0 < k < 2 n , n > 1} be the MV-algebra of all 
dyadic numbers in [0,1]. Then h\(T) = oo, and h^(T) = hf(A,T) = 0 for any 
partition Am M. 

Example 5.5. Let M be a multiplicative MV-subalgebra of [0,1], i.e., M is an 
MV-algebra such that if t\,t2 G M, then the product t\t2 G M. Multiplicative 
MV-subalgebras of [0,1] are either {0,1} or they have to be infinite. Example 5.1 
is not multiplicative, and Examples 5.2-5.4 are multiplicative. Then h^(T) = 
h^(A,T) = 0 for any ^partition A in M. For multiplicative MV-subalgebras of [0,1] 
we can calculate hn(T) = oo. 

Example 5.6. Let a be an irrational number from (0,1) and let M(a) be the 
MV-subalgebra of [0,1] generated by a. Then M(a) = {m + na : ra,n G Z, 0 < 
ra-hna < 1}, [3, p. 149], is countable and dense in [0,1], and M(a) = M(/3) iff a = (3 
or a = 1 - /?. For example, if a = \/2/2, then M(a) is not multiplicative. For any 
a, we have h^(T) = ti^(A,T) = 0 for any partition A in M. 

Example 5.7. Let M be any MV-subalgebra of [0,1]. Then we have h^(T) = 
h^(A,T) = 0 for any partition A in M. 

Example 5.8. Let Fbea finite lattice effect algebra with (RDP). Then E has a 
unique transformation T, the identity. This follows from the fact that E is a direct 
product of effect algebras (= MV-algebras) from the Example 5.1, and in every state 
h*{T) = hk(T) = 0. 

Example 5.9. Let G be an interpolation directed Abelian po-group and define 
the lexicographical product G(Z) := Z xiex G, where Z is the group of all integers. 
Then the element (1,0) is a strong unit in the po-group G(Z) and 

E ( G ) : = r ( G ( Z ) , ( l , 0 ) ) , 

is an effect algebra with (RDP) [6], Every element a G E(G) is of the form either 
a = (1,-g) or a = (0,^), where g G G+. E(G) has a unique state s, namely 
s(0,2) = 0 and s(l,-g) = 1. For any integer k > 1, we set Tk : E(G) -> E(G) 
by T*(0,#) = (0,kg) and Tk(l,-g) = (I,-kg). Then every Tk is s-preserving, and 
h?(Tk) = h*n(Tk) = 0. 
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Another s-preserving transformation is the mapping T : E(G) -> E(G) defined 
by T(0,s) = (0,0) and T( l , -g) = (1,0) for any g G G+. Of course, both entropies 
of this T are also 0. 

Example 5.10. Let G = Q xlex Z, where Q is the group of all rational numbers 
with the usual ordering and Z is the group of all integers with the discrete ordering. 
Then G is an interpolation group with strong unit (1,0), and the effect algebra 
E = T(G, (1,0)) satisfies (RDP) and is not a lattice. 

E has a unique state s, namely s(q,n) = q. Let T be the identity, and A = 
{(l/fc,0)}. Then, for any n > 1, C = {(l/(A:n),0)} is its Riesz refinement, and hence 
H*(AtT)n = -ognfc, so that h*n(A,T) = 0 = h*n(T). 

6. BOOLEAN PARTITIONS AND ENTROPY 

Let E be an effect algebra. For an element e G E, we denote by [0,e] := {x G E : 
0 < x < e}. Then [0, e] endowed with + restricted to [0, e] x [0, e] is an effect algebra 
[0, e] = ([0, e]; + ,0 , e), and, for any x G [0,e], we have x< := e — x. 

According to [7] or [5], an element e of an effect algebra E is said to be central 
(or Boolean) if there exists an isomorphism 

fe: £ ->[0 ,e ]x [0 ,e ' ] 

such that fe(e) = (e,0) and if fe(x) = ( x i , ^ ) , then x = x\ + X2 for any x G E. 
We denote by C(E) the set of all central elements of E. A partition A = {e^} in E 

such that every element e* is central is said to be Boolean. We have (i) 0,1 G C(E), 
and if e G C(E), then e' G C(E)\ (ii) C(E) is a Boolean algebra; (iii) if x G E and 
e G C(E), then a; A e G F; (iv) if {ei}"=1 is a Boolean partition in E, then for every 
element x G £7 we have x = x A e\ + • • • + x A en; (v) if E is with (RDP), then 
e G C(£) iff e A e' = 0. 

Let Ak = { e ^ } ^ for k = 1 , . . . ,n be Boolean partitions of unity in an effect 
algebra. Then £ = {e|x A • • • A efn : 1 < i\ < m i , . . . , 1 < in < mn} is a unique 
Riesz refinement of J-ti, ,*4n. In fact, if C = {cix...in} is a Riesz refinement of 
Ai,... , ^ n , then by (2.2) c^...in < e\x A • • • A e£ , which easily implies their equality. 
We recall that £ is also a Boolean partition. 

Consequently, 

JI*(.4i V • • • V An) = # ( £ ) = #£(-41 V • • • V An)- (6.1) 

If, in particular, T preserves the central elements (this can happen e. g. if T is 
an automorphism of E or if it preserves all existing finite infima and suprema in E) 
we can define entropy, /iB(T), when we restrict T and s to C(E), defined by 

hB(T) := sup{hn(A,T) : A is a Boolean partition}. 

Then hB(T) = sup{h?(A,T) : A is a Boolean partition} and 

hB(T)<h?(T). (6.2) 
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It is interesting to exhibit when in (6.2) we have the identity. Of course, this is true 
whenever h^(T) = 0. Such a situation happens e.g. in Theorem 9.4 [4]. 

7. CONDITIONAL ENTROPY 

Let C = {cij : 1 < i < ra, 1 < j < n} be a Riesz refinement of two partitions 
A = {o>i}1i=1 and B = {bj}™=1. We define a conditional entropy, Hc(A\B), in a state 
5 on an effect algebra E by 

HC(A\B) := J " {,".,)* ( ^ ) : s(bj) > o} . (7.1) 

Propos i t ion 7.1. Let C be a Riesz refinement of partitions A and B. Then 

HC(A\B)<H(A). (7.2) 

P r o o f . To avoid technical details, we can assume that s(bj) > 0 for every j . 
Since the function 0 is concave, we have 

HeW - t±^(^)<±JtS-^ 
i=l j=l \ \ JJ / i = 1 \j=\ V J' 

m 

= Y,<l>(s(ai)) = H(A). n І=l 

Propos i t ion 7.2. Let C be a Riesz refinement of partitions A and B. Then 

H(C) = H(A) + HC(B\A). (7.3) 

P r o o f . Without loss of generality, we can assume s(di) > 0 for all i. Then 

77i n m n / f \ f W 

~o = EE*w<!«» = EE*(£i7^f1) 
i=ii=i i=ij=i v S ( a i ) J 

m n m n c(r-A 

= - ̂  J" *(Cii) l0S S(°i) - 2 S S(Cii) l0g -7f~ 
i= l i = l i= l J=l ^ %> 

m m n 

• = - 5 ~ s ( a i ) l o g s ( a i ) + 5 ~ ^ s ( a i ) ^ ( s ( c i j ) / s ( a i ) ) 
i = l t= l j=\ 

= H(A) + HC(B\A). D 
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According to (7.2), given two partitions A and #, the following two functions, 
called lower and upper conditional entropies of A with respect to B, are finite 

Hf(A\B) := mi{Hc(A\B) : C G Rein(A,B)}, 

H^(A\B) := sup{Hc(A\B) : C G Rein(A,B)}. 

In particular, if £ = {1}, then H?(A\B) = ff£(.A|/3) = H(A). 
We recall that if A = { a i } ^ is an arbitrary partition of unity in an effect algebra 

E and B = {bj}"=l is a Boolean partition, then, due to the properties (iii)-(iv) of 
central elements, C := {at Abj : 1 < i < m, 1 < j < n} is a unique Riesz refinement 
of .4 and /?. Therefore 

Hf(A\B) = tf£(.4|B). 

In such a case we simply write H(A\B) = H^(.4|/5) = if^(.4|Z5). 
Let now A and /5 be arbitrary partitions. By (7.3), we have H^(A V B) < 

H(A) + HC(B\A) and Hn(A V B) > H(A) + HC(B\A), i.e. 

H?(AvB) < H(A) + H?(B\A), 

Hn(AvB) > H(A) + Hn(B\A). 

On the other hand by the use of definition, H?(B\A) < HC(B\A) and Hn(B\A) > 
HC(B\A), i.e., H?(B\A) + H(A) < HC(B\A) + H(A) and Hn(B\A) + H(A) > 
HC(B\A) + H(A), which gives 

H?{A V6) = H(A) + H?(B\A), (7.4) 

Hn(A VB) = H(A) + Hn(B\A). (7.5) 

Let now Ai,... , An and B be partitions in an effect algebra E with (RDP). Take 
A% G Refn(Ai,... ,.4„) and C € Refn(A%,B). Then by (7.3), we have H(C) = 
H(B) + HC(A$\B), which gives H?(Ai V • • • V .4„ V B) < H(C). Hence H?(Ai V 
• • • V An V B) < H(B) + H?(A8\B), i. e. 

H?(Ai\f---VAnVB) < H(B) + H?(AiV---VAn\B), 

Hn(AiV---vAnVB) > H(B) + Hn(AiV---VAn\B), 

where 

H?(Ai V • • • V An\B) := M{H?(A%\B) : A% G Ref- iM, , . . . , .4„)}, 

Hn(Ai V • • • V .4„|£) := sup{Hn(A$\B) : AS € R e f ^ i , . . . , An)}. 

As in (7.4) - (7.5) we can prove 

H?(Ai V • • • V .4„ V B) = H(B) + H?(Ai V • • • V An\B), (7.6) 

Hn(Ai V • • • V An V B) = H(B) + Hn(Ai V • • • V An\B). (7.7) 

In a similar way, let .4i,... , «4„ and Bi,... , Bm be partitions in E with (RDP). 
Choose AS G Refn(Ai,... , A O , Bff1 € R e f ^ S i , . .•. ,z3m), and C G RefTC(.4£,tfj1). 
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ThenC G Refn(Ai,... ,An,Bu... ,Bm). By (7.6), wehaveiI^^V- • •VA.V/^) = 
H(Bm) + H*{Ai V • • • V An\B?). Hence H?(Ai V • • • V An V B?) > H?\Bi V • • • V 
Bm) + H?(Ai V • • • V An\Bi V • • • V Bm) and 

In m \ / m \ 

H?[ \fAiV\jBj\ >H?l\/Bs\+H?(AiV.--vAn\BiV---VBm). 

In a similar way we have 

( n m \ / m \ 

V A v y BA <H£ V .3A + #£(>t1V---VAn|z31V---V£m), 
i=i i = i / \ i = i / 

where 
H?(Ai V • • • V A. |0i V • • • V Bm) := i n f { H c ^ l ^ ) } , 
H^Mi V • • • V An\Bi V • • • V Bm) := sup{Hc(AZ\B?)}. 

We recall that it is possible to show that 

ff?(.4i V .-. V Anfa V .. . V Bm) = inf{ffc(C^|C^)}, 
ff^Mi V ... V .y-UIBx V • • • V Bm) = sup{ffc:(C^|CB)}, 

where C G R e f ^ ^ i , . . . ,An,Bi, • • • ,Bm) and C4, C# are the Riesz refinements of 
A\,... , An and Si , . . . , S m , respectively, obtained from C. 

We recall that in the last two inequalities, there are possible cases to have proper 
inequalities, see the footnote in Example 7.5. However, if Si , . . . , S m are Boolean 
partitions, then they possess a unique Riesz refinement, Bo = B\ V • • • V S m , which 
is also Boolean, and from (7.6) and (7.7) we have the following equalities 

( n m \ / m \ 

VAV \JBJ\ =H?l\jBA+H?(AiV:-VAn\BiV"-VBm), (7.8) 

( n m \ / m \ 

\jAiV \J Bj\ =H*n\ \JBA +H*n(AiV ...V An\BiV •••V/3m). (7.9) 
Proposition 7.3. Let .4,Si,... ,Bm+i be partitions in an effect algebra E with 
(RDP). Then 

H?{A\Bi V • • • V z3m+1) < H?{A\Bi V • • • V Bm). (7.10) 

i ^ ( A | 5 i V • • • V B m + 1 ) < H^(A\Bi V • • • V Bm). (7.11) 

Proof. Let ^ + 1 = {bh...im+1) G Refw(Bi,... ,Bm+i), Cm+1 = K - . . ^ . * } G 
Ref7e(>l, Si , . . . , # m + 1 ) . We consider partitions Btf = {&., ...im } G Reffc(Bi,... , Bm) 
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and Cm = {ci,.,mfc} G Rein(A,Bx,... ,Bm), where 6., . ,m = ^ . m + 1 h,...^^ and 
Cii-imk = .Cim+i ci,-im+iiv. Without loss of generality, we can assume that 
s(b . , - .m + , ) > 0 for all t ' i , . . . ,zm+i. Hence 

Hc-^iABS*1) = £ s(bu...im,M(S{^-i^kl) 
ii-t+i* V^i,-im+,)j 

= £ £^,-im)%^^(^4) 
i.^tfeW, s(^,-im) W V - W H ) / 

" i , 2 ^ VifTi -<*.•••<-) ^ . - w . ) J 
= Hc-Ultfo"1). D 

We recall that (7.10)-(7.11) hold also for partitions <4i,... ,An instead of one 
partition A. 

In addition, we have 

H?{Ai V • • • V An\Bi V • • • V Bm) < H?(Ai V • • • V .4n+i|*5i V • • • V Bm), (7.12) 

- ? w M i V . . . V . 4 . l | B i V . . . V B m ) < f t ^ M i V . . . V . 4 n + i | B i V . . . V B m ) . (7.13) 

Indeed, due to (7.3) the following two sets 

{ # c ( . 4 o W ) = Ao e Refw( .4i , . . . ,An),B^ G Rein(Bi,.. .,Bm), 

CeRein(AZ,B?)} 

and 

{H(e) - H(V) : V G Rein(Bi,...,Bm),e G Ref*G4i....,An,V)} 

are equal. Therefore, 

HfriAiV • • -V .4n|.3iV • • -V Bm) 

= mi{Hc(A^\B^) : AS € Refw( .4i , . . . ,An), 

B? € Refw(Bi,. • .,Bm),C G Rei(A%,Bm)} 

= inf{tf (£) - H(V) : V G Refw(i5i,. . . ,Bm),e G Ref^(A i , . . . ,.4n,X>)} 

< mi{H(e') - H(V) : V G Refw(-?i,• • .,Bm),e' G R e f ^ i , . . . , A n + i , V ' ) } 

= ^ (A iV- . .VA„+i | /5 iV. . .Vi5 m ) . 

In a similar way we prove (7.13). 
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Proposi t ion 7.4. Let A, B and C be partitions in an effect algebra E with (RDP). 
Then 

H?(A V B\C) > H?(A\C) + Hf(B\A V C), (7.14) 

H^(A V B\C) < H^(A\C) + H^(B\A V C). (7.15) 

If C is a Boolean partition, then in (7.14)-(7.15) we have the equalities. 

P r o o f . Suppose that A = {a*}, B = {bj} and C = {ck}. Choose £ = { e ^ } G 
Refn(A,B,C) and set £> = {dij := Ylke^}^ a n d ^ = {fik '= J2j£ijk}- Then 
V e Refn(A,B) and J* e R e f ^ ( ^ C ) . 

Calculate 

нmc) -_ ^ЫФ(^)__^(ct)ф(^Ш) 

= E^(^) + Ç^Ш) 
ijfc x ' ik 

= H^l3|.F) + J->M|C), 

which yields HS(D\C) > H?(A\C)+H?(B\AvC) and H?(AV B\C) > H?(A\C) + 
H?(B\AVC). 

The equality in (7.14) is evident if C is a Boolean partition while in this case T 
is a unique Riesz refinement of A and C. 

In a similar way we can prove (7.15). rj 

Example 7.5. It is worthy to recall that if C is not Boolean then in (7.14) and 
(7.15) is not necessarily the equality. Indeed, take the MV-algebra M\Q from Ex­
ample 5.1, and set A = {0.3,0.7}, B = {0.4,0.6}, and C = {0.2,0.8}. Then 
H?(A V B\C) = 0.255581, H?(A\C) = 0.130903, and H?(B\A V C) = 0. 

H^(AVB\C) = 0.519130, H^(A\C) = 0.266581, H^(B\AVC) = 0.289279.3 

As a corollary of (7.14)-(7.15) and (7.10)-(7.11) 

n m n I m \ 

# * ( V ^ 1 V B^) < Y.H*n M V ^ h (7-16) 
i = l j=l i = l \ j=l J 

and if B\,... , Bm are Boolean decompositions, then 

n m n I m \ 

H*(V M V Bi) <Y,H?[ M V *J • ( 7 1 7 ) 
i= l j= l i= l V i = 1 / 

3 T h e equalities in inequalities of formulas between (7.7) and (7.8) imply equalities in formulas 
(7.14)-(7.15). 
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We recall that that if {E,s,T) is a dynamical system, then 

H?{TA\TB) < H?{A\B), H^{TA\TB) > H^{A\B), (7.18) 

and if A or B is Boolean and if T preserves central elements, then in (7.18) we have 
the equality. 

Proposi t ion 7.6. Let {E,s,T) be a dynamical system, where E is with (RDP) 
and let T preserve central elements. Then, for any partition A and any Boolean 
partition B> we have 

h?(A,T) < h?(B,T) + H?(A\B) (7.19) 

and 
hn(A,T)<h*n(B,T) + Hn(A\B). (7.20) 

P r o o f . By Proposition 3.4, (7.14)-(7.15), (7.17), and (7.18), we have 

n—1 I n—\ n—\ \ 
H?( \ / T*A) < H?\\J T*A V \ / TjB 

i=0 Yi=0 j=0 J 

(n - 1 \ / n - 1 n - 1 

\l rB\+H?\ \ / TM| \ / T*B 
i=0 / \i=0 j=0 

(n - 1 \ n -1 / n - 1 

\j TB ) + Y, H? TiA V TJB 

i=0 J i=0 \ j=0 

(n - 1 \ n -1 

\J TB + Yl H?{TA\TB) 
z=0 / i=0 

= H?(\/rB\+nH?(A\B). 
Hence: hf(A,T) = limn $H?(V£ T*A) < ^(SJ^rB) + H?{A\B) = 
ti?(B,T) + H?(A\B). 

The second inequality follows from (7.16). rj 
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