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ENTROPY ON EFFECT ALGEBRAS 
WITH THE RIESZ DECOMPOSITION PROPERTY II: 
MV-ALGEBRAS 

ANTONIO DI NOLA, ANATOLU DVURECENSKU, MAREK HYCKO AND 

CORRADO MANARA 

We study the entropy mainly on special effect algebras with (RDP), namely on tribes 
of fuzzy sets and cr-complete MV-algebras. We generalize results from [14] and [15] which 
were known only for special tribes. 
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We continue the study of entropy. In Part I, we have introduced basic properties 
of entropy. Here we concentrate mainly on the state space which allows us to under­
stand the entropy better, Section 8, and we introduce also quotient effect algebras. 
Section 9 studies shortly the problem of a so-called entropy generator theorem for 
effect algebras or MV-algebras. The main results of the present part are in Section 
10 and Section 11. There we study the entropy on tribes of fuzzy sets and using the 
Loomis-Sikorski theorem also on cr-complete MV-algebras. That generalizes results 
from [14] and [15] which were proved only for full tribes. In addition, we give also a 
solution to Problem 7 from [14]. 

8. STATE SPACE OF EFFECT ALGEBRAS 

Since entropy depends only on the range of the state, to understand entropy better, 
we will study the range of states in more details. 

An effect algebra E is said to be monotone a-complete if, for any sequence {an} 
such that an < an+i for any n, \Jnan G E. It can happen that E is monotone 
a-complete but not a lattice. According to [11, Prop. 16.9], if E = T(G,u) is with 
(RDP), then E is monotone rj-complete iff (G,u) is monotone a-complete, i.e., if 
9n < gn+i < 9 for a sequence {gn} from G, there is \Jngn G G. 
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Given a subset A of E, there is a sub-effect algebra of E, Eea(A), generated by A. 
Indeed, if A is a subset of an effect algebra E, we set A' := {a' : a e A} and 

A + A := {a + b € E : a, b G A}. We define E0 = A U A' U {0,1}, and for any n > 1 
we put En+1 := (En + En)'. 

Eea(A) = \jEn. (8.1) 
n 

Hence, if A is countable, so is Eea(A). 
We recall that the definition of a state was given in Section 3. A state s on 

E is a-additive if s(a) = l im ns(a n) whenever an /* a (i.e., an < an+i and a = 
\lnan). A state on a unital po-group (G,u) is any mapping s : G -» R such that 
(i) $(9) > 0 f° r anY 9 € G+, (ii) s(g + h) = s(g) + s(h) for all g,h € G, and (hi) 
s(u) = 1. We denote by S(E) and S(G,u) the sets of all states on E and (G,u), 
respectively. According to [11, Cor. 4.4], if (G,u) is an interpolation group, then 
S(G,u) is nonempty, consequently by remarks after Theorem 2.1 [2], if E satisfies 
(RDP), then S(E) 7- 0. 

By [11, Lem. 4.21], s(G) = {s(g) : g £ G} is a subgroup of the group E of all real 
numbers which is either cyclic or dense in E. In the first case s is said to be discrete. 
In such a case s(G) = ^Z for some integer n > 1. 

A state 5 on an effect algebra E is said to be discrete if s(E) = {s(a) : a G E} C 
{0, 1/n, 2 /n , . . . >n/n} for some integer n > 1. It can happen that s(E) is a proper 
subset of {0,1/n, 2 / n , . . . , n/n}. Indeed, let E = {0, a, a', 1}, and let s(a) = 0.3 and 
s(a') = 0.7. 

We now show that there is a one-to-one correspondence among discrete states on 
E and (G,w), respectively. 

Proposi t ion 8.1. Let E = T(G,u) be an effect algebra with (RDP). Then a state 
s on E is discrete if and only if its extension s to (G, u) is discrete. 

P r o o f . If s is discrete, it can be easily seen that 5 is discrete. Conversely, 
let 5 be discrete. That is s(E) C {0 ,1 /n ,2 /n , . . . ,n/n} for some integer n > 1; 
let n be the smallest one. We suppose that s(E) = {0,&i/n, . . . , / jm /n, 1}, where 
1 < k\ < • • • < km < n. Since n is minimal, this implies that the greatest common 
divisor of n, k\,... , km is 1. The elementary arithmetic yields that there are integers 
an, a i , . . . , am E Z such that ann -f ai^i + h amkm = 1. Therefore, 1/n E 5(G), 
i.e., s(G) = i Z . D 

A state son E (on (G,w)) is said to be extremal if the equality 5 = Asi + (1 — A)$2, 
where 0 < A < 1 and 8i,82 are states on JE (on (G,u)), yields 5 = s\ = 82. We 
denote by Exts(E) and Ext^(G, w) the sets of all extremal states on E and (G, u), 
respectively. 

We say that a net of states, {sa}, converges weakly to a state 5 if s a(a) -» s(a) for 
any a€ E (a eG). HE satisfies (RDP), S(E) and <S(G,u) are nonempty compact 
sets and by Krein-Mirman theorem [11, Thm.5.17], every state on E (on (G,u)) is 
a weak limit of a net of convex combinations of extremal states. Hence, Exts(E) 
and Exts(G,u) are nonempty sets. 
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We note that if E is a lattice effect algebra with (RDP), then Exts(E) is a 
compact set. If E is an effect algebra with (RDP) which is not a lattice then it can 
happen that Exts(E) is not compact (see [11, Ex.6.10]). 

We recall that a state s o n . B = T(G,u) is extremal iff s is extremal on (G,u). 
For extremal states on Abelian unital po-groups we have the following criteria, see 
[11, Cor.6.21, Thm. 12.14, Thm. 12.18]. 

Theorem 8.2. Let (G,u) be an interpolation Abelian unital po-group. A discrete 
state s on (G, u) is extremal if and only if given any x,y € G + , there exists z G G + 

such that z <x,z <y and 

s(z) = mm{s(x),s(y)}. (8.2) 

A state s is extremal if and only if given any x, y G G + 

min{s(x),s(y)} = sup{s(^) : z G G + ,2 < x, z < y}. (8.3) 

If, in addition, (G, u) is an ^-group, then a state s is extremal if and only if 

s(x Ay) = min{s(x),s(y)} (8.4) 

holds for all x,y G G + . 
We recall that if E is a lattice with (RDP), then s on E is extremal iff (8.4) holds 

for all x,y G E. For a general case of E without (RDP), extremal states need not 
satisfy criteria (8.2) and (8.3) restricted for x,y G E as it was mentioned by the 
anonymous referee; as an example can serve M 0 2 (= horizontal sum of two copies 
of22). 

Proposition 8.3. If s is an extremal state on an Abelian po-group (G,u) with 
interpolation, then for any x,y,v G G + , we have 

min{s(x), s(y), s(v)} = sup{s(z) : z G G + , z < x, z <y,z < v}. (8.5) 

P r o o f . Indeed, we trivially have sup{s(z) : z G G + , z < x, z < y,z < v} < 
min{s(x),s(y),s(v)}. Let e > 0 be given. Due to (8.3), there are two elements 
21,22 G G + with z\ < x,y, z2 < x,v such that 

min{s(x), s(y)} - e/2 < 's(zi) < min{s(z), s(y)}, 

min{s(x),s(v)} — e/2 < s (^ ) ^ min{s(x),s(v)}. 

Applying again (8.3) to s(zi) and s(z2), we find an element z$ G G + with zs < z\,z2 

such that 

min{s(zi),s(z2)} - e / 2 < s(z3) < min{s(zi),s(2:2)}. 

Then min{s(x),s(y),s(v)} — e < s(z%) < min{s(x),s(y),s(v)}, which proves (8.5). 

• 
We recall that a rational convex combination is any convex combination in which 

all the coefficients are rational numbers. 
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Proposition 8.4. A state s on an effect algebra E with (RDP) is discrete if and 
only if 5 is a rational convex combination of discrete extremal states. 

P r o o f . It follows directly from [11, Prop.6.22], Theorem 2.1 [2] and Proposi­
tion 8.1. r-] 

We have seen that if 5 is a discrete state on E with (RDP), then it can happen 
that the range of s, s(E), is a proper subset of {0,1/n, 2/n,. . . , 1} whereas s(G) = 
^ Z . We now show that for discrete extremal states we have the equality s(E) = 
{0,1/n, 2/n,. . . , 1}, and for other extremal states their range is dense in [0,1]. 

If an effect algebra E has the property that, for infinitely many integers n > 1, 
there is an element v G E such that nv = 1, then E has no discrete state. Indeed, 
for any state s of E we have 1/n G s(E) for infinitely many integers n. 

Proposition 8.5. Let s be a discrete extremal state on an effect algebra*E with 
(RDP). Then 

s(E) = {0,1/n, 2 / n , . . . , 1} (8.6) 

for some integer n > 1. 
If 5 is a non-discrete extremal state, then the range s(E) is dense in [0,1]. 

P r o o f . Suppose that s is an extremal discrete state on E with (RDP) such that 
s(G) = ^Z, where E = T(G, u). We assert that i/n G s(E) for any i = 1,. . . , n - 1. 
Indeed, there exists an element g G G such that i/n = s(g). Then g = gi —g2, where 
<7i,<72 £ G+. According to (8.2), there exists g0 < g\,g2 with g0 > 0, such that 
s(g0) = min{5(pi),5(^2)} = s(92)- Then i/n = s(g) = s(gx) - s(g0) = s(gx - g0). 
Applying again (8.2) to gi — g0 > 0 and u, we have that there exists a G E such that 
i/n = min{.s(£i - 9o)J(u)} = s(g) = s(a). 

Now let s be a non-discrete extremal state on E. Take g G G such that 0 < 
s(g) < 1. Then g = gi - g2, where gug2> 0. By (8.3), s(g2) = m\n{s(gi),s(g2)} = 
sup{8(z) : z G G+, z < #i, z < g2}, which proves s(g) = limns(<7i — zn) for 
some sequence of positive elements {zn} under g\. Applying again (8.3) to positive 
elements g\ — zn and u for any n > 1, we find a sequence of elements of P7, {aĵ }™, 
such that s(gi -zn) = l im m s(an\), which proves that every s(g) from the real interval 
[0,1] can be approximated by values from s(E). Since the range s(G) is dense in 1R, 
then the range s(E) is dense in the real interval [0,1]. • 

Question: When s(E) = s(G) H [0,1]? This is true for any unital £-group (G, u) 
and any extremal state on an effect algebra E with (RDP) which is a lattice. Further 
cases are presented below. 

Proposition 8.6. Let s be a cr-additive non-discrete extremal state on a monotone 
<7-complete effect algebra E with (RDP). Then s(E) = [0,1]. 

P r o o f . Let t G (0,1). Due to density of s(E) in [0,1], by Proposition 8.5, 
there is a sequence of elements, {an}, from E such that s(an) > s(an+i) > t and 
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limn s(an) = t. By (8.3), there is an element z\ G E, zx < aija2 such that t < s(z\). 
By induction, we can find a sequence of elements, {zn}> such that zn < an , zn+i < zn 

and t < s(zn). Hence, t = limn s(zn). Since the sequence {zn} is monotone, there is 
z = /\nzn e E. It is evident that s(z) = limn s(zn) = t e s(E). • 

To extend the result of Proposition 8.6, we introduce the following facts about 
ideals on effect algebras. 

We say that a poset X satisfies the countable interpolation property provided that, 
for any two sequences {xi} and {yj} such that X{ < yj for all i, j , there exists an 
element z G X such that X{ < z < yj for all i, j . 

We recall that if E = T(G,u) for some interpolation unital po-group (G,u), then 
E has countable interpolation iff G has countable interpolation, [11, Prop. 16.3], 
and if E is monotone cr-complete, then E has countable interpolation (see [11, 
Thm. 16.10, Prop 16.9]). 

An ideal of an effect algebra E is a non-empty subset I of E such that (i) x G E, 
y G / , x < y imply x G / , and (ii) if x,y G / and x + y is defined in E, then x + y G / . 
An ideal I is said to be a Riesz ideal if, for x G / , a, b G E and a: < a + b, there exist 
ai , b\ G J such that x < ai + b\ and ai < a and bi < b. 

For example, if E is with (RDP), then any ideal of E is Riesz. 
A proper ideal I (i. e. I ^ E) is maximal if it is not contained in any proper ideal. 

Every effect algebra has at least one maximal ideal. 
If s is a state on E, then the kernel of the state s, i. e. the set 

Ker(s) := {a G E : s(a) = 0}, 

is an ideal of E. 
Let P be a (proper) ideal of an effect algebra E with (RDP). We define a relation 

~P on E via a ~p b iff a — e = b — f for some e, / G P . According to [9, Sec 3.1], 
we have that ~ p is an equivalence such that (i) a + b G -B, ai + b\ € E, a ~ P ai , 
b ~p b\ imply (a + b) ~P (a\ + b\), (ii) a ~ p 6 implies a' ~ p 6', (iii) a + b E E, 
c ~ P a imply there exists an element d G E such that d ~ p b and d + c e E, 
(iv) a + 6, ai + &i G -B, ai ~ p a, (ai + b\) ~ p (a + b) imply bi ~ p b. If we define 
a/P := [a] := [a]P := {b € E : b ~P a}, then E/P := {[a]p : a G E} is an effect 
algebra, where [a] + [b] = [c] iff there exist ai G [a],bi G [b],ci G [c] such that 
ai + b\ = c\. For the constant elements in E/P we take [0] and [1]. We recall that 

[a]p < [b]p in E/P ^ there exists ai G [a]p such that ai < 6. (8.7) 

We recall (i) if E satisfies (RDP), then E/P is with (RDP); (ii) if s is a state 
of E with (RDP), then the function s defined on E/Ker(s) via s([a]) := s(a), [a] G 
E/Ker(s), is a state on E/Ker(s) such that s(E) = s(E/Ker(s))\ (iii) s is extremal on 
E with (RDP) iff s is extremal on E/Ker(s); (iv) if E with (RDP) satisfies countable 
interpolation, then E/P has countable interpolation (compare with [11, Prop. 16.4]), 
and (v) if (E,s,T) is a dynamical system (E has (RDP)), then (E/Ker(s),s,T) 
is also a dynamical system, where T : E/Ker(s) -> E/Ker(s) is an 5-preserving 
mapping defined by T([a]) := [T(a)], [a] G E/Ker(s). 
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Proposition 8.7. Let s be a non-discrete extremal state on an effect algebra E 
satisfying (RDP) and countable interpolation. Then s(E) = [0,1]. 

P r o o f . The proof is divided into two steps. 

Claim 1. If s is an extremal state such that Ker(s) = {0}, then E is a cr-complete 
lattice. 

Let {ai} be any sequence of elements of E, and let U({ai}) be the set of all upper 
bounds of the sequence {a;}; U({ai}) is nonempty. Let a := inf{s(6) : b G U({ai})}, 
and choose a countable subset {bj} of U({ai}) such that a = ini{s(bj)}. By countable 
interpolation, there exists an element x G E such that at < x < bj for all i, j . 
Given any v > ai, countable interpolation provides an element y G E such that 
a>i < V < x,v- Then y G U({ai}) and s(y) = a, whence s(x — y) = 0, i.e., x = y. 
This implies x is the supremum of {ai}. 

Passing to complements, we see that E is a cr-complete lattice. 

Step 2. Let s be any extremal state on E. Since E has countable interpolation, 
so has E/Kev(s), and s is an extremal state on E/Ker(s). Therefore, by Step 1, 
E/Ker(s) is a complete lattice while the state s has the property Ker(s) = {0}. 

It is well-known [9, Thm. 7.1.1] that a state on an effect algebra with (RDP) 
which is a lattice (= MV-algebra) is extremal iff its kernel is a maximal ideal. Since 
s is extremal, then (_E/Ker(s))/Ker(s) = E/Ker(s) is isomorphic to some MV-
subalgebra of the real interval [0,1]. Since E/Ker(s) is <j-complete, then E/Ker(s) = 
[0,1]. The isomorphism in question is in view of (8.4) the mapping [a] »-> s(a), 
[a] G E/Ker(s). Consequently, s(E) = s(E/Ker(s)) = [0,1]. • 

We recall that in both Propositions 8.6 and 8.7 we have s(E) = s(G) fl [0,1]. 
In view of the later proposition, the cr-additivity of a state in Proposition 8.6 is 
superfluous: 

Proposition 8.8. Let s be a non-discrete extremal state on a monotone cr-comple­
te effect algebra E with (RDP). Then s(E) = [0,1]. 

P r o o f . The statement follows from Proposition 8.7 while every monotone cr-
complete effect algebra with (RDP) has according to [11, Prop. 16.9, Thm 16.10] 
countable interpolation. rj 

9. ENTROPY AND GENERATORS 

Prom the classical entropy theory we know that if A is a partition of a dynamical 
system (ft,S,P,T) such that Un°=o T ~ n (^) generates the a-algebra 5, then h(T) = 
h(A,T)\ this is the so-called entropy generator theorem. An analogous problem is 
studied in the present section giving some partial answers. 

For example, if E = [0,1] and A = {t, 1 - £}, where t is an irrational number 
in the MV-algebra E, or if E = {0,1/n, 2/n,. . . , 1} and A = {1/n, 1/n,... , 1/n} 
(see Example 5.1 and Example 5.3 from [2]), then I J n t - o r n ( ^ ) generates E as a 
a-complete MV-algebra, and hf(T) = hf(AyT) = h^(A,T) = h*n(T) = 0. 
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Theorem 9.1. Let (E,s,T) be a dynamical system, where E is an effect algebra 
with (RDP) such that s(E) is finite. 

Then, for any partition A in E, we have 

h?(A,T) = h*n(A,T) = 0, 

and 
h?(T) = h*n(T) = 0. 

Proo f . Let s(E) = { 0 , a i , . . . , a * , l } , where 0 < a i < ••• < a* < 1. There is 
an integer q > 1 such that qai < 1 and (q + l )ai > 1. Then l/(q + 1) < ax < 1/q. 

Let now A be any partition in E, and let C be any Riesz refinement of partitions 
A,T(A),... ,Tn~l(A). Then H(C) < \ogq and H?(AyT)n < Hn(A,T)n < log?, 
i.e., 0 < h?(A,T) < h*n(A,T) = 0. Consequently, h^(T) = h*n(T) = 0. n 

Theorem 9.1 holds also if E is finite or if s is a discrete state. 

Proposition 9.2. Let (E, s, T) be a dynamical system, where E is an effect algebra 
with (RDP). Then for the dynamical system (E/Kev(s),s,T) we have 

h*(T) = h*(T), h*n(T) = h*n(T). (9.1) 

P r o o f . Step 1. If A = {ai} is a partition in F7, then [A] := {[ai]} is a partition 
in E/Kei(s), and H(A,T) = H([A],T). 

Step 2. If [ a i ] , . . . , [an] are summable elements in .E/Ker(s), i. e., [ai]H f-[an] = 
[6], then there are summable elements fii,... , a n £ E such that hi G [a*] for any i 
and [ai H h an] = [b]. 

Indeed, by (8.7), we have that [an_i] < [a'n]. Therefore, there is an_i G [an_i] 
such that an_i < an , i.e., an_i + an is defined in E. Since [an_2] < ([an_i] + 
[°>n]y = [(fln-i + fln)'], there is an_2 G [an_2] such that an_2 < (an_i + a n ) ' , i.e., 
an_2 + an_i + a n G E. Using mathematical induction, we see that there are elements 
ai G [ai] such tha t [a\ -\ h an] = [a\] H h [an]. 

In particular, if {[ai]} is a partition in E/Ker(8), then there is a partition {hi} 
in E such that [hi] = [a*]. In fact, after finding summable elements {hi} in E such 
that [a ]̂ = [ai] for i = 1 , . . . ,n, we set an = (ai + • • • + a n ) ; and put di = hi for 
i = 1 , . . . , n — 1, and hn = hn + an. 

Step 5. Let {[cij]} be a Riesz refinement of partitions {[a{]} and {[&,-]}. By 
Step 2 we can assume that {ai} and {fy} are partitions in E, and {ci-,} is their Riesz 
refinement in E. 

Summarizing all steps, we see that 

H:(A,T)K = H:([A),T)U, 

h?(A,T) = h?([A],T), 

h?(T) = hf(T). 
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In a similar manner we proceed also with the second equality in (9.1). r-j 

As a direct corollary of Proposition 9.2 we have that if (E,s,T) is a dynamical 
system, where E is a lattice effect algebra with (RDP), i.e. an MV-algebra, then 
E/Ker(s) is an Archimedean MV-algebra, i. e., isomorphic to a Bold algebra of fuzzy 
sets. We recall that a Bold algebra is a system T C [0, if* of fuzzy sets defined on 
a nonempty set £) such that (i) 1 G T, (ii) if / G T, then 1 - / G T, and (hi) if 
f,g G T, then / 0 g G T, where (/ © g)(w) = min{/(u;) + g(u>), 1}, w G fi. Every 
Bold algebra is an MV-algebra. 

Therefore, to calculate entropy of a dynamical system (E,s,T), where E is an 
MV-algebra, it is enough to assume that E is a Bold algebra of fuzzy sets. 

A partial answer to the problem from the beginning of the present section is as 
follows. 

Theorem 9.3. Let (E, s, T) be a dynamical system where s is an extremal state on 
an effect algebra E satisfying (RDP) and countable interpolation. Then ti^(T) = 0, 
and hn(T) = 0 if s* is discrete and hn(T) = oo if s is non-discrete. In addition, 
there is a partition A of E/Ker(s) such that \Jn=0T

n (A) generates E/Ker(s), and 
h?(T) = h?{T) = h?(A,T) and h*n(T) = h*n(T) = h*n(A,T). 

The same is true if E is monotone a-complete with (RDP). 

P r o o f . If 5 is a discrete state, the statement follows from Theorem 9.1. 
Suppose now 5 is non-discrete. According to Claim 1 of Proposition 8.7, E/Ker(s) 

is a cr-complete lattice effect algebra with (RDP) (= a-complete MV-algebra) and 
according to Step 2 of the same proposition, E/Ker(s) is isomorphic to the MV-
algebra of the real interval [0,1] from Example 5.3 [2]. Due to Proposition 9.2 and 
Example 5.3 [2], hf(T) = h?(T) = 0 and h*n(T) = h^(T) = oo. 

According to [9, Thm. 6.1.43], every MV-subalgebra of [0,1] generated by an 
irrational number is dense in [0,1], and if it is generated by a rational number, it is 
isomorphic to {0,1/n, 2/n, . . . , 1} for some n > 1. 

Therefore, if we take an arbitrary partition A in E/Kei(s) containing an irrational 
number, then the cr-complete MV-algebra generated by A is isomorphic with the 
whole interval [0,1]. By Example 5.3 [2], hf(A,T) = h*n(A,T) = 0. 

If E is monotone cr-complete, then E has the countable interpolation property. 

• 
Theorem 9.4. Let (E,s,T) be a dynamical system, where s is an extremal state 
on a lattice effect algebra E with (RDP). Then hf(T) = H?(A,T) = 0 for any 
partition A in E. 

P r o o f . Since s is an extremal state, due to (8.4), E/Ker(s) is a lattice effect 
algebra which is isomorphic with some MV-subalgebra of [0,1]. According to (9.1) 
and Example 5.7 [2], we have the statement in question. • 
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Proposition 9.5. Let E be any linearly ordered effect algebra. For any dynamical 
system (E,s,T) we have h?(T) = H?(A,T) = 0 for any partition A in M. 

P r o o f . Since E a linearly ordered effect algebra, it has a unique state, s, which 
is therefore extremal. The conclusion follows immediately from Theorem 9.4. r-j 

We present a class of effect algebras satisfying the conditions of Proposition 9.5, 
for more details see [3]. 

Example 9.6. Let L and G be two commutative I-groups and let LxiexG denote 
the lexicographical product of L and G. Then L X[ex G is an ^-group iff L is linear, 
[10, p. 26 (d)]. In addition, if (L,u) is a linear unital £-group, then (u,0) is a strong 
unit in L Xiex G, consequently, 

M(L,G,u)~T(LxlexG,(u,0)) 

is an MV-algebra. The effect algebra M(L, G, u) has a unique state, 5, and there is a 
unique state so on T(L,u), namely, s(h,g) := so(h), (h,g) £ M(L,G,u). In addition 
if also G is linearly ordered, then M(L,G,s) is linearly ordered. 

In any case, if G is an *?-group, M(L,G,u) has a unique state, therefore it is 
extremal, and in view of Theorem 9.4, h^(T) = H™(A,T) = 0 for any s-preserving 
transformation T (there are infinitely many such ones) and any partition A in 
M(L,G,u). 

As a particular case of Example 9.6, we have Mn := T(Z x /ea.Z, (n,0)) or T(lRx/ea. 
R, (1,0)). Then in the first case s(Mn) = {0,1/n, 2 /n , . . . , 1} and in the second one, 
the range of the state is the whole interval [0,1]. 

We recall that some results of this kind are also in Theorem 10.2 and Theorem 
11.3. In general, the entropy generator theorem seems to be open even for a-complete 
MV-algebras. 

10. ENTROPY ON TRIBES 

Entropy on tribes (systems of fuzzy sets) was studied in [15, Sec 10] and also in [14]. 
All these tribes were closed also under the natural product of fuzzy sets. In the 
present section, we study entropy on tribes without any assumption on the product. 
The main result is Theorem 10.2 which generalizes [14, Thm. 4.13] proved only for 
full tribes (we recall that if (fi,c>) is a measurable space, then the system of all 
S-measurable functions from [0,1]Q is said to be a full tribe). We note that the basic 
properties of entropy on MV-algebras without any product are in [13]. 

A tribe of fuzzy sets on a set Q ^ 0 is a system T C [0, l ] n such that 

(i) In e T, 

(ii) if a € T, then In - o € T, 
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(iii) if {an}n
<L1 is a sequence of elements of T, then 

min< Y^ anA \ E T. { 00 

n=l 

Every tribe T is a a-complete MV-algebra, where ( / 0 g)(u) = min{/(cj) + 
g(uj),l},u> e ft, moreover, T is a a-complete MV-algebra such that if {/n} is a 
sequence from T and fn /* f (pointwisely), then / G T. 

Let T be a tribe and denote by 

So(T):={ACSl:xAeT}. (10.1) 

Then (see [1], [9, Thm. 7.1.7] or [15]) 

(1) So(T) is a a-algebra of crisp subsets of fi. The set of all central elements of T 
is the set C(T) = {XA : A G S0(T)}. 

(2) If / G T, then */ is <S0(T)-measurable. 

(3) T contains all c?n(T)-measurable fuzzy functions on ft if and only if T contains 
all constant functions with values in [0,1]. 

(4) If s is a cr-additive state on T, then there exists a unique probability measure 
P on So(T) such that 

* ( / ) = / / M d P M , / e T , (10.2) 
Jo 

(theorem of Butnariu-Klement, [15, Thm. 8.1.12]). 

In what follows, we extend the result of Riecan [15, Sec 10.3] from a full tribe 
(i. e. a tribe of all measurable fuzzy sets on a measurable probability space (ft, <S, P)) 
which is closed with respect to the natural product of fuzzy sets to an arbitrary 
tribe which is not necessarily closed under the product. For example, if Tn = 
{0,1/n, 2 /n , . . . , 1}, then Tn, n > 2, is a tribe which is not closed under the natural 
product. 

We recall that if (fi,<S,P) is a probability space, / is any fuzzy set measurable 
with respect to S and So any cr-subalgebra of S, then E(f\So) denotes the conditional 
expectation of / with respect to So. If B = {Bi,... , Bn} is a measurable partition 
with respect to (fi,,S,P) such that P(Bj) > 0 for all j , then 

E(f\a(B)) = J2 L ^ j ^ /M dPMj XB„ 

where a(B) is a cr-algebra generated by B. 
In what follows, we suppose that the tribe T, the cr-additive state s on T and a 

probability measure P on <Sn(T) connected with 5 via (10.2) are fixed. 
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Proposition 10.1. Let A = {a i , . . . , a m } and B = {XB1? . •. ,XBn} be a partition 
and a Boolean partition of a tribe T with a o-additive state s. Let o(B) be a 
a-algebra generated by {f?i, . . . , i?n} in 5o(T). Then 

m ,. 

H(A\B) = Y, <t>(E(aMB)))dP. 

P r o o f . If XB is a central element of T and a an arbitrary element of T, then 
a A XB = a • XB- Therefore, if C = {c*j} is a (unique) Riesz refinement of A and #, 
we have Cij = a* A XB, = a i * XH, ar-d w e c a n check 

7I(.4|/3) = Hc(A\B) = Y,{s(xBi)<i>(j^y. s(XBj) > 0} 
lJ 

- UA^)iP 

- ?/o(?'fe/.H"'),,p 

- ? / „ * ( ? (jp-/.,-dp)w')dp 

= ^ ^ ( a i | a ( i 5 ) ) ) d P . D 

In the next theorem we will identify XB with B if necessary. 

Theorem 10.2. Let (T,s,T) be a dynamical system, where T is a tribe of fuzzy 
sets of a set fi ^ 0 and s is a a-additive state on T. Let B be a Boolean partition 
of ft such that (j([jnT

n(B)) = S0(T). Then, for every partition A = {a x , . . . , a m } , 
we have 

/»?M,T) < h^{B,T) + j(^4>(ai)\dP, 

h*n(A,T) < hn(B,T) + J^(JT$(<!<)) dF. 
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P r o o f . The condition cr({JnT
n(B)) = S0(T) implies that every Tn(B) is a 

Boolean partition, too. Put Bn = V^To* T{(B) for any n > 1. Due to the condi­
tion, we have a(Bn) /* S0(T). 

It is easy to show that h?(B,T) = hf(\Jk

=QT^(B),T) for any it. Therefore by 
(7.19) of [2], we have 

h?(A,T) < hf(B,T) + H?(A\Bn). 

Using the martingale convergence theorem and Proposition 10.1, it is possible to 
show that: 

m p m „ 

l imH?(^ |/3 n ) = l i m y ] / <j>(E(ai\c7(Bn))) dP = T <f> (E(ai\a(S0(T)))) dP 
n i = i I « £?•!« 

= E fa Mm) dp = j(fl <t>(*i)) dP 

In a similar way we obtain also the second inequality. Q 

As a corollary of Theorem 10.2 we have the known result of Kolmogorov-Sinai 
which determines hs(T), namely 

hB(T) = h?(B,T) = hn(B,T) 

if B satisfies the conditions of Theorem 10.2 because (j)(ai) = 0 for any central 
element a; and then h™(A,T) < ti^(B,T) for any Boolean partition A = {a^}. 

11. ENTROPY ON C J - C O M P L E T E MV-ALGEBRAS 

In this Section, we generalize Theorem 10.2 from a tribe to any cr-complete MV-
algebra, Theorem 11.3. The basic tool is the Loomis-Sikorski representation of a 
cr-complete MV-algebra as a cr-homomorphic image of a tribe [4, 12]. We recall that 
an MV-algebra M is semisimple if it is isomorphic with some Bold algebra. 

Denote by Ext^(M) the set of all extremal states on M. Then by [9, Thm. 6.1.30], 

E x t 5 ( M ) 7 - 0 , 

and it is a compact Hausdorff space with respect to the weak topology of states (i. e., 
mQ -> m iff ma(a) -» m(a) for any a G M), and any state m on M is in the closure 
of the convex hull of Exts(M). If a G M, then by d we denote the function defined 
on Q = Exts(M) such that a(u) = u>(a), u eQ. Then 

M = {a : a G M} 

is the Bold algebra isomorphic with M. ^ 
It is evident, that if A = {ai,... , am} is a partition in M so is A = {ai, . . . , am} 

in M, and A is Boolean if and only if A = {xAi > - • • > XAm } where Ai,... , Am is a 
partition in fi. 
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If M is a cj-complete MV-algebra, then M is semisimple and Exts(M) is basically 
disconnected (i.e. the closure of every open Fa subset of $7 is open). 

Denote by T = T(M) the tribe of fuzzy sets on ft which is generated by M. If 
f,9 € T, we write / ~ g if {u : f(u) 7-= g(u)} is a meager set. Then 1 = {/ G T : 
/ ~ 6} is a cr-ideal of T, and the mapping h : T -> M defined by /i(/) = a if and 
only if / ~ a (f G T, a G M), is a surjective a-homomorphism [4] such that /i maps 
S0(T) onto £ ( M ) , the Boolean elements of M [5], and T/l =* Af. That is /i(/) = a 
if and only if {u : f(u) ^ a(u)} is meager. This is a base of the original proof of 
Loomis-Sikorski's theorem for cr-complete MV-algebras. 

The triplet (£),T, h) is said to be the canonical representation of the cr-complete 
MV-algebra M. 

For example, if M is a cr-completeJVIV-algebra which is weakly divisible, then 
M has no discrete state. Therefore, M consists of all continuous functions defined 
on Q = Exts(M), T is the set of all Baire measurable fuzzy sets on ft, and C(T) 
is the Baire cr-algebra, i.e. the cr-algebra generated by compact Gs sets on ft, or 
equivalently, by I / " 1 ([a, 00)) : / G C(ft), aeR} [9, Prop.7.1.11]. 

If now s is a cr-additive state on the cr-complete MV-algebra M, then the mapping 
s defined on T by 

Hf) = s(h(f)), feT, (11.1) 

is a cr-additive state on T and by the previous section, there is a unique probability 
measure P on So(T) such that s(f) = JQ f(u) dP(u), f €T. 

Therefore, we have the following statements concerning entropies taken in M and 
T, respectively. 

(i) H(A)=H(A). 

(ii) If C € Refn(Ai,... ,An), then C G R e f ^ A , . . . ,An). 
HVe Rein(Ai ,...,An), then h(V) 6 Rein(Ai,..., An). H(V) = H(h(V)). 

(ІІІ) 

Hf(AiV---V.4„) := H?(ÁiV---VÁn), 

H^(AiV---VAn) := ^ ( . 4 i V - - . V . 4 n ) . 

(iv) Hc(A\B) = He(A\B). 

(v) 

H?(A1V---VAn\B1V---VBm) = # ? ( . 4 i V - - . V A „ | 5 i V - - . v £ m ) , 

H^MiV--.V.4„|BiV-..V/5m) = ^ ( A i V . . . V A „ | / 3 i V - . . V / f m ) . 

Let T be an s-preserving transformation on M, and let T be the mapping from M 

into itself induced by T, i.e., f(a) = T(a). Then s(f(a)) = s(a) = s(a) = s(T(a)). 
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(vi) 

H?(Á,Ť)n := H?(AVŤ(A)S/---VŤn-1(A)), 

K(A,Ť)n := Hn(ÁvŤ(Á)V---\/Ťn-1(Á)). 

(vii) 

(viii) 

h?(A,T) = hf(A,Ť):=\im-H:(Á,Ť)n, 
n n 

hn(A,Ť) = hn(Á,Ť):=\im-Hn(Á,Ť)n. 
n n 

h?(T) = h?(Ť):=sup{h?(A,Ť)}, 

hn(T) = hn(Ť):=sup{hn(Á,f)}. 

Proposition 11.1. Let A = {ai,. . . , a m } and B be a partition and a Boolean 
partition in a cr-complete MV-algebra M with a cr-additive state s. Let a(B) be a 
cr-algebra generated by B in So(T). Then 

H(A\B) = Y, * (E(aM(B)j) dP. (11.2) 
i = l J Q 

P r o o f . Let B = {bi,... ,bn} and let C = {cij = a\ A bj} be a unique Riesz 
refinement of A and B. Then C = {dij = ai A bj} is a unique Riesz refinement of 
A and Boolean B in M as well as in T. Take the cr-additive state s on T, then 
H(A\B) = H(A\B), and applying Proposition 10.1, we obtain (11.2). • 

We now extend the result of Theorem 10.2 from tribes to cr-complete MV-algebras. 
This result extends also the result of Riecan [15, Thm. 10.3.4] which was proved only 
for special tribes. 

We recall that if M is a cr-complete MV-algebra, then C(M), the center of M, 
is a Boolean cr-algebra. If A is a subset of C(M), by a(A) we mean the cr-algebra 
generated by A in C(M). 

Lemma 11.2. Let M be a cr-complete MV-algebra and let (ft, T, h) be the canon­
ical representation of M. Then the cr-algebra generated by C(M) is equal to So(T). 

P r o o f . It is clear that C(M) = {a : a e C(M)}. Since ft := Ext^(M), then 
a = XA for some A G So(T), and in addition, A is a clopen subset of ft. 

We define by So the set of all such that A G <So(T). We claim that So = SQ(T). 
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According to [11, Thm. 8.14], the space Exts(M) is homeomorphic with the set 
of all extremal states, Exts(C(M)), on the Boolean a-algebra C(M). In addition, 
any restriction of m G Ext$(M) gives an element of Exts(C(M)), and conversely, 
any element of Exts(C(M)) can be uniquely extended to an extremal state on M, 
and this correspondence defines the mentioned homeomorphism. 

Consequently, by the proof of the classical Loomis-Sikorski theorem, So is a o-
algebra of crisp subsets of ft, and due to the definition of /i, its restriction onto <S0 

defines a cr-homomorphism from So onto C(M). 
It is evident that S0 C So(T). On the other hand, A G So(T) iff XA € T, i.e., 

h(xA) = a for some a € M. Since XA is a Boolean element of T, so is a in M. 
Consequently, A G So. • 

Theorem 11.3. Let (M, s,T) be a dynamical system, where M is a cr-complete 
MV-algebra and 5 is a cr-complete state on M. Let B b e a Boolean partition of M 
such that (j([jnT

n(B)) = C(M). Then for every partition A = {aXj... , a m } , we 
have 

h?(A,T) < /*?(£,T) + ^ r f > ( a . ) j dP, 

hk(A,T) < h%(B,T) + j(Yi4,(ai)\dP. 

P r o o f . The condition a(\JnT
n(B)) = C(M) implies that every Tn(B) is a 

Boolean partition, too. So is fn(B) in T. Put Bn = V^o* -**(-*) f o r a n y n > -• D u e 

to Lemma 11.2, we have a(Bn) /* so(T)- Using properties of entropies in M and 
T, (i) - (vii) from the previous section, we can prove following the proof of Theorem 
10.2 the following inequalities 

h?(A,T) = h?(A,f) < h?(B,f) + H?(A\Bn) = h?(B,T) + H?(A\Bn). 

Using the martingale convergence theorem and applying Proposition 11.1, we can 
prove in the same way as in Theorem 10.2 that 

\im H?(A\Bn) = 
n 

This implies the inequality in question because h^(B,f) = ti^(B,T). rj 

We note that all above results from Sections 10-11 do not need any concept of 
a product MV-algebra while the refinement of a partition with a Boolean partition 
is unique and it coincides with the product of these two partitions (if the product 
is defined on the MV-algebra). The same is true also for effect algebras (product 
effect algebras are introduced in [8]). In particular, we have a solution to the Prob­
lem 7 from [14J where the authors are asking how we can proceed with entropy not 
assuming the product on the MV-algebra. 
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