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EIGENSTRUCTURE ASSIGNMENT 
BY PROPORTIONAL-PLUS-DERIVATIVE FEEDBACK 
FOR SECOND-ORDER LINEAR CONTROL SYSTEMS 

TAHA H.S . ABDELAZIZ AND MICHAEL VALASEK 

This paper introduces a complete parametric approach for solving the eigenstructure 
assignment problem using proportional-plus-derivative feedback for second-order linear con
trol systems. In this work, necessary and sufficient conditions that ensure the solvability for 
the second-order system are derived. A parametric solution to the feedback gain matrix is 
introduced that describes the available degrees of freedom offered by the proportional-plus-
derivative feedback in selecting the associated eigenvectors from an admissible class. These 
freedoms can be utilized to improve robustness of the closed-loop system. The main advan
tage of the described approach is that the problem is tackled directly in the second-order 
form without transformation into the first-order form and without mass matrix inversion 
and the computation is numerically stable as it uses only the singular value decompo
sition and simple matrix transformation. Numerical examples are included to show the 
effectiveness of the proposed approach. 

Keywords: eigenstructure assignment, second-order systems, proportional-plus-derivative 
feedback, feedback stabilization, parameterization 

AMS Subject Classification: 93B55, 93C35, 93D15 

1. INTRODUCTION 

Many physical systems can generally be described by systems of second-order dif
ferential equations. The second-order system arises naturally in a wide variety of 
applications, including, control of large flexible space structures, spacecraft con
trol, control of mechanical multibody systems, robotics control, vibration control in 
structural dynamics and earthquake engineering. In recent years, control design for 
the second-order system has gained much attention (e.g. [1-9]). The research of 
the second-order systems has gradually developed techniques that utilize the special 
structure and properties of such systems. 

In [9] the criteria for the determination of controllability and observability for 
linear second-order systems have been discussed. The dynamic characteristics of 
certain types of mechanical systems can be improved effectively by directly assigning 
desired eigenvalues and associated eigenvectors that is called eigenstructure assign
ment. Concerning the eigenstructure assignment of second-order systems, only little 
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research has been done under proportional and derivative feedbacks ([6, 8]). 

In [8] it was proposed an algorithm of eigenstructure assignment for second-order 
systems using proportional and derivative feedbacks. In this approach, a set of target 
eigenvectors have to be prescribed, and the aim is to assign a set of closed-loop 
eigenvectors which are as close as possible to the prescribed target eigenvectors in a 
least-squares sense. The approach does not provide any design degrees of freedom 
and the closed-loop eigenvalues are restricted to be different from the open-loop 
ones. Moreover, the mass, damping and stiffness matrices are all restricted to be 
positive or semi-definite symmetric. 

Recently, in [6] it was presented a complete parametric approach of eigenstruc
ture assignment problem for second-order linear systems using proportional-plus-
derivative controller. Complete parametric expressions for both the closed-loop feed
back gains and the eigenvector matrices are established in terms of the closed-loop 
eigenvalues and a group of free vectors. However, the approach needs the inversion 
of the mass matrix. As a consequence, if the mass matrix is ill-conditioned, then the 
eigenvalues and eigenvectors will not be computed accurately. Furthermore, some 
properties offered by the system matrices such as definiteness, sparseness, handed
ness, e tc , are completely destroyed. In addition, the solution involves two sets of 
singular value decompositions, which needs a lot of computations. 

The dynamic characteristics of mechanical systems can be improved effectively 
by direct assigning desired eigenvalues and associated eigenvectors that is called 
eigenstructure assignment (ESA). Assigning eigenvalues allows one to alter the sta
bility characteristics while assigning eigenvectors alters the transient response of the 
system. ESA for the second-order system have developed the design method for a 
wide class of systems under proportional and derivative feedbacks [6, 8]. However, 
only the proposed ESA solution in this paper is straightforward and fully utilizes 
the properties of the second-order system. It involves only one set of singular value 
decomposition and the inversion of the mass matrix is not needed. Consequently, 
this solution is more accurate. To design a control system for such a dynamic model, 
the second-order equations have been usually rearranged into the first-order (state-
space) form. However, for large structural systems, the resulting model suffers from 
the increased dimension. Additionally, the sparseness of the matrices is destroyed 
by matrix inversion. As a result, computational efficiency and physical insight are 
lost. 

The other method is recently available for stabilizing second-order models in [7]. 
It is introduced a new, different approach to robust stabilization of the second-
order systems with proportional-derivative compensators. A sufficient linear matrix 
inequality condition for robust stabilizability is obtained. 

The purpose of this paper is to present a simple numerical technique to solve 
ESA for the second-order system dynamic controller. The feedback control design 
based on a combination of proportional and velocity feedbacks. Complete para
metric expressions for both the closed-loop eigenvector matrices and the controller 
feedback gains are established in terms of the closed-loop eigenvalues and a group 
of free parameter vectors. The main computation involves only the singular value 
decomposition (SVD) that is stable in nature or a series of simple elementary matrix 
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transformations if the desired eigenvalues not known a priori. The approach utilizes 
directly the original system data. The main advantages of the algorithm, besides 
being simple and numerically stable, are that it avoids complex arithmetics and it 
is easy to be implemented on a computer. 

This paper is organized as follows. In the next section, the ESA problem formula
tion using proportional-plus-derivative feedback is described. Moreover, a complete 
parametric solution to this problem is presented. In Section 3, the illustrative ex
amples are presented to show the effectiveness of the proposed technique. Finally, 
conclusions are discussed in Section 4. 

2. EIGENSTRUCTURE ASSIGNMENT BY PROPORTIONAL-PLUS-
DERIVATIVE FEEDBACK FOR SECOND-ORDER LINEAR SYSTEMS 

In this section, we present an explicit parametric approach for solving the ESA 
problem for the second-order systems using proportional-plus-derivative feedback. 

2.1. Eigenstructure assignment problem formulation 

Consider a second-order linear, time-invariant, system equation in the form 

Mx (t) + Dx (t) + Kx (t) = Bu (t), x0, x0 given (1) 

where x(t) G Rn is the vector of internal generalized coordinates, u(t) G Em is 
the control vector, M,D}K G Mn x n and B G R n x m are, respectively, the mass, 
damping, stiffness and control matrices, and an overdot represents a differential with 
respect to time. The fundamental assumption imposed on the system is that the 
system is completely controllable [9]. The corresponding quadratic pencil (charac
teristic polynomial matrix) is 

P(X) = X2M + XD + K (2) 

and system (1) is regular if and only if det(P(A)) does not vanish identically. In this 
work we restrict ourselves to the regular quadratic pencils. The roots of det(P(A) = 
= 0 are known as the eigenfrequencies of the system and play an important role in 
system stability. Stability of the system implies that these zeros must lie in the open 
left half plane. 

The objective is to stabilize the system by means of a linear proportional and 
derivative feedback controller of the form 

u(t) = Fxx(t)-F2x(t), F = [FUF2] (3) 

where F i and F2 G E m x n are, respectively, constant proportional and velocity 
feedback matrices, which assigns prescribed closed-loop eigenvalues and eigenvectors 
that stabilize the system and achieve the desired performance. By the substitution 
of (3) into (1), we obtain the closed-loop system 

Mx(t) + Dx(t) + Kx(t) = -B(FlX(t) + F2x(t)). (4) 
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Then the problem is to find the matrices F\ and F2 such that the eigenvalues and 
eigenvectors of the associated closed-loop quadratic pencil 

Pc(\) = \2M + \(D + BF2)) + (K + BFX) (5) 

can be altered as required to ensure and improve the stability of the system. The 
problem of finding Fi and F2 such that the closed-loop quadratic pencil Pc(\) has a 
desired set of eigenvalues and eigenvectors is called the ES A problem for the system 

(!)• 
For analysis and design purposes, the system dynamics are usually transformed 

to the standard first-order state form by introducing the 2nx 1 dimensional state 
vector z(t)T = [x( t)T ,xT] as follows 

z(t) = Az(t) + Bu(t) (6) 

where 

A = ( -M-'K -M-'D ) a n d h = ( M-iB ) W 

where In is the nxn identity matrix. Throughout this paper, M is assumed to be 
invertible. 

The state controller is of the form 

u(t) = -Fz(t), Ғ = [Г,T 2 ] . (8) 

Then the closed-loop system dynamics becomes 

ż(ť) = Acz(ť) (9) 

where 

AC = (A- BF) =1 ., ° ч , / " ì . 
v ' \ -м-Ҷк + БFi) -M-ҶD + BFІ) 1 

(10) 

In the majority of methods that have been proposed for solving this problem, the 
second-order system (1) is rewritten as a first-order system (6) and the techniques 
for treating the linear feedback design problem can be applied. However, several 
difficulties arise and retaining the model in the matrix second-order form has many 
advantages as follows: 

1. Physical insight of the original problem is preserved; 

2. It is computationally efficient as the dimension of the system is lower than 
that of the first-order form; and 

3. System matrix sparsity and any other special nature of the original matrices 
are preserved, which is useful in analysis and design. 

The above concerns favor tackling ESA problem in second-order form directly. 
Let r = {A* G C, i = 1,.. .,r, 1 < r < 2n} be a set of desired self-conjugate 

eigenvalues, where r is the number of distinct eigenvalues, and denote the algebraic 
and geometric multiplicity of the ith eigenvalue \{ by m* and <ft, respectively, (1 < 
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qi <rrti). The length of qi chains of generalized eigenvectors with Xi are denoted by 
Pijy (J = 1, - • •, 9*)- Then in the Jordan canonical form of the closed-loop matrix, 
there are qi blocks associated with the ith eigenvalue Xi of orders pij. It satisfies 

s qi 

- = 1 j=l 

Let the right eigenvector and generalized eigenvectors of the closed-loop matrix 
with Xi be denoted by vijyk G C?n, i = l , . . . , r , j = 1 , . . . , ^ , k = l , . . . , p y . 
According to the definition of the right eigenvector and generalized eigenvectors for 
a multiple eigenvalue, then 

AcVijjk = XiVijtk + Vijjk-i, Vijy0 = 0, Vi, j , k. (11) 

This equation demonstrates the relation of assignable right eigenvector and gener
alized eigenvectors with the associated eigenvalue. The notations of the set Vijjk are 
defined as 

v S ( v 1 , . . . > v r ) = ( ^ ) = ( ^ ; ;;;; ^ ) e e — , 

v% = &«,»-,^ev**' (12) 
where / = 1,2, and Vi G C 2 n x m contains all right eigenvector and generalized 
eigenvectors associated with the eigenvalue Xi, and det(V') ^ 0. 

Then the ESA problem for second-order linear systems using proportional and 
derivative feedback can be formulated as follows: 

ESA Problem. Given the real matrices M,D\K and B, and the desired 2n 
self-conjugate set T, find real proportional and derivative feedback gain matrices F\ 
and F<2 E l m x n such that the spectrum of the closed-loop quadratic pencil PC(X) 
has admissible eigenvalues and associated eigenvectors. 

The aim now is to develop a simple algorithm, which manipulates the system 
data, and solve the above problem. 

2.2. Solution to e igens t ruc ture assignment problem 

In this subsection, the solution to ESA problem for second-order system is intro
duced. 

Utilizing (10), then equation (11) can be rewritten as 

/ 0 In 

\ -M-^K + BFx) -M~l(D + BF2) 

= Xi( fk) + (V)*~1)' ^ 0 = = ° ' Vi'̂ ' (13) 
\ Vii,k ) \ Vij,k-1 ) 
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The above equation can be decomposed into 

vij,k = *ivlj,k + vij,k-i > vh,o = °> Vi> 3, k (14) 

and 

-M~\(K + BF{)v\j,k + (D + BF2)v
2

j<k) = A . t ^ + v 2 ^ , v2
jfi = 0, Vi, j , k. 

(15) 
Then the above equation can be rewritten as 

(K + BF{)v\i,k + {D + BF2)v
2
j<k = -\iMv2

j<k - Muj^. . . , Vt, j , k. (16) 

Utilizing (14) and substitute in (16), this leads to 

Kv}itk + (\iM + D)(\iv}itk + v\itk_1) + B(F1v}itk + F2v
2
hk) = -Mv?Jtk_ltVi, j , k. 

(17) 
Collecting similar terms in (17), we can get 

(\2
iM+\iD+K)v}jtk+B(F1v}jtk+F2v

2
j>k) = -(AiM+JD)i;JiiJfc_1-Mt;?itfc_1,Vt> j , k. 

(18) 
Let the auxiliary vectors 

Wij,k=F1v\j<k + F2v
2
ijke<IJn,i = l,...,r, j = !,'...,qh k = l,...,Pij, (19) 

are introduced. The set of Wij>k is denned in a similar manner to the set of Vijtk as 

w = [w1,...,wr]ecn*2n, W.EE[wil,...,wig.]€<cmx"\ 

Wij = K , i , . . . , wij,Pij] e c 1 *™. (20) 

This leads to 

(A?M+AiD+K)t/JM+i3ti;<i,* = -(^M+D^y^-Mv^^v^o = 0, Vi, j , k. 
(21) 

The above equation can be equivalently written in the following compact matrix 
form 

(22) [XfM + XiD + K.B] ( v«.* ) = -[AiM+ D,M]t;iJ|jb_il vy,0 = 0, Vi, j , k. 
\ wij,k J 

Then parameter vectors v\^k G C*. and tuy,* G C™ are arbitrary chosen under the 
condition that the columns of matrix V are linearly independent. 

The auxiliary vectors in (19) can be rewritten as 

V1 

wij,k = [F1,F2][ fk )=[F1,F2]vij,k. (23) 
vü,k 

A parametric solution to the ESA problem by proportional and derivative feedbacks 
is derived as 

[FUF2] = WV~\ (24) 

There exists a real feedback gain matrix F if the following conditions are satisfied: 
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1. The desired closed-loop eigenvalues are closed under complex conjugation; 
2. The right generalized eigenvectors {vij}k G C1 , i = 1 , . . . ,r , j = 1, . . L,<?i, k = 

1 , . . . ,pij} are linearly independent and for complex-conjugate poles, Ai2 = A^ 
then vi2jik = viljik; and 

3. There exists a set of vectors {wijik G C™, i = l , . . . , r , j = 1, . . . , # , fc = 
1 , . . . ^ i j } , satisfying (22) and w^-,* = Wili>fc for Ai2 = A^. 

Then the feedback gain matrix is parameterized directly in terms of the eigen
structure of the closed-loop system, which can be selected to ensure robustness by 
exploiting freedom of these parameters. In the following, we obtain the simple and 
more general parametric solutions of Vijjk and Wijjk in (22). A complete paramet
ric form is introduced and a new procedure is derived which yields a parametric 
expression for F involving free parameter vectors. 

2.3. Paramete r iza t ion approach for the eigenstructure assignment 

The aim now is to find a parametric solution to the ESA problem via proportional-
plus-derivative feedback. We remark that developing parametric solutions to this 
problem is useful in that one can then think of solving other important variations 
of the problem, such as the robust ESA problem by exploiting freedom of these 
parameters. Concerning the controllability of second-order system, the following 
lemma is introduced [9]. 

Lemma 1. (See [9].) The second-order system (1) is controllable if and only if 

rank[A2M + AD + K,.B]=n, V A G C. (25) 

Based on the controllability of the second-order system, the parametric formula 
is derived. Applying the singular value decomposition (SVD) to the matrix [A?M-F 
Ai-D + K, B] gives 

[%M + \iD + K,B] = XiTiQj, ri = [£i,0], z = l,...,r (26) 

where Ti G Cn X(n + m) is a matrix containing all singular values of the matrix [Xf M+ 
XiD + K], £i G C n x n is a nonsingular diagonal matrix, and Xi G C n x n and 
Qi G c ( n + m ) x ( n + m ) are two orthogonal matrices. The columns of the matrix Xi 
and columns of the matrix Qi are the left and right singular vectors of the matrix 
[XfM + XiD + K, B]. Then we have 

Xj[X2
{M + XiD + K,B]Qi = [Zi, 0], £i = diag{<7a,- • • ,*in}. (27) 

Pre-multiplying the above equation by S^"1, yields 

Pi[A?M + AiD + K, B] Qi = [Jn , 0] (28) 

where 
Pi = S~lXj = d i agp /au , • • •, l/<Tin}Xj G C1*". 
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Further, partition matrix Q{ into the following form 

«<-(&: «£)• i=i  

where Qin G C l x n , Q i 4 2 G C n x m , Q i 2 1 G C m X n and Q i 2 2 G C m x m . 
Now, we have the following theorem for solution to the ESA problem for second-

order system by proportional and derivative feedback. 

Theorem 1. Let the second-order linear system (1) be controllable, and matrix 
M is nonsingular. Then all the solutions to v}jk and Wijtk in (22) are given by 

($*)-Q,(-P**M+
l
D>Mi«*-1). »*° = 0. V. , / ,* . (29, 

V Wij>k J \ Jij,k J 
Then the vectors can be written as 

vljtk = -Qi^PilXiM + DiMtyij^+Qi^Sij,^ 

*ijtk = A ^ j ,*+ v i i , * - i> (30) 
mj,k = -Qit2lPi[\iM + U , Af]vyfib_i + QiwfijikyVijfl = 0, Vz, j , k 

where Sijyk € C71, i = 1 , . . . , r, j = 1 , . . . , <fr, A; = 1 , . . . ,py, are a set of arbitrarily 
free parameter vectors satisfying the following constraints: 

det(V) ^ 0 and fi2Jtk = filjtk if Air2 = \ h , (for real gain) 

and Pi and Q; are matrices satisfying (28). 

P r o o f . We need to prove that the set of vectors satisfying (22) and the set of 
vectors given by (29) are equal. Then using (22) and (29), yields 

[X\M + XiD + K,B)(^k ) 
\ wij,k J 

= [A?M + XiD + K, B] Qi ( ~Pi[XiM + D>M^*"1 ) 
\ Jihk J 

= -TM-V., o] ( ~Pi[XiM +
f
 D'M]Vii'"-1 ) (3D 

\ Jihk J 
= -[\iM + D,M]vijtk-U vijt0 = 0, Vi, j , A;.. 

Therefore, the vectors given by (29) satisfy (22). Now, we show that vectors v\jk 

and Wijtk in (22) (i = 1 , . . . , r, j = 1 , . . . , qi, k = 1 , . . . ,py) can be expressed in the 
form of (29). From (28) one can obtain 

Pi[\
2iM + \iD + K,B] = [Iny0}Qi\ i = l,...,r. (32) 

The above equation can be expressed as 

Pi[X*iM + XiD + K,B]( f?>k )=[In,0]Qi1( 5 '* ) , Vi,j,k. (33) 
\ Wij,k J \ Wij,k / 
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Utilizing (22), then 

-Pi[\iM + -D,M]v i j i k^ = [Jn , 0] ( ^ \ , vijik = 0, Vi, j , fc (34) 

where 

( . & ) - « • " ( & ) • V i ^ - ( 3 5 ) 

Then from (34) we obtain 

eyffc = - P i [ A i M + JDJM]uii |fc_iJ v«,o = 0, Vi, j , fc. (36) 

Substituting (36) into (35) we obtain (29). • 

Theorem 1 gives complete and explicit parametric solutions with the complete 
and explicit freedom of the ESA using proportional and derivative feedbacks. These 
solutions are expressed by the eigenvalues and a group of free parameter vectors, 
fij,k- By especially choosing the free parameter vectors, solutions with desired prop
erties can be obtained. The vectors /y t* represent the degrees of the freedom of 
ESA using proportional and derivative feedback. 

Remark 1. It should be noted that for the case of distinct eigenvalues (m* = qi = 1, 
r = 2n) the computations of Vi and Wi, take the simple form, and are given by 

vi = Qi,12f»vi = *iQiA2fi>Wi = Qi,22fi> t = 1, . . . , 2fl. (37) 

Then the feedback gain is 

- 1 

[FuF2}=(Q1<22fu...Q2nt22f2n)(
 Q ^ f l - Q%»hn 1 . ( 3 8 ) 

\ A lWl,12/ l •*• A2nQ2n,12J2n ) 

Remark 2. For single-input system (m = 1), the parameter vectors fijik reduce 
to scalars and accordingly, the feedback gain is unique regardless of the choice of 

/«.*• 

Remark 3. In the case that the closed-loop eigenvalues Aj, i = 1 , . . .,2n are not 
known a priori, one may seek, instead of the matrices Pi and Q{ satisfying (28), the 
unimodular polynomial matrices P(A) and Q(\) satisfying the following equation 

P(\)[\2M + \D + K, B] Q(\) = [In, 0]. (39) 

These reductions can be completed by a series of simple elementary matrix trans
formations. The Smith canonical form is used that exploits the fact that for a con
trollable second-order system (1) the matrix [\2M+\D + K, B] maintains full rank 
for all values of A. The Smith canonical form constructs two unimodular matrices 
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P(\) and Q(\) that diagonalize a given polynomial matrix as (39). Consequently, 
the augmented matrix 

/ / . *M + XD + K B\ 

\ o In+m J ' 
can be changed into the form of 

" = ' " QW J' (41) 

By applying a series of row elementary transformations within the upper n rows and 
a series of column elementary transformations within the last n + m columns the 
matrices P(\) and Q(\) in matrix H are unimodular and automatically satisfying 
(39). 

Based on the discussion and analysis above, an algorithm for solving the ESA 
problem for second-order system can be given as follows: 

ESA Algorithm. 

Input. Real matrices M,D,K,B, where the system is controllable and M is 
nonsingular, and a set of 2n self-conjugate complex numbers. 

Step 1. Using Singular value decomposition (SVD) to obtain the matrices Pi and 
Q{, i = 1 , . . . , r, as in (28), or a series of simple elementary matrix transformations 
if the desired eigenvalues are not known a priori 

Step 2. Choose arbitrary parameter vectors / y ^ G C71, i = 1 , . . . , r, j = 1 , . . . , qi, 
k = 1 , . . . ,pfj, in such a way that fi2j,k = fixj,k if \i2 = \h • 

Step 3. Calculate the eigenvectors vy^ G C?n, i = 1 , . . . , r, j = 1 , . . . , g,-, k = 
1 , . . . ,Pij, using (30). If the matrix Y is singular, then return to Step 2 and select 
different parameters fij,k, until V is nonsingular. 

Step 4. Compute the vectors Wijtk € C m , i = 1 , . . . , r, j = 1 , . . . , <#, k = 1 , . . . ,p ; j , 
using (30) and construct matrix W. 

Step 5. Compute the proportional and derivative feedback gain matrix using 

[FUF2} = WV'1. 

From the above results we can observe that the system poles can always be as
signed by proportional-plus-derivative feedback controller for any controllable system 
if and only if the mass matrix M is nonsingular. Based on the controllability of the 
second order system, this work proposes a solution to the ESA problem. Complete 
parametric expressions for both the closed-loop eigenvector matrices and the feed
back gains are established in the terms of the closed-loop eigenvalues and a group 
of free parameter vectors. Both the closed-loop eigenvalues and these parameters 
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can be properly chosen to produce a closed-loop system with desired system specifi
cations. The proposed approach is simple because the main computations involved 
are only the singular value decomposition and it utilizes directly the original sys
tem data. In the case of single-input, m = 1, there is only at most one solution. 
In the case of multi-input, m > 1, the solution is generally non-unique, and extra 
conditions must be imposed to specify the solution. 

In the following, two numerical examples are included to demonstrate the effec
tiveness of this procedure. 

3. ILLUSTRATIVE EXAMPLES 

In this section, we present numerical examples to illustrate feasibility and effective
ness of the proposed technique using a MATLAB version 6.5. 

Example 1. Consider the mechanical system shown in Figure 1. The system 
consisting of five material points linked by elastic springs [7], the points can slide 
without friction along their respective axes. Two external forces acting at masses 
1 and 5 control the system. Mass, distance to the origin at the equilibrium, and 
spring stiffness are given for each point in Table 1. 

Fig. 1. Five masses linked by an elastic spring. 

Table 1. System data. 

Point Mass Distance Spring Stiffness 
1 0.5093 0.8034 1-2 1.461 
2 0.9107 0.7430 2-3 1.369 
3 0.7224 0.9456 3-4 1.088 
4 0.8077 0.8810 4-5 1.203 
5 0.8960 0.7282 5-1 1.468 

The dynamical system equations are given by equations (1) where 

M = h, D = 05, 
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к = 

( 2.565 1.080 0 0 1.089 \ 

0.6038 0.8206 0.4766 0 0 

0 0.6009 1.504 0.4808 0 

0 0 0.4300 1.114 0.5131 

\ 0.6190 0 0 0.4626 0.8352 / 

and B 

( 0 1.964 \ 
O O 
O O 
O O 

\ 1.116 O / 

The open-loop eigenvalues are all purely imaginary and located at 

{± jl.7828, ±jl.3800, ±j l . l451, ±j0.5674 and ±j0.3506}. 

They correspond to the eigenfrequences of free vibrations of the masses. 

In the following, we consider the assignment of three different cases: 

Case 1: The desired closed-loop eigenvalues are 

{-1, -1.5, -2, -2.5, -3 , -3.5, -4, -4.5, -5 and -5.5}. 

Specially choosing 

h = [1, 6] T , h = [1, 3] T , h = [3, 2] T , U = [5, 1]T, h = [4, 5] T , 

h = [3, 1]T, h = [1, 2] T , h = [5, 1]T, h = [6, 0] T and / 1 0 = [2, 1]T 

and using the SVD as in (28) the matrices P ; and Qu i = 1, . . . , 5, can be obtained. 

Then the proportional and derivative feedback gain matrices are 

Ei = 10: 3 / -0.0411 1.2666 1.6800 1.0221 0.0150 (-0. 
\ 0.0Í 0993 -1.4734 -2.3437 -1.1630 0.0534 

and 

-0.0023 0.4460 -2.2141 0.2378 0.0092 
0113 -0.7263 1.8127 -0.5468 0.0038 

F _ m3 ( ~°-
F2 ~ 1 0 (, 0.01 

The computed closed-loop eigenvalues are 

-1.00000000000004, -1.50000000000472, 

-1.99999999998233, -2.50000000000172, 

-3.00000000004541, -3.49999999991008, 

-3.99999999996453, -4.49999999999473, 

-5.00000000018671, -5.49999999986991. 

) • 
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Case 2: The desired closed-loop poles are 

{ l±j , - 2 ± j , -3±j , -4±j and -5±j}. 

Choosing 

h = h = [1, 2] T , f3 = h = [3, 1]T, h = h = [2, 1]T, h = h = [1, 3] T 

and 
h = /io = [2, 3] T . 

A stabilizing controller is obtained as 

- _ / 28.6151 -399.3427 -532.2271 -289.2215 55.6172 \ 
\ 64.9285 -735.7233 -923.2887 -498.2693 32.5990 ) 

- _ / 2.3729 -218.9939 403.3329 -270.3257 11.2184 \ 
2 ~ v 8.9003 -416.6206 815.5803 -275.1871 2.9371 ) ' 

and 

Čase 3: The desired eigenvalues are 

{-1, - 1 , -2, -2, -3 , -3 , -4, -4, -5 and -5}. 

Choosing 

/n,i = /21A = /31A = /41.1 = /51A = [1,2] 

and 

/12A = /22A = /32A = /42A = /52A = [2,1] • 

Therefore 

/ 4.2169 14.9640 -28.8808 12.3616 48.6339 \ 
1 " V 58.7223 -439.7042 -790.0286 -279.8865 8.9084 ) 

/ 0.4773 -20.8923 -151.3115 -157.2235 11.2471 \ 
2 " " V 8.8840 -320.3067 281.9555 -1.3527 0.4311 ) ' 

and 

Example 2. Consider a linear system with n = 3 and m = 2 (cf. [3]). The 
equations of motion can be written in the form of (1) with 

40 -40 0 \ / 1 2 
M = diag{10,10,10}, D = 0,K= [ -40 80 -40 , £ - [ 3 2 ] . 

0 -40 80 / \ 3 4 

The system has zero damping and the open-loop eigenvalues are 

{±j3.6039, ±j2.4940 and ±j0.8901} 
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again expressing the eigenfrequences of free vibrations of the considered system. 
For this system, a pair of unimodular matrices P(X) and Q(A) satisfying (39) can 

be obtained as 
1 0 0 \ 

P(X) = | 0 1 0 
-1.5 -0.5 1 / 

and 

Q(Л) 

0 0 

0 0 

0 

5Л2 + 20 
0 0 0 

-0.5 0.5 1 + 

0.75 -0.25 

8 
Л2 + 4 

Л 2 - 2 0 
2Л2 + 8 

0 1/140 

1 1 1 
+ 30 5Л2 + 20 140 5Л2 + 20 

1/60 1/70 

Л2 8 8 6 8 
6 З Л 2 + 4 7 Л 2 + 4 

Л^ Л 2 +20 _____ Л2 + 20 
' + 12 + 2Л2 + 8 14 28 + 2Л2 + 8 J 

In the following, we consider the assignment of three different cases: 

Case 1: The desired closed-loop eigenvalues are 

{-1, -2, -3, -4, -5 and -6}. 

Choosing 

Һ = [1, 3] т , Һ = [1, 2] т , h = [3, 1]T, h = [1, 1]T, h = [4, 1] 
and 

h = [3, 2]T. 

The proportional and derivative feedback gain matrices are 

Fг 

and 

• ( 

" ( 

-251.3475 -114.3680 451.0617 
150.5340 61.5276 -164.3802 

-28.9236 30.9118 45.1396 
60.8117 -14.3807 -20.5231 

Case 2: The desired closed-loop poles are 

{-l±j2, -2±j2 and -3±j2}. 

Choosing 

h=h = [l, 2]T, fz = h = [3, 1]T and h = h = % l]1 
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Then the feedback gains are 

( 155.S 
^ - 4 7 . 

2533 -66.0528 176.7034 
0345 49.3438 -63.4364 

and 

E2 = 
_ / 87.3612 22.2568 14.3689 \ 
~ ^ -12.3185 -8.5007 -8.9000 ) 

Case 3: The desired eigenvalues are 

{-1, - 1 , -2 , -2 , -3 and -3}. 

Taking 

/ n , i = /2i,i = /3i,i = [1, 2]T and /12)1 = f22,i = /32,i = % 1]T. 

Therefore 

~i = 

and 

_ / -8.8357 -43.8065 -39.7076 \ 
~ ^ -8.6067 32.2746 66.6708 ) 

/ -99.7076 -6.5444 57.5545 \ 
2 ~ ^ 76.6708 3.5775 -23.4548 ) ' 

4. CONCLUSIONS 

In this paper, a complete parametric approach for solving the eigenstructure assign
ment problem for the second-order linear systems using linear proportional-plus-
derivative feedback is presented. The necessary conditions to ensure solvability are 
that the system is completely controllable and the mass matrix is nonsingular. A 
complete parametric form for both the closed-loop eigenvector matrices and the 
feedback gains are established. This parametric solution describes the available de
grees of freedom offered by the proportional-plus-derivative feedback in selecting the 
associated eigenvectors from an admissible class. The extra degrees of freedom of 
the choice of feedback gains are exploited to further improve the closed-loop robust
ness against perturbation. The main computation involves only the singular value 
decomposition and manipulates only the original system matrices. The principle 
benefits of the explicit characterization of parametric class of feedback controllers 
lie in the ability to directly accommodate various additional design criteria. 

(Received July 12, 2004.) 
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