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K Y B E R N E T I K A — V O L U M E 4 3 ( 2 0 0 7 ) , N U M B E R 2 , P A G E S 1 3 3 – 1 4 2

PROPERTIES OF FUZZY RELATIONS POWERS

Józef Drewniak and Barbara Pȩkala

Properties of sup-∗ compositions of fuzzy relations were first examined in Goguen [8] and
next discussed by many authors. Power sequence of fuzzy relations was mainly considered
in the case of matrices of fuzzy relation on a finite set. We consider sup-∗ powers of fuzzy
relations under diverse assumptions about ∗ operation. At first, we remind fundamental
properties of sup-∗ composition. Then, we introduce some manipulations on relation pow-
ers. Next, the closure and interior of fuzzy relations are examined. Finally, particular
properties of fuzzy relations on a finite set are presented.

Keywords: fuzzy relation, binary operation, relation composition, sup-∗ composition, rela-
tion powers, relation closure, relation interior
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1. INTRODUCTION

Main notions on fuzzy relations were introduced by L. A. Zadeh [19, 20] and de-
veloped by A. Kaufmann [9]. Simultaneously, J. A. Goguen [8] introduced L-fuzzy
relations and their sup-∗ composition applying the notion of complete lattice ordered
semigroup (closg, l-monoid) described by G. Birkhoff [1]. Powers of fuzzy relations
were introduced by A. Kaufmann [9] and examined by M. G. Thomason [16].

Our experience with fuzzy relations suffers from some misunderstanding about
assumptions necessary in their algebra. At first, G. Birkhoff [1] distinguished con-
ditions of infinite distributivity (conditions (1), (1’), p. 118 self-dual in Boolean lat-
tices) and complete distributivity of lattices (conditions (4), (4’), p. 119 self-dual in
complete lattices; cf. also G. Szász [17], section 31, conditions (3), (4) and (7), (8)).
However, J. A. Goguen [8] p. 151 referred to the condition of infinite distributivity as
to complete distributivity, which leads to false interpretation of assumptions. Next,
the results of the paper [8] can have false applications if they are copied literally
(without precise assumptions on L).

For example, in [8] Proposition 1, p. 162 we read ‘Composition of L-relations is
associative’, while assumptions used in the proof were explained on pp. 154–155 and
not repeated in Proposition 1. As a result we obtain a common conviction that sup-∗
composition with associative ∗ operation is also associative. Such false statement
(cf. [4], Example 6) is widely used for relation compositions with triangular norms
(cf. e. g. [7], Proposition 2.2; [11], formula (5.14) or [14], formula (7.1)).
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In this situation the exact examination of dependence between algebraic prop-
erties of ∗ operation and induced sup-∗ composition was necessary (cf. e. g. [4]).
First, we remind fundamental properties of sup-∗ composition (Section 2). Then, we
introduce some manipulations on relation powers and relation closures (Section 3).
Next, particular properties of fuzzy relations on a finite set are presented (Section 4).
Finally, we discuss powers in classes of fuzzy relations (Section 5).

2. FUZZY RELATIONS

We begin with a set X 6= ∅ and a binary operation ∗ : [0, 1]2 → [0, 1].

Definition 1. (Zadeh [19]) A fuzzy relation in a set X is an arbitrary function
R : X ×X → [0, 1]. The family of all fuzzy relations in X is denoted by FR(X).

As important examples of R ∈ FR(X) we consider the identity relation I = IX
and constant relations cX×X for c ∈ [0, 1], where cX×X(x, y) = c for x, y ∈ X.
In particular one has empty relation 0X×X and total relation 1X×X . We use set
theoretical operations on fuzzy relations as complement R′ = 1−R, inclusion R 6 S,
sum R ∨ S and intersection R ∧ S, which are defined pointwise for x, y ∈ X:

R 6 S ⇔ R(x, y) 6 S(x, y),

(R ∨ S) (x, y) = max(R(x, y), S(x, y)), (R ∧ S) (x, y) = min(R(x, y), S(x, y)).

By analogy, for arbitrary set T of indexes, T 6= ∅ we use
(∨

t∈T
Rt

)
(x, y) = supt∈T Rt(x, y),

(∧
t∈T

Rt

)
(x, y) = inf

t∈T
Rt(x, y) for x, y∈X.

Similarly, we consider the inverse R−1 of R, where

R−1(x, y) = R(y, x) for x, y ∈ X.

Definition 2. (Goguen [8]) By sup-∗ composition of fuzzy relations R,S ∈ FR(X)
we understand a fuzzy relation R ◦ S, where

(R ◦ S)(x, z) = supy∈X(R(x, y) ∗ S(y, z)), x, z ∈ X. (1)

In the case ∗ = min we simply say ‘relation composition’. By inf-∗ composition of
R and S we call R◦′S, where

(R◦′S)(x, z) = infy∈X(R(x, y) ∗ S(y, z)), x, z ∈ X. (2)

By direct verification we get (cf. [5], Theorem 2)

Theorem 1. (Duality principle) Let N : [0, 1] → [0, 1] be an involutory negation
and a ∗′ b = N(N(a) ∗ N(b)) for a, b ∈ [0, 1]. Compositions sup-∗ and inf-∗′ are
connected by the formula

infy∈X(R(x, y) ∗′ S(y, z)) = N(supy∈X(N(R(x, y)) ∗N(S(y, z)))), x, z ∈ X. (3)
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Example 1. Using matrix representation R = [ri,k] for fuzzy relations on a finite
set X = {x1, x2, . . . , xn}, where ri,k = R(xi, xk), i, k = 1, 2, . . . , n, we have (n = 3):

R =




0.1 1 0.3
0.8 0.2 0.4
0.5 0.6 0.7


 , S =




0.2 0.9 1
0.7 0.8 0.3
0 0.4 0.6


 ,

N(R) =




0.9 0 0.7
0.2 0.8 0.6
0.5 0.4 0.3


 , N(S) =




0.8 0.1 0
0.3 0.2 0.7
1 0.6 0.4


 ,

R ◦′ S =




0.2 0.4 0.6
0.4 0.4 0.3
0.5 0.7 0.6


 , N(R) ◦N(S) =




0.8 0.6 0.4
0.6 0.6 0.7
0.5 0.3 0.4


 ,

with ∗ = min, ∗′ = max, N(x) = 1− x, x ∈ [0, 1].

Because of formula (3) we obtain the direct dependence between properties of
sup-∗ composition and inf-∗′ composition (duality). Thus, we can omit detail consid-
erations of dual properties. However, min−max composition and inf-∗ composition
are still examined independently on sup-∗ composition (cf. e. g. [12] and [15]).

Properties of the above compositions depend on additional assumptions about the
operation ∗. Our assumptions on binary operations as associativity, neutral element
or zero element are based on [1], Chapter XIV.

Definition 3. (Drewniak and Kula [4]) Operation ∗ : [0, 1]2 → [0, 1] is infinitely
sup-distributive if

supt∈T (xt ∗ y) = (supt∈T xt) ∗ y, supt∈T (y ∗ xt) = y ∗ (supt∈T xt) . (4)

Operation ∗ is infinitely inf-distributive if
inft∈T (xt ∗ y) = (inft∈T xt) ∗ y, inft∈T (y ∗ xt) = y ∗ (inft∈T xt) . (5)

We are interested in a few particular properties of the relation compositions.

Theorem 2. (Drewniak and Kula [4]) Let T 6= ∅, R,St ∈ FR(X), t ∈ T . If
operation ∗ is increasing, then

R ◦
(∨

t∈T
St

)
>

∨
t∈T

(R ◦ St), R ◦
(∧

t∈T
St

)
6

∧
t∈T

(R ◦ St), (6)

R ◦′
(∨

t∈T
St

)
>

∨
t∈T

(R ◦′ St), R ◦′
(∧

t∈T
St

)
6

∧
t∈T

(R ◦′ St).
If operation ∗ is associative and infinitely sup-distributive, then sup-∗ composition
is associative and infinitely sup-distributive. Thus

R ◦
(∨

t∈T
St

)
=

∨
t∈T

(R ◦ St),
(∨

t∈T
St

)
◦R =

∨
t∈T

(St ◦R). (7)

Dually, if operation ∗ is associative and infinitely inf-distributive, then inf-∗ compo-
sition is associative and infinitely inf-distributive. Thus

R ◦′
(∧

t∈T
St

)
=

∧
t∈T

(R ◦′ St),
(∧

t∈T
St

)
◦′ R =

∧
t∈T

(St ◦′ R). (8)
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Theorem 3. (Drewniak and Kula [4]) If operation ∗ has zero element z = 0, neu-
tral element e = 1 and is associative, infinitely sup-distributive, then (FR(X), ◦) is
an ordered semigroup with identity I.
Dually, if operation ∗ has zero element z = 1, neutral element e = 0 and is as-
sociative, infinitely inf-distributive, then (FR(X), ◦′) is an ordered semigroup with
identity I ′.

As examples of the above semigroups we can consider left-continuous triangular
norms (case e=1) (cf. [10], p. 4). Unfortunately, property (7) is usually stated for
triangular norm ∗ without additional assumptions (cf. e. g. [11], formula (5.15)
or [14], formula (7.2)). Moreover, formula (7.3) in [14] wrongly states that sup-∗
composition is infinitely inf-distributive. Thus we need some examples.

Example 2. Let T = (0, 1), c ∈ (0, 1), card X = 2,

R =
[
c 0
c c

]
, St =

[
t t
0 t

]
.

Operation (cf. [10], Example 1.2)

x ∗ y =

{
min(x, y), max(x, y) = 1
0, max(x, y) < 1

is a triangular norm but it is not left-continuous. Using sup-∗ composition we get

R ◦
(∨

t∈T
St

)
= cX×X > 0X×X =

∨
t∈T

(R ◦ St)

contradictory to (7).

Example 3. Let us consider ∗ = min, card X = 2, c ∈ (0, 1),

R =
[
c 0
0 c

]
, S =

[
0 c
c 0

]
, U =

[
c c
c c

]
= cX×X .

Since R ∧ S = 0X×X , (R ∧ S) ◦ U = 0X×X , R ◦ U = S ◦ U = cX×X , then

(R ◦ U) ∧ (S ◦ U) = cX×X > 0X×X = (R ∧ S) ◦ U.

Therefore, sup-∗ composition is not distributive even with respect to the lattice
product. So it is not infinitely inf-distributive.

3. FUZZY RELATIONS POWERS

We consider the family D of all binary operations ∗ : [0, 1]2 → [0, 1], which are asso-
ciative and infinitely sup-distributive. As examples in D we can use left-continuous,
associative, increasing operations (cf. [4]). In particular, arbitrary left-continuous
triangular norm belongs to D. Using associative composition (1) we can consider
powers of fuzzy relation and further operations on powers.
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Definition 4. (Kaufmann [9]) Let ∗ ∈ D. The powers of a relation R are defined
by

R1 = R, Rm+1 = Rm ◦R, m = 1, 2, . . . . (9)

Its closure R∨ and interior R∧ are defined by

R∨ =
∨∞

k=1
Rk, R∧ =

∧∞

k=1
Rk. (10)

If operation ∗ is monotonic (increasing or decreasing with respect to the first and
to the second variable), then sup-∗ and inf-∗ compositions are monotonic of the same
kind (cf. [4], Section 3). In particular, if operation ∗ is increasing or sup-distributive,
then sup-∗ composition is increasing. By mathematical induction relation powers
are increasing and one has

Theorem 4. Let ∗ ∈ D, R, S ∈ FR(X). If R 6 S, then

Rn 6 Sn, n = 1, 2, . . . , R∨ 6 S∨, R∧ 6 S∧.

As a ‘lattice’ consequence we obtain

Theorem 5. If ∗ ∈ D and R, S ∈ FR(X), then

(R ∨ S)n > Rn ∨ Sn, (R ∧ S)n 6 Rn ∧ Sn, n = 1, 2, . . . ,

(R ∨ S)∨ > R∨ ∨ S∨, (R ∨ S)∧ > R∧ ∨ S∧,
(R ∧ S)∨ 6 R∨ ∧ S∨, (R ∧ S)∧ 6 R∧ ∧ S∧.

All the above inequalities can be strict for particular fuzzy relations.

Example 4. Let ∗ = ∧, X = [0, 1]. If we use projections R = P2, S = P1,

P1(x, y) = x, P2(x, y) = y, x, y ∈ [0, 1], (11)

then we get (R ∨ S) (x, y) = x ∨ y, (R ∨ S)2(x, z) = 1, x, y, z ∈ [0, 1]. Since R2 = R,
S2 = S, then (R ∨ S)2 > R2 ∨ S2, which implies (R ∨ S)∨ > R∨ ∨ S∨.

Example 5. Let ∗ = ∧, card X = 2, c ∈ (0, 1]. We have

R =
[
c 0
c c

]
, S =

[
c c
c 0

]
, R ∧ S =

[
c 0
c 0

]
.

Since R2 = R, S2 = cX×X , (R ∧ S)2 = R ∧ S, then we obtain

(R ∧ S)2 = R ∧ S < R = R2 ∧ S2, (R ∧ S)∨ = R ∧ S < R = R∨ ∧ S∨.
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Theorem 6. Let R ∈ FR(X). If operation ∗ is commutative, then

(R ◦ S)−1 = S−1 ◦R−1.

Moreover, if ∗ ∈ D, then
(R−1)n = (Rn)−1, n = 1, 2, . . . ,

(R−1)∨ = (R∨)−1, (R−1)∧ = (R∧)−1.

P r o o f . Let x, z ∈ X. We obtain

∀
x,z∈X

(R ◦ S)−1(z, x) = (R ◦ S) (x, z) =
∨

y∈X
R(x, y) ∗ S(y, z)

=
∨

y∈X
R−1(y, x) ∗ S−1(z, y) =

∨
y∈X

S−1(z, y) ∗R−1(y, x) = (S−1 ◦R−1) (z, x).

Now, by mathematical induction we get the formula with powers and properties of
supremum and infimum in [0, 1] finishes the proof. ¤

Example 6. Let ∗ = P1 (cf. (11)), X = [0, 1], R(x, y) = x ∧ y, x, y ∈ [0, 1].
We have R−1 = R, (R−1)2 = R2, where R2 = P1, while (R2)−1 = P2. Therefore
(R2)−1 6= (R−1)2, which shows that we need a commutative operation ∗ in the above
theorem.

Since the relation composition is not commutative, we must restrict some con-
siderations to commuting pairs of relations, i. e. R,S ∈ FR(X), with property
R ◦ S = S ◦R. By mathematical induction we get

Theorem 7. Let ∗ ∈ D. If R,S ∈ FR(X) are commuting, then all their powers
also commute, i. e.

Rk ◦ Sp = Sp ◦Rk, k, p = 1, 2, . . . .

In particular, arbitrary two powers of R commute and

Rk ◦Rp = Rp ◦Rk = Rk+p, (Rk)p = (Rp)k = Rkp, k, p = 1, 2, . . . .

Now, using mathematical induction and properties (7), (6) we get

Theorem 8. Let ∗ ∈ D. If R, S ∈ FR(X) commute, then

(R ◦ S)n = Rn ◦ Sn, n = 1, 2, . . . , (R ◦ S)∨ 6 R∨ ◦ S∨, (R ◦ S)∧ > R∧ ◦ S∧.

Example 7. Let ∗ = ∧, card X = 2, c ∈ (0, 1]. We have

R = S =
[

0 c
c 0

]
, R2 =

[
c 0
0 c

]
,

R ◦S = (R ◦S)2 = (R ◦S)∨ = (R ◦S)∧ = R2. Since R∨ = cX×X , R∧ = 0X×X , then
R∨ ◦ S∨ = R∨ > (R ◦ S)∨ and R∧ ◦ S∧ = R∧ < (R ◦ S)∧. Thus, the inequalities in
Theorem 8 can be strong.
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Theorem 9. If ∗ ∈ D and R ∈ FR(X), then

Rn ◦R∨ = R∨ ◦Rn = (R∨)n+1, (R∨)n =
∨∞

k=n
Rk > (Rn)∨, (12)

(R∧)n+1 6
{
Rn ◦R∧
R∧ ◦Rn 6

∧∞

k=n+1
Rk 6 (Rn+1)∧, n = 1, 2, . . . . (13)

P r o o f . By infinite sup-distributivity (7) we obtain

R ◦R∨ = R ◦
(∨

k
Rk

)
=

∨
k
Rk+1 =

∨∞

k=2
Rk,

R∨ ◦R =
(∨

k
Rk

)
◦R =

∨
k
(Rk ◦R) =

∨∞

k=2
Rk,

which proves that R and R∨ are commuting and by Theorem 7 we get the first
part of (12). The second part is obtained by mathematical induction using also the
infinite sup-distributivity (7). Inequalities (13) can be obtained in a similar way
using the sub-distributivity from (6). ¤

Example 8. Let ∗ = ∧, card X = 3, c ∈ (0, 1]. We have

R =




0 0 c
c c 0
0 c 0


 , R2 =




0 c 0
c c c
c c 0


 ,

R3 =



c c 0
c c c
c c c


 , R∧ =




0 0 0
c c 0
0 c 0


 ,

R4 = R∨ = cX×X ,

R∧ ◦R =




0 0 0
c c c
c c 0


 , R ◦R∧ =




0 c 0
c c 0
c c 0


 .

This shows that R◦R∧ 6= R∧ ◦R (fuzzy relations from both sides are incomparable).
In a similar way we can check that inequalities from the above theorem can be strong.

Theorem 10. If ∗ ∈ D and R ∈ FR(X), then

(R∨)∨ = R∨, (R∧)∧ 6 R∧, (R∧)∨ 6 (R∨)∧. (14)

P r o o f . Using properties (12) and (13) we obtain

(R∨)∨ =
∨∞

k=1
(R∨)k =

∨∞

k=1

(∨
i>k

Ri
)

=
∨∞

i=1
Ri = R∨,

(R∧)∧ =
∧∞

k=1
(R∧)k 6

∧∞

k=1

(∧
i>k

Ri
)

=
∧∞

i=1
Ri = R∧,
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(R∧)∨ =
∨∞

k=1
(R∧)k 6

∨∞

k=1

∧
i>k

Ri 6
∧

i>1

∨
k6i

Rk,

(R∨)∧ =
∧∞

k=1
(R∨)k =

∧∞

k=1

∨
i>k

Ri =
∧∞

i=1

∨
k6i

Rk,

which proves all parts of (14). ¤

Example 9. Let ∗ = ∧, card X = 3, c ∈ (0, 1]. Using fuzzy relation R from
Example 8 we get

(R∧)∨ =




0 0 0
c c 0
c c 0


 < (R∨)∧ = cX×X .

Similarly we get

S =




0 c 0
0 0 c
c c 0


 , S2 =




0 0 c
c c 0
0 c c


 , S3 =



c c 0
0 c c
c c c


 ,

S4 =




0 c c
c c c
c c c


 , S5 = cX×X , S∧ =




0 0 0
0 0 0
0 c 0


 .

Thus S∧ > 0X×X = (S∧)∧.

4. FUZZY RELATION POWERS ON A FINITE SET

In the case of finite set X (cf. Example 1) we can simplify the formula (10) of
relation closure.

Lemma 1. (Li [13]) If ∗ ∈ D and R ∈ FR(X), then

∀
m
∀

x,z∈X
Rm(x, z) =

∨
y1,...,ym−1

(∗)mp=1R(yp−1, yp), (15)

where y0 = x, ym = z.

Lemma 2. If ∗ ∈ D, ∗ 6 min, card X = n and R ∈ FR(X), then

∀
m>n

∀
x,z∈X

∃
q6n

Rm(x, z) 6 Rq(x, z).

P r o o f . Since operation ∗ is increasing and ∗ 6 min, then

a ∗ b ∗ c 6 a ∗ b, a, b, c ∈ [0, 1]. (16)

Let m > n, x, z ∈ X. Using Lemma 1 we get m+ 1 > n elements y0, y1, . . . , ym and
there exist indices i 6 k such that yi = yk. Using inequality (16) we can omit k − i
factors and obtain

R(x, y1) ∗ · · · ∗R(yi−1, yi) ∗ · · · ∗R(yk, yk+1) ∗ · · · ∗R(ym−1, yz)
6 R(x, y1) ∗ · · · ∗R(yi−1, yi) ∗R(yk, yk+1) ∗ · · · ∗R(ym−1, yz).
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Putting q = m− (k− i) we have Rm(x, z) 6 Rq(x, z) according to (15). After finite
number of steps we obtain such inequality with q 6 n, which finishes the proof. ¤

Directly from the above lemma we get

Lemma 3. If ∗ ∈ D, ∗ 6 min and card X = n, then

Rm 6
∨n

k=1
Rk for m = 1, 2, . . .

Theorem 11. (cf. Kaufmann [9]) If ∗ ∈ D, ∗ 6 min and card X = n, then

R∨ =
∨n

k=1
Rk. (17)

P r o o f . Let
P =

∨n

k=1
Rk.

By Lemma 3 one has P 6 R∨ 6 P , which proves (17). ¤

5. CONCLUDING REMARKS

Basic properties of fuzzy relations were considered by L. A. Zadeh [20] and A. Kauf-
mann [9]. We consider here only three examples of such properties for a short
presentation of possible results.

Definition 5. (Kaufmann [9], p. 16) Let R ∈ FR(X). Relation R is reflexive, if
I 6 R, symmetric, if R = R−1 and ∗-transitive, if R ◦R 6 R.

Theorem 12. (Drewniak [3]) Let ∗ ∈ D, n ∈ N. If relation R is reflexive, then
relations R−1, Rn, R∨, R∧ are reflexive. If R is symmetric, then R−1, Rn, R∨, R∧

are symmetric. If R is ∗-transitive, then R−1, Rn, R∧ are ∗-transitive.

As a consequence of property (14) we also get

Theorem 13. Let ∗ ∈ D. Closure R∨ is a ∗-transitive fuzzy relation for arbitrary
R ∈ FR(X).

We have summarized some results on sup-∗ powers of fuzzy relations. It is a pre-
sentation complementary to paper [2], where results are connected with the problem
of convergence of powers of fuzzy relations on a finite set. Our aim was to complete
formulas and inequalities useful in calculation on fuzzy relation powers. We have si-
multaneously discussed necessary assumptions with suitable counterexamples. Our
examination will be continued for powers of L-fuzzy relations (cf. [8]) or matrices
over residuated lattices (cf. [18]).

(Received April 11, 2006.)
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