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A SECOND–ORDER STOCHASTIC DOMINANCE
PORTFOLIO EFFICIENCY MEASURE

Miloš Kopa and Petr Chovanec

In this paper, we introduce a new linear programming second-order stochastic domi-
nance (SSD) portfolio efficiency test for portfolios with scenario approach for distribution
of outcomes and a new SSD portfolio inefficiency measure. The test utilizes the relationship
between CVaR and dual second-order stochastic dominance, and contrary to tests in Post
[14] and Kuosmanen [7], our test detects a dominating portfolio which is SSD efficient. We
derive also a necessary condition for SSD efficiency using convexity property of CVaR to
speed up the computation. The efficiency measure represents a distance between the tested
portfolio and its least risky dominating SSD efficient portfolio. We show that this measure
is consistent with the second-order stochastic dominance relation. We find out that this
measure is convex and we use this result to describe the set of SSD efficient portfolios.
Finally, we illustrate our results on a numerical example.
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1. INTRODUCTION

The questions how to maximize profit and how to diversify risk has been around
for centuries; however, both these questions took another dimension with the work
of Markowitz [10]. In his work, Markowitz identified two main components of port-
folio performance, mean reward and risk represented by variance, and by applying
a simple parametric optimization model found the optimal trade-off between these
two components. Unfortunately, these optimal portfolios are not consistent with
expected utility maximization unless the utility is quadratic or returns are normally
distributed; because of this Markowitz [11] suggested as more plausible the semivari-
ance instead of variance. Decades later Ogryczak and Ruszczyński [12] proved that
the optimal mean-semivariance portfolio is also optimal in second-order stochastic
dominance sense and vice-versa.

Stochastic dominance is another possible approach to portfolio selection. In eco-
nomics and finance it was introduced independently in Hadar and Russel [4], Hanoch
and Levy [5], Rothschild and Stiglitz [15] and Whitmore [19].1

1for more information see Levy [8] or Levy [9].
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The usual definition of stochastic dominance uses cumulative distribution func-
tion2, but the following alternative definition fits our questions better – it has nice
financial consequences with risk-averse agents, and is easier to understand in our
context. We say that risky asset X stochastically dominates (in the first-order)
risky asset Y , if and only if Eu(X) ≥ Eu(Y ) for every utility function (i. e. for ev-
ery non-decreasing function). If this holds only for the concave utility function (for
every risk-averter), we say that X stochastically dominates Y in the second-order.
This can be applied in the portfolio selection problem as a search for a portfolio that
no risk-averse agent would want to choose.

In this paper, we propose a new test of second-order stochastic dominance of a
portfolio relative to all portfolios created from a set of assets with discrete distribu-
tions. Until 2003, stochastic dominance tests considered only pairs of assets and not
the sets of assets; however, especially in finance we would like to know whether our
portfolio is the best one, or whether for any risk-averse agent there exists another
better portfolio. Therefore, a test for stochastic dominance efficiency was needed.
In 2003, Post [14] published a linear programming procedure for testing the second-
order stochastic dominance of a given portfolio relative to a given set of assets and
he discussed its statistical properties. Post used a primal approach and a representa-
tive characterization of concave utility functions. Therefore, his algorithm does not
identify the SSD efficient portfolio. On the other hand, linear programming algo-
rithm works in linear space in both numbers of assets and scenarios. Our approach
is thus slower, but it identifies the dominating SSD efficient portfolio. In the same
year, Ruszczyński and Vanderbei [17] developed a parametric linear programming
procedure for computing all efficient portfolios in the dual mean risk space (in the
second-order stochastic dominance sense). They used dual approach, the same as
we did, but they used another identity. Our test procedure should generate more
sparse matrix and, therefore, should be quicker. Furthermore, another linear pro-
gramming test for second-order stochastic dominance was presented in Kuosmanen
[7]. This test is based on comparisons of cumulated returns. It identifies a dominat-
ing portfolio but this dominating portfolio need not to be SSD efficient. Moreover,
the Kuosmanen test is computationally more demanding than our test.

Our approach is based on second-order stochastic dominance consistence with
Conditional Value-at-Risk (shown in Ogryczak and Ruszczyński [12]), and because
CVaR has a linear programming representation explored by Uryasev and Rockafellar
[18], it is sufficient to solve a linear program. Another connection of risk measures
and SSD relation was analyzed in [1] or [2]. We derive a LP sufficient and necessary
condition for SSD efficiency. Moreover, using convexity of CVaR, a necessary con-
dition is presented. In addition, our test identifies the dominating portfolio which
is already SSD efficient. With the help of this test, we introduce a SSD portfolio
inefficiency measure in the dual risk (CVaR) space. Our measure is consistent with
the second-order stochastic dominance relation and it is represented by a distance
between the tested portfolio and its dominating SSD efficient portfolio. If there exist
more dominating SSD efficient portfolios then the least risky portfolio is considered.
Since the set of SSD efficient portfolios can be non-convex, see Dybvig and Ross [3],

2and can be found in e. g. Levy [8] or Levy [9]
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we explore the convexity of this measure. We prove that all portfolios dominated by
a given portfolio form a convex set and the measure is convex on these sets.

The rest of the paper is organized as follows. A Preliminaries section with precise
assumptions and definitions for a stochastic dominance relation is followed by a
section dealing with CVaR. In Section 4, we state our main theorems, allowing us
to test the SSD efficiency of a given portfolio and to identify a dominating portfolio
which is already SSD efficient. Subsequent section defines the inefficiency measure in
dual risk (CVaR) space and presents the convexity results. This section is followed
by the numerical illustration in Section 6.

2. PRELIMINARIES

For two random variables X1 and X2 with respective cumulative probability dis-
tributions functions F1(x), F2(x) we say that X1 dominates X2 by second-order
stochastic dominance: X1 ºSSD X2 if

EF1u(x)− EF2u(x) ≥ 0

for every u ∈ U2 where U2 denotes the set of all concave utility functions such that
these expected values exist. The corresponding strict dominance relation ÂSSD is
defined in the usual way: X1 ÂSSD X2 if and only if X1 ºSSD X2 and X2 �SSD X1.
According to Russel and Seo [16], u ∈ U2 may be represented by simple utility
functions in the following sense:

EF1u(x)− EF2u(x) ≥ 0 ∀u ∈ U2 ⇐⇒ EF1u(x)− EF2u(x) ≥ 0 ∀u ∈ V

where V = {uη(x) : η ∈ R} and uη(x) = min{x− η, 0}.
Set

F
(2)
i (t) =

∫ t

−∞
Fi(x) dx i = 1, 2.

The following necessary and sufficient conditions for the second-order stochastic
dominance relation were proved in Hanoch and Levy [5].

Lemma 1. Let F1(x) and F2(x) be the cumulative distribution functions of X1

and X2. Then

• X1 ºSSD X2 ⇐⇒ F
(2)
1 (t) ≤ F (2)

2 (t) ∀ t ∈ R

• X1 ÂSSD X2 ⇐⇒ F
(2)
1 (t) ≤ F (2)

2 (t) ∀ t ∈ R with at least one strict inequality.

Lemma 1 can be used as an alternative definition of the second-order stochastic
dominance relation.

Consider now the quantile model of stochastic dominance as in Ogryczak and
Ruszczyński [12]. The first quantile function F

(−1)
X corresponding to a real random
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variable X is defined as the left continuous inverse of its cumulative probability
distribution function FX :

F
(−1)
X (v) = min{u : FX(u) ≥ v}. (1)

The second quantile function F
(−2)
X is defined as

F
(−2)
X (p) =

∫ p

−∞
F

(−1)
X (t) dt for 0 < p ≤ 1

= 0 for p = 0
= +∞ otherwise.

The function F
(−2)
X is convex and it is well defined for any random variable X

satisfying the condition E |X| <∞. An interpretation of this function will be given
in Section 3.

Lemma 2. For every random variable X with E |X| <∞ we have:

(i) F
(−2)
X (p) = sup

ν
{νp− E max(ν −X, 0)}

(ii) X1 ºSSD X2 ⇐⇒
F

(−2)
1 (p)
p

≥ F
(−2)
2 (p)
p

∀ p ∈ 〈0, 1〉.

These properties follow from the Fenchel duality relation between F (2)
X and F (−2)

X .
For the entire proof of Lemma 2 and more details about dual stochastic dominance
see Ogryczak and Ruszczyński [12].

3. CVaR FOR SCENARIO APPROACH

Let Y be a random loss variable corresponding to the return described by random
variable X, i. e. Y = −X. We assume that E |Y | <∞. For a fixed level α, the value-
at-risk (VaR) is defined as the α-quantile of the cumulative distribution function FY :

VaRα(Y ) = F
(−1)
Y (α). (2)

We follow Pflug [13] in defining conditional value-at-risk (CVaR) as the solution of
the optimization problem

CVaRα(Y ) = min
a∈R

{
a+

1
1− αE [Y − a]+

}
(3)

where [x]+ = max(x, 0). This problem has always a solution and one of the mini-
mizers is VaRα(Y ), see Pflug [13] for the proof and more details. It was shown in
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Uryasev and Rockafellar [18] that the CVaR can be also defined as the conditional
expectation of Y, given that Y > VaRα(Y ), i. e.

CVaRα(Y ) = E (Y |Y > VaRα(Y )). (4)

If we use −Y and 1 − α instead of X and p, respectively, we can directly from
the definition of CVaR and Lemma 2 derive:

F
(−2)
X (p)
p

= −CVaRα(Y ),

and consequently

X1 ºSSD X2 ⇐⇒ CVaRα(Y1) ≤ CVaRα(Y2) ∀α ∈ 〈0, 1〉. (5)

From now on, let us assume that Y is a discrete random variable which takes
scenarios yt, t = 1, . . . , T with equal probabilities. Following Rockafellar and Uryasev
[18] and Pflug [13], (3) can be rewritten as a linear programming problem:

CVaRα(Y ) = min
a,wt

a+
1

(1− α)T

T∑

t=1

wt (6)

s. t. wt ≥ yt − a
wt ≥ 0.

Let y[k] be the kth smallest element among y1, y2, . . . , yT , i. e. y[1] ≤ y[2] ≤ . . .
≤ y[T ]. The optimal solution of (6) is derived in the following theorem.

Theorem 3. If α ∈
〈
k
T ,

k+1
T

〉
and α 6= 1 then

CVaRα(Y ) = y[k+1] +
1

(1− α)T

T∑

i=k+1

(y[i] − y[k+1]) (7)

for k = 0, 1, . . . , T − 1 and CVaR1(Y ) = y[T ].

P r o o f . Consider a random variable Y which takes values yt, t = 1, . . . , T with
probabilities p1, p2, . . . , pT . For a chosen α define jα such that

α ∈
〈
jα−1∑

j=1

pj ,

jα∑

j=1

pj


 .

Then the following formula was proved in Rockafellar and Uryasev [18]:

CVaRα(Y ) =
1

1− α







jα∑

j=1

pj − α


 y[jα] +

T∑

j=jα+1

pjy
[j]


 .
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Since pt = 1/T , t = 1, . . . , T we set: jα = k + 1 and the theorem follows. ¤

Combining Theorem 3 with (5) we obtain the necessary and sufficient condi-
tion for the second-order stochastic dominance. This conditions can be more easily
verified than the general conditions in Lemma 1, Lemma 2 or (5).

Theorem 4. Let Y1 = −X1 and Y2 = −X2 be discrete random variables which
take values yt1 and yt2, t = 1, . . . , T , respectively, with equal probabilities. Then

X1 ºSSD X2 ⇐⇒ CVaRα(Y1) ≤ CVaRα(Y2) ∀α ∈
{

0,
1
T
,

2
T
, . . . ,

T − 1
T

}
. (8)

P r o o f . Let αk = k/T , k = 0, 1, . . . , T − 2. Lemma 1 implies:

CVaRβ1(Yi) = CVaRβ2(Yi), i = 1, 2 for all β1, β2 ∈
〈
T − 1
T

, 1
〉
.

Thus it suffices to show that if

CVaRαk(Y1) ≤ CVaRαk(Y2) (9)
and

CVaRαk+1(Y1) ≤ CVaRαk+1(Y2) (10)

then it holds for all α ∈ 〈αk, αk+1〉. To obtain a contradiction, suppose that (9)
and (10) holds and there exists α̃ ∈ 〈αk, αk+1〉 such that CVaReα(Y1) > CVaReα(Y2).
From continuity of CVaR in α there exists α1 ∈ 〈αk, αk+1〉 and α2 ∈ 〈αk, αk+1〉,
α1 6= α2 such that

CVaRα1(Y1) = CVaRα1(Y2) (11)

CVaRα2(Y1) = CVaRα2(Y2). (12)

Substituting (7) into (11) and (12) we conclude that α1 = α2, contrary to α1 6= α2,
and the proof is complete. ¤

4. SSD PORTFOLIO EFFICIENCY CRITERIA

Consider a random vector r = (r1, r2, . . . , rN )′ of returns of N assets and T equiprob-
able scenarios. The returns of the assets for the various scenarios are given by

X =




x1

x2

...
xT




where xt = (xt1, x
t
2, . . . , x

t
N ) is the t-th row of matrix X. Without loss of generality

we can assume that the columns of X are linearly independent. In addition to the
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individual choice alternatives, the decision maker may also combine the alternatives
into a portfolio. We will use λ = (λ1, λ2, . . . , λN )′ for a vector of portfolio weights
and the portfolio possibilities are given by

Λ = {λ ∈ RN |1′λ = 1, λn ≥ 0, n = 1, 2, . . . , N}.

The tested portfolio is denoted by τ = (τ1, τ2, . . . , τN )′.

Definition 1. A given portfolio τ ∈ Λ is SSD inefficient if and only if there exists
portfolio λ ∈ Λ such that r′λ ÂSSD r

′τ . Otherwise, portfolio τ is SSD efficient.

This definition classifies portfolio as SSD efficient if and only if no other portfolio
is better for all risk averse and risk neutral decision makers.

In Post [14] and Kuosmanen [7], the SSD portfolio efficiency tests based on ap-
plications of Lemma 1 were introduced. We will derive sufficient and necessary con-
ditions for SSD efficiency of τ based on quantile model of second order stochastic
dominance, in particular the relationship between CVaR and SSD will be used.

We start with necessary condition using the following theorem. To simplify the
notation, set Γ =

{
0, 1

T ,
2
T , . . . ,

T−1
T

}
.

Theorem 5. Let αk ∈ Γ and

d∗ = max
λn

T−1∑

k=0

N∑

n=1

λn [CVaRαk(−r′τ )− CVaRαk(−rn)] (13)

s. t.
N∑

n=1

λn [CVaRαk(−r′τ )− CVaRαk(−rn)] ≥ 0, k = 0, 1, . . . , T − 1, λ ∈ Λ.

If d∗ > 0 then τ is SSD inefficient. Optimal solution λ∗ of (13) is an SSD efficient
portfolio such that r′λ∗ ÂSSD r

′τ .

P r o o f . If d∗ > 0 then there is a feasible solution λ of problem (13) satisfying

N∑

n=1

λn [CVaRαk(−r′τ )− CVaRαk(−rn)] ≥ 0, ∀αk ∈ Γ

where at least one strict inequality holds. For this λ we have

N∑

n=1

λnCVaRαk(−rn) ≤ CVaRαk(−r′τ ), ∀αk ∈ Γ

with at least one strict inequality. From the convexity of CVaR we obtain

CVaRαk(−r′λ) ≤
N∑

n=1

λnCVaRαk(−rn) ∀αk ∈ Γ.
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Hence
CVaRαk(−r′λ) ≤ CVaRαk(−r′τ ) ∀αk ∈ Γ

with at least one strict inequality and the rest of the proof follows from Theorem 4.
¤

The power of necessary condition in Theorem 5 depends on correlation between
random variables rn, n = 1, 2, . . . , N and portfolio τ can be SSD inefficient even if
(13) has no feasible solution or d∗ = 0. If d∗ = 0 then two possibilities may occur:

(1) Problem (13) has a unique solution λ∗ = τ . If this is the case then τ is SSD
efficient.

(2) Problem (13) has an optimal solution λ∗ 6= τ . In this case, τ is SSD inefficient
and r′λ∗ ÂSSD r

′τ . Moreover, λ∗ is an SSD efficient portfolio.

The situation when d∗ = 0, λ∗ 6= τ and τ is SSD efficient would imply Xλ∗ = Xτ
which contradicts the assumption of linearly independent columns of X.

If problem (13) has no feasible solution then we can employ the following necessary
and sufficient condition for SSD efficiency.

Theorem 6. Let αk ∈ Γ and

D∗(τ ) = max
Dk,λn,bk

T−1∑

k=0

Dk (14)

s. t.
CVaRαk(−r′τ )− bk −

1
1− αk

E max(−r′λ− bk, 0) ≥ Dk, k = 0, 1, . . . , T−1

Dk ≥ 0, k = 0, 1, . . . , T−1

λ ∈ Λ.
If D∗(τ ) > 0 then τ is SSD inefficient and r′λ∗ ÂSSD r

′τ . Otherwise, D∗(τ ) = 0
and τ is SSD efficient.

P r o o f . Let λ∗, b∗k, k=0, 1, . . . , T−1 be an optimal solution of (14). If D∗(τ )>0
then

b∗k +
1

1− αk
E max(−r′λ∗ − b∗k, 0) ≤ CVaRαk(−r′τ ) ∀αk ∈ Γ (15)

where at least one inequality holds strict. Since from the definition of CVaR we have

CVaRαk(−r′λ∗) = min
bk

{
bk +

1
1− αk

E max(−r′λ∗ − bk, 0)
}

we conclude from (15) that

CVaRαk(−r′λ∗) ≤ CVaRαk(−r′τ )

with at least one strict inequality. Hence r′λ∗ ÂSSD r
′τ and τ is SSD inefficient.
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If D∗(τ ) = 0 then problem (14) has unique optimal solution: λ∗ = τ , because
the presence of another optimal solution contradicts the assumption of linearly inde-
pendent columns of X. Thus there is no strictly dominating portfolio and hence τ
is SSD efficient. Since τ is always a feasible solution of (14), D∗ can not be negative
and the proof is complete. ¤

Nonlinear program (14) has N+2T+1 constraints and N+2T variables. Inspired
by (6) and following Pflug [13], Rockafellar and Uryasev [18], it can be rewritten as a
linear programming problem with 2T (T + 1) +N+ 1 constraints and T (T +2)+N
variables:

D∗(τ ) = max
Dk,λn,bk,wtk

T∑

k=1

Dk (16)

s. t.

CVaR k−1
T

(−r′τ )− bk −
1

(1− k−1
T )T

T∑

t=1

wtk ≥ Dk, k = 1, 2, . . . , T

wtk ≥ −xtλ− bk, t, k = 1, 2, . . . , T

wtk ≥ 0, t, k = 1, 2, . . . , T

Dk ≥ 0, k = 1, 2, . . . , T

λ ∈ Λ.
Using (16) instead of (14) in Theorem 6 we obtain a linear programming criterion

for SSD efficiency.
This sufficient and necessary condition requires to solve a smaller linear program

than it is in the Kuosmanen test. Furthermore, contrary to the Post and the Kuos-
manen test, it identifies SSD efficient dominating portfolio as a by-product.

5. A SSD PORTFOLIO INEFFICIENCY MEASURE

Inspired by Post [14] and Kopa and Post [6], D∗(τ ) from (14) or (16) can be con-
sidered as a measure of inefficiency of portfolio τ , because it expresses the distance
between a given tested portfolio and its dominating SSD efficient portfolio. If there
exist more dominating SSD efficient portfolios then the least risky portfolio, mea-
sured by CVaR, is considered. To be able to compare SSD inefficiency of two port-
folios we need to consider such a measure, which is “consistent” with SSD relation.

Definition 2. Let ξ be a measure of SSD portfolio inefficiency. We say that ξ is
consistent with SSD if and only if

r′τ 1 ºSSD r
′τ 2 ⇒ ξ(τ 2) ≥ ξ(τ 1)

for any τ 1, τ 2 ∈ Λ.

The property of consistency guarantees that if a given portfolio is worse than the
other one for every risk averse investor then it has larger measure of inefficiency. Let
Λ∗(τ ) ∈ Λ be a set of optimal solutions λ∗ of (14) or (16).
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Theorem 7.

(i) The measure of SSD portfolio inefficiency D∗ given by either (14) or (16) is
consistent with SSD.

(ii) If r′τ 1 ºSSD r
′τ 2 and both τ 1, τ 2 are SSD inefficient then

D∗(τ 2) = D∗(τ 1) +
T∑

k=1

[
CVaR k−1

T
(−r′τ 2)− CVaR k−1

T
(−r′τ 1)

]
.

(iii) If r′τ 1 ºSSD r
′τ 2 then

D∗(τ 2) ≥ D∗(τ 1) +
T∑

k=1

[
CVaR k−1

T
(−r′τ 2)− CVaR k−1

T
(−r′τ 1)

]
.

P r o o f . Applying Theorem 4, if r′τ 1 ºSSD r
′τ 2 then

T∑

k=1

[
CVaR k−1

T
(−r′τ 2)− CVaR k−1

T
(−r′τ 1)

]
≥ 0.

Hence it suffices to prove (ii) and (iii).
Let r′τ 1 be SSD inefficient. It is easily seen that (14) can be rewritten in the

following way:

D∗(τ ) = max
λn

T−1∑

k=0

[
CVaR k

T
(−r′τ )− CVaR k

T
(−r′λ)

]
(17)

s. t. CVaR k
T

(−r′τ )− CVaR k
T

(−r′λ) ≥ 0, k = 0, 1, . . . , T − 1

λ ∈ Λ.

Let λ∗(τ 1) ∈ Λ∗(τ 1), λ∗(τ 2) ∈ Λ∗(τ 2). Using Theorem 4 and r′τ 1 ºSSD r
′τ 2,

CVaR k
T

(−r′τ 2)− CVaR k
T

(−r′τ 1) ≥ 0 k = 0, 1, . . . , T − 1.

Since the sum of these differences does not depend on the choice of λ∗(τ 1), the
dominating portfolio λ∗(τ 1) is also an optimal solution of (14) when derivingD∗(τ 2),
i. e. λ∗(τ 1) ∈ Λ∗(τ 2). Hence

D∗(τ 2) =
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′λ∗(τ 2))

]

=
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′τ 1)

]

+
T−1∑

k=0

[
CVaR k

T
(−r′τ 1)− CVaR k

T
(−r′λ∗(τ 1))

]

= D∗(τ 1) +
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′τ 1)

]
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what completes the proof of (ii).
Let r′τ 1 be SSD efficient. From Theorem 6, we have D∗(τ 1) = 0. According

to (17),

D∗(τ 2) = max
λn

T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′λ)

]

s. t. CVaR k
T

(−r′τ 2)− CVaR k
T

(−r′λ) ≥ 0, k = 0, 1, . . . , T − 1

λ ∈ Λ.

Since r′τ 1 ºSSD r
′τ 2, portfolio τ 1 is a feasible solution of (17). Hence

D∗(τ 2) ≥
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′τ 1)

]

and combining it with (ii), the proof is complete. ¤

Since SSD relation is not complete, i. e. there exist incomparable pairs of port-
folios, the strict inequality of values of any portfolio inefficiency measure can not
imply SSD relation. Also for the measure D∗ some pair of portfolios τ 1, τ 2 can be
found such that D∗(τ 2) ≥ D∗(τ 1) and r′τ 1 �SSD r′τ 2.

In the following theorem, a convexity property of portfolio inefficiency measure
D∗ is analyzed.

Theorem 8. Let τ 1, τ 2, τ 3 ∈ Λ.

(i) If r′τ 1 ºSSD r
′τ 2 then

D∗(ητ 1 + (1− η)τ 2) ≤ ηD∗(τ 1) + (1− η)D∗(τ 2)

for any η ∈ 〈0, 1〉.

(ii) If r′τ 1 ºSSD r
′τ 2 and r′τ 1 ºSSD r

′τ 3 then

r′τ 1 ºSSD r
′(ητ 2 + (1− η)τ 3)

and
D∗(ητ 2 + (1− η)τ 3) ≤ ηD∗(τ 2) + (1− η)D∗(τ 3)

for any η ∈ 〈0, 1〉.

P r o o f . (i) Applying Lemma 1 for equiprobable scenario approach, we obtain

r′τ 1 ºSSD r
′τ 2 ⇒ r′τ 1 ºSSD r

′ (ητ 1 + (1− η)τ 2) ºSSD r
′τ 2
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for any η ∈ 〈0, 1〉. By analogy to the proof of previous theorem, if
λ∗(τ 1) ∈ Λ∗(τ 1) then λ∗(τ 1) ∈ Λ∗(τ 2) and λ∗(τ 1) ∈ Λ∗(ητ 1 + (1− η)τ 2). Hence

D∗(ητ 1 + (1− η)τ 2) =
T−1∑

k=0

CVaR k
T

(−r′[ητ 1 + (1− η)τ 2])

=
T−1∑

k=0

CVaR k
T

(−r′λ∗(τ 1))

D∗(τ 1) =
T−1∑

k=0

[
CVaR k

T
(−r′τ 1)− CVaR k

T
(−r′λ∗(τ 1))

]

D∗(τ 2) =
T−1∑

k=0

[
CVaR k

T
(−r′τ 2)− CVaR k

T
(−r′λ∗(τ 1))

]
.

Combining it with convexity of CVaR, we obtain

D∗(ητ 1 + (1− η)τ 2) =
T−1∑

k=0

CVaR k
T

(−r′[ητ 1 + (1− η)τ 2])

−
T−1∑

k=0

CVaR k
T

(−r′λ∗(τ 1))

≤ η

T−1∑

k=0

CVaR k
T

(−r′τ 1) + (1− η)
T−1∑

k=0

CVaR k
T

(−r′τ 2)

−η
T−1∑

k=0

CVaR k
T

(−r′λ∗(τ 1))

−(1− η)
T−1∑

k=0

CVaR k
T

(−r′λ∗(τ 1))

≤ ηD∗(τ 1) + (1− η)D∗(τ 2).

(ii) Applying Lemma 1 for scenario approach, we obtain:

r′τ ºSSD r
′λ⇐⇒

T∑

t=1

(xtτ − xtλ) ≥ 0 ∀ t = 1, 2, . . . , T. (18)

Hence T∑

t=1

(xtτ 1 − xtτ 2) ≥ 0 ∀ t = 1, 2, . . . , T

T∑

t=1

(xtτ 1 − xtτ 3) ≥ 0 ∀ t = 1, 2, . . . , T

and therefore
T∑

t=1

(xtτ 1 − ηxtτ 2 − (1− η)xtτ 3) ≥ 0 ∀ t = 1, 2, . . . , T
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for any η ∈ 〈0, 1〉. Thus, according to Lemma 1,

r′τ 1 ºSSD r
′(ητ 2 + (1− η)τ 3) for any η ∈ 〈0, 1〉.

Similarly to the proof of previous theorem, if λ∗(τ 1) ∈ Λ∗(τ 1) then λ∗(τ 1) ∈ Λ∗(τ 2),
λ∗(τ 1) ∈ Λ∗(τ 3) and λ∗(τ 1) ∈ Λ∗(ητ 2 + (1 − η)τ 3) for any η ∈ 〈0, 1〉 and the rest
of the proof follows by analogy to (i). ¤

Let I(τ ) be a set of all portfolios whose returns are SSD dominated by return of
τ , i. e.

I(τ ) = {λ ∈ Λ | r′τ ºSSD r
′λ}.

Theorem 8 shows that I(τ ) is convex and D∗ is convex on I(τ ) for any τ ∈ Λ. Both
these properties are consequences of convexity of CVaR. The following example
illustrates these results and we stress the fact that the set of SSD efficient portfolios
is not convex.

6. NUMERICAL EXAMPLE

Consider three assets with three scenarios:

X =




0 −1 0

1 0 0

2 7 5


 .

It is easy to check that λ1 = (1, 0, 0)′, λ2 = (0, 1, 0)′ and λ3 = (0, 0, 1)′ are SSD
efficient. Let τ 1 = λ3, τ 2 = ( 1

2 ,
1
2 , 0)′ and let τ 3 = ( 1

3 ,
2
3 , 0)′. ThenXτ 2 = (− 1

2 ,
1
2 ,

9
2 )

and according to (18), r′τ 1 ÂSSD r
′τ 2. Hence the set of SSD efficient portfolios is

not convex. Similarly, r′τ 1 ÂSSD r
′τ 3 and r′τ 1 ºSSD r

′τ 1. Applying Theorem 8,
a set of convex combinations of τ 1, τ 2, τ 3 is a subset of I(τ 1). We will show that
I(τ 1) consists only of convex combinations of τ 1, τ 2 and τ 3, i. e.

I(τ 1) =

{
λ ∈ Λ |λ = η1τ 1 + η2τ 2 + η3τ 3, ηi ≥ 0, i = 1, 2, 3,

3∑

i=1

ηi = 1

}
.

Substituting into (18) we can see that only portfolios λ ∈ Λ satisfying the following
system of inequalities can be included in I(τ 1):

−λ2 ≤ 0
λ1 − λ2 ≤ 0

3λ1 + 6λ2 + 5(1− λ1 − λ2) ≤ 5.

The graphical solution of this system is illustrated in the following Figure 1 and
we can see that the set of portfolios which returns are SSD dominated by return of
portfolio τ 1 is equal to the set of all convex combinations of portfolios τ 1, τ 2, τ 3.
Points A, B and C correspond to portfolios τ 2, τ 3, τ 1, respectively.

As was shown in Theorem 8 (ii), SSD portfolio inefficiency measure D∗ is convex
on I(τ 1). Figure 2 shows the graph of D∗ on I(τ 1). Since τ 1 is SSD efficient,
D∗(τ 1) = 0 and D∗(τ ) > 0 for all τ ∈ I(τ 1)\{τ 1}.
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Fig. 1. The set I(τ 1) of portfolios whose returns are SSD dominated

by return of portfolio τ 1 = (0, 0, 1).

Fig. 2. The graph of D∗ on I(τ 1).
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e-mail: kopa@karlin.mff.cuni.cz

Petr Chovanec, Suez LNG NA, LLC, One Liberty Square, 10th Floor, Boston, MA

02109. U. S. A.

e-mail: petr.chovanec@suezenergyna.com


		webmaster@dml.cz
	2012-06-06T19:38:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




