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Math. Slov., 26, 1976, No. 2, 77—95 

PARITY OF NUMBERS OF CROSSINGS 
FOR COMPLETE ^-PARTITE GRAPHS 

HEIKO HARBORTH 

Dedicated to Professor Dr. H. —J. Kanold on the occasion of his sixtieth birthday 

1. Introduction 

For the vertices of a graph G (without loops and multiple edges) we draw 
distinct points or small circles, called nodes, in the plane. Then we connect 
every pair of these nodes by a simple Jordan arc if the corresponding vertices 
of G are adjacent in G. Doing this we further take care that two arcs have a t 
most one point in common, either a node, with which both arcs are incident, 
or a point of intersection, called a crossing. Crossings of more than two arcs 
in one point are not allowed. We finally call this mapping of G onto the Euclid
ean plane a drawing D(G) of G ("good drawing" in [1]). 

Two nodes, two crossings, or a node and a crossing are called adjacent in 
D(G), if they are connected by a part of an arc without any further crossing. 
Two simple regions of the plane, being bounded by polygons with such parts 
of arcs as sides, are called adjacent in D(G), if their polygons have sides in 
common. Then two drawings D±(G) and D^(G) will be called isomorphic, if there 
exists a one-to-one correspondence between their nodes, crossings, arcs, and 
regions, which preserves the adjacency properties. 

Besides the question for planarity of G only a few of the problems concerning 
nonisomorphic drawings of G have been investigated. Several authors take 
into account the minimum number of crossings for special classes of graphs 
(for references see [1]). 

In this paper we will consider complete ^-partite graphs G(x±, X2, •.., xn) = 
= G(xi/n), which are graphs with m = x± -\- X2 + . . . + xn vertices (n ^ 2), 
being the complement of n disjoint complete graphs with x±, X2, ..., and xn 

vertices, respectively. If we use n different colors for these n classes of vertices, 
it becomes clear that G(xnn) also may be called a complete w-colorable graph. 
As introduced in [2], we distinguish three types of crossings: four-, three-, 
or two-colorable crossings in case the four nodes determining a crossing are 
of four, three, or two different colors, respectively. From this we have to 
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consider seven different numbers £ of crossings for a drawing D(G(xijn)): 
S2(xi, x2, ..., xn) = S2(x1/n) = £2, £3, £4, £23, £24, £34, and £234 = £. 

The minimum of £ = S(xi/n), the so-called crossing number cr(xi n), has 
been estimated in [2] and [4]. Since by the concept of drawing used here 
maximum numbers of crossings CR are easily to be found, we will list them 
in Section 2. In studying all integers occurring as numbers of crossings for 
all nonisomorphic drawings of G(xi/n), we observe, that in some cases only 
one residue class modulo 2 is possible. Therefore it will be the purpose of this 
paper to give necessary and sufficient conditions for the numbers of crossings 
of G(xi/n) to be only of one parity. In [3] this parity argument already is used 
(however, not convincingly proved) for complete bipartite graphs G(xi, x?) 
(only two-colorable crossings), and in [1] a theorem for complete graphs 
G(l, ..., 1) = Kn (only four-colorable crossings) was announced for 1973, 
but has not yet materialized. 

2. Maximum numbers of crossings 

As two arcs of a drawing are allowed to have at most one crossing, we get 
the following results. 

Theorem 1. The maximum numbers of crossings for a complete n-partite 
graph G(xi/n) are 

< " c a M -,.£,.(»)(? 
(2) GR3(Xi/n) = y — XiXjXr(Xi + X] + xr — 3), 

l = i j<r<:ii 

(3) GR4:(Xi/n) = 2 XiXjXrXs, 
l = i<j<r s<n 

(4) GR23(x1/n) = CR2(x1/n) + CRZ(xm), 

(5) CR2i(xi/n) = CR2(xi/n) + CR4(x1/n), 

(6) CRU(xVn) = CR2(x1/n) + ORHxi/n), 

(7) OR(xii») = CR2(xi/n) + OR3(xun) + 0R4(x1/n) 

-(:)-£{(:)+«•—>(:)} 
with 
(8) m = xi + x2 + . . . + xn. 

Proof. ( ^ ) At most every pair of nodes of one color i together with every 
pair of another color j , or every pair of nodes of color i together with all pairs 
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of nodes of colors j and r, or every quadruple of nodes with different colors i, 
j , r, s, determine at most one two-, one three-, or one four-colorable crossing, 
respectively. Hence S2 ^ GR2, and £4 ^ GR& follows immediately, and 
S3 ^ GR3 is seen to be valid by 

I 2* jXjXr + xA ^ W + XiXjl 2 J = — XiXjXr(zt + Xj + xr — 3). 

That " ^ " holds in (4), (5), (6), and in the first relation of (7) is trivial. If we 
consider all quadruples of the m nodes of D(G(xi/n)), then at least every 
quadruple of nodes of any color i, so as every triple of nodes of color i together 
with every node being not of this color i, cannot determine a crossing. Thus 
the second term in (7) also gives an upper bound of CR(xi/n). 

(^) We now describe a special drawing of G(x±/n) in which the numbers 
of (1) to (7) will be attained. For nodes we take the point-vertices of a convex 
ra-gon. Then for i = 1, 2, .. . , n we color x% consecutive nodes by the color i. 
We then draw the arcs from all nodes of one color to all nodes of another 
color in bundles inside the polygon (see Fig. 1). Two-colorable crossings occur 

•nmi^ 2 2> 1» 1)) with maximum numbers of crossings. 
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inside these bundles. Three-colorable crossings converge near the nodes of that 
color, two of them have a share in the crossing. Four-colorable crossings are 
to be found, where bundles intersect. By counting the different crossings the 
proof is finished. 

3. Parity of 5 2 

In this section only two-colorable crossings are of interest. 

Lemma 1. Any drawing of C7(3, 3) has 1, 3, 5, 7, or 9 crossings. 
Proof . I t may be possible to give simpler proofs (see for instance [3]), 

however, checking all nonisomorphic drawings of the Kuratowslu graph 
(7(3, 3) will imply Lemma 1, and to have listed these drawings is of interest 
in itself. Hence in Pig, 2 we present all drawings of (7(3, 3). There are 1, 9, 33, 
48, and 11 drawings with V 3, 5, 7, and 9 crossings, respectively. 

^â^ 

Fig. 2. All 2, 6, and 102 nonisomorphic drawings D(G(2,2)), D(G(3,2)), and D(G(3,3)). 

8 0 



Q © 

Fig. 2(1) 



V 
Fig. 2(2) 
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Й z 

Fig. 2(3) 
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Fig. 2(4) 
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Let (?2 be a graph having one more vertex P than a graph G\. Any drawing 
of Oi dissects the plane in to simple regions. We put a further node (corresponding 
to P) successively into each of these regions. Then we draw in all possible 
ways those arcs the corresponding edges of which are incident with P in O2 • 
We do this by going from one region to each neighbouring region if the common 
part of an arc is still allowed to be intersected. Finally we get a finite number 
of drawings Z>(6?2). Some of them being isomorphic may be neglected. As, 
conversely, by omitting from D(G^) the node corresponding to P so as all 
arcs being incident with this node, we always get a drawing D(Gi), we are 
sure to receive all nonisomorphic drawings D(G%) by this procedure from all 
such drawings of G±. There are 2 drawings of G(2, 2), 6 drawings of 6?(3, 2), 
and 102 drawings of G(3, 3) (see Fig. 2). 

Theorem 2. Consider G(xyn) with at least two values x% _ 2. Then the parity 

of all two-colorable numbers of crossings of drawings D(G(xi/n)) is the same, 

iff xi, X2, ..., xn are all odd. Let I denote the number of these values xi being 

= 3(mod 4), then 

_ (0(mod 2) t / J ss 0, l(mod 4), 
( J ) bZ[Xlln) = ( l(mod 2) if I = 2, 3(mod 4). 

Proof . (<=) We consider two colors i and j for the present. With these 

colors there are I Ml M different subgraphs G(3, 3) of G(xi, Xj), being a sub

graph of G(xi/n). If a2r+1(^.1) subgraphs C7(3, 3) have drawings with exactly 

2r -f- 1 crossings of D(G(xi/n)) for r = 0, 1, 2, 3, 4, then by Lemma 1 

Ш-ż 
Every two-colorable crossing of D(G(Xi, xj)) is counted in (xt — 2)(XJ — 2) 
drawings D(G(3, 3)), so t h a t 

4 

(11) (Xi - 2)(aj, - 2)S2(x(, x,) = 2 (2r + 1)«2P+I(*, j)-
r=0 

We use 

(12) S2(xlln)= 2 S2(xt,x,), 
l^i<j^n 

and get by summation of (11) and substitution of (10) 

(13) S2(x1/n) + V {(*i - 2 ) t e ~ 2 ) ~ l}S2(xu xj) = 
l^i<j^n 

= љÁШ+2àr°^m-г<зt 
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If now all values xi are odd we get from (13) 

(14) S2{xlln) = ^ 2.<n ( 3 ) ( 3 ) ( m o d 2 ) . 

and this congruence is independent of a special drawing. 
Every summand in (14) is divisible by two if x% = l(mod 4) or Xj — l(mod 4), 

so that there remain (l
2) odd summands, that is 

(15) S2(x1/n) = (\) (mod 2). 

From (15) now (9) follows immediately. 
(=>) Let 1 and 2 be colors with x± = 0(mod 2) and xz ^ 2. We consider 

a drawing D(G(x\/n)) as described in Section 2. The consecutive nodes of colors 
1 and 2 are labelled clockwise by P i , P2, ..., PXl, and Qi, Qz, ..., Qx2, respec
tively, and PXl has to be followed immediately by Q±. Then on the arc (PXl, 
Q2) there are exactly x± — 1 two-colorable crossings induced by (Pi , Qi), 
(P2, Qi), ..-, (Pxx 1, Q\). If we now connect PXl and Q2 by an arc outside the 
convex m-gon instead of inside, we get another drawing of G(x\ n) with 
CR2(xi/n) — (x± — 1) crossings. The numbers CR2 and GR2 — x± 1, 
however, are modulo 2 incongruent. 

4. Parity of 53 

In studying three-colorable crossings we start with two Lemmas . 

Lemma 2, The three-colorable member of crossings for any drawing of G(3, 1,1, 
1) takes one of the values 1, 3, 5, 7, Or 9. 

Proof . There are only thre~- and four-colorable crossings in a drawing 
D(G(3, 1, 1, 1)). We consider those three nodes each of which is the single 
one of a color, and the three arcs connecting them. On these arcs only four 
-colorable crossings are to be found, and, conversely, every four-colorable 
crossing of D(G(3, 1, 1, 1)) lies on these arcs. Thus, if we omit these three arcs, 
there remains a drawing D(G(3, 3)) with all three-colorable crossings of 
D(G(3, 1, 1, 1)). Lemma 1 then yields Lemma 2. 

Lemma 3. Any drawing D(G(2, 2, 2)) has an even number of three-colorable 
crossings. 

Proof . Let the nodes of the first, second, and third color be denoted by 
P i and P 2 , P3 and P4, and P5 and PQ , respectively. We distinguish the follow 
ing four cases 

i l : P i , P 3 , P s ; i = 2 : P i , P 8 , P 6 ; 

i 3 : P i , P 4 , P 5 ; i = 4 : P i , P 4 , P 6 . 
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In these cases i = 1, 2, 3, and 4 we use a new color for the given nodes, and 
the occasionally remaining three nodes of G(2, 2, 2) are colored by another 
new color. We further omit those arcs connecting nodes of the same new 
color. Thus we receive drawings of subgraphs GW(3, 3) of G(3, 1, 1, 1) with 
the numbers of crossings S2^(3, 3). We easily check tha t every two-colorable 
crossing of D(G(2, 2, 2)) is counted exactly twice in all drawings D(G^(3, 3)), 
i = 1, 2, 3, 4, whereas every three-colorable one is counted exactly once, 
that is 

4 

(16) S3(2, 2, 2) + 2S2(2, 2, 2) = V £2<*)(3, 3). 
г=l 

By Lemma 1 the four summands on the right of (16) are odd, and so the 
value of $3(2, 2, 2) is always even. 

We now will prove the following assertion. 

Theorem 3. If n ^ 3, and Xi ^ 2 for at least one index i, then the parity of 
three-colorable numbers of crossings is the same for all nonisomorphic drawings 
D(G(xi/n)), iff (a) every x-h is odd, and n is even, or (b) every Xi is even (1 ̂ i ^ 
<. n). Let I values xt be = 3(mod 4), then in case (a) 

n 7̂  <wr ^ - / 1 ( m o d 2 ) ' Vl s 1 ( m o d 2 ) ' n s 0 ( m o d 4 ) ' 
(17) *6(xVn)= [ 0 ( m o d 2 ) o t h e r w i s e i 

and in case (b) 

(18) S3(xVn) = 0(mod 2). 

Proof . (<=(a)) The number of three-colorable crossings determined by two 
nodes of color i, one node of color j , and one of color r, will be denoted by 
S3i;j,r. Next, oc2r+i(i), r = 0, 1, 2, 3, 4, will be the number of subgraphs 
C7(3, 1, 1, 1) of G(xi/n) containing as part of a drawing D(G(xi/n)) exactly 
2r -f- 1 three-colorable crossings, each with two nodes of color i. By Lemma 2 
we get for the number of subgraphs 6?(3,1,1,1) of G(xyn) having three nodes 
of color i 

(19) I o | 2 x$xrxs = 2 a2 r+i(i). 
\ 6 1 l<:j<r<s<:n r-0 

j , r, s + i 

Every three-colorable crossing with its nodes of colors i, i, j , and r may be 
completed by one of xt — 2 nodes of color i, one of m — x% — Xj — xr nodes 
being not of the colors i, j , or r, so as by the corresponding arcs to drawings 
D(6?(3, 1, 1, 1)) with three nodes of color i. Thus 

4 

(20) (Xi - 2) 2 ( m — Xi — Xj — Xr)S3i-j,r = 2 ( 2 r + l)a2r+i(i). 
l<:j<r<n r=0 

j,r*i 
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Together with 

(21) S3(x1/n) = 2 "> S3rj,r(^/n) 
i = l l§ j<r . .3*-

J, r^i 

we get from (19) and (20) 

(22) 83{xlfn) + 2 ~£ {(a* - 2)(w - xt - x, - xr) - 1}53«;J r -
i=l l ^ j < r ^ n 

j,r=l=i 

= 2 ( o ) 2 W + 2 2 2^r + l ( i ) . 
i - l V * * / l r £ j - r < s < n i 1 r -0 

i.r.s + i 

Now in case (a) the congruences 

(23) Xi — 2 = l(mod 2) and m — Xi — #j — ^r = l(mod 2) 

are fulfilled for all summands in the first sum of (22), and we conclude from this 

(24) S3(x1/n) = 2 (x'\ 2 *&&* ( m o d 2) ' 
i=l \** I l^j<r<s^n 

j,r,s * i 

The inner sums of (24) consist of I ~~ J odd terms, and I *̂ J is odd only 

if Xi = 3(mod 4), so that (24) yields 

(25) flf3(si,„) = (™ ~ l \ 2 (xt3) = l(^~ l)j (mod 2). 

From (25) we get (17) at once. 
Let us remark that the preceding part of the proof (<=(a)) may be obtained 

also by using 

(26) S3(x1/n) = 2 S2(xi9 m - xt) - 2S2(si/„), 
i=l 

and by discussing in all possible combinations the residue classes of I and n 
modulo 4. The validity of (26) is realized straight away. 

(<=(b)) By S3i we denote the number of three-colorable crossings with two 
determining nodes of color i. For a drawing D(G(xi9 Xj, xr)) we add up the 
numbers of three-colorable crossings for the drawings of all subgraphs G(29 2, 2) 
of G(xi9 Xj9 xr). Then because of Lemma 3 this sum is even. On the other 
hand every three-colorable crossing with two nodes of color i is counted in 
(xj — l)(xr — 1) different subgraphs G(29 2, 2). Thus 

(27) (XJ — l)(xr — l)S3i(xi9 xj9 xr) + (xt — l)(xr — l)S3j(xi9xJ9 xr) 
+ (xi — 1)(XJ — l)S3r(xiy xJ9 xr) = 0(mod 2). 
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Then by using 

(28) S3(xi, xj, xr) = S3i(xt, Xj, xr) + S3j(xt, Xj, xr) + S3r(xt, Xj, xr) 

we conclude from (27) 

(29) {(XJ - l)(xr - 1) + (Xi - l)(xr — 1) + (Xi - l)(xj — l)}S3(xt, xh xr) 

— {(xt — l)(xr — 1) + (Xi — l)(xj — l)}S3i(xi, xj, xr) 
~ {(#/ — l)(xr — 1) + (%j — l)(%i — l)}S3j(Xi, xu xr) 
— {(Xr — l)(Xj — 1) + (xr — l)(Xi — l)}S3r(Xi, Xj, Xr) 
= 0(mod 2). 

In case (b) all Xi are even. Therefore the coefficients of S3i, S3j, and S3r 

in (29) are even. Furthermore the coefficient of S3(xt, Xj, xr) is odd, so that 
we can divide by it in (29). Thus S3(xt, Xj, xr) is even, and together with 

(30) S3(x1/n) = ^ S3(xi, Xj, xr) = 0(mod 2) 
l^i<j<r^n 

we have obtained (18). 
(=>) Again we consider a drawing D(G(x±/n)) with maximum numbers of 

crossings, as described in Section 2. The nodes of colors 1 and 2 are clockwise 
consecutive points P i , P<L, ..., PXl, Qi, Q2, ..., Qx2 on the m-gon. The numbers 
of crossings are not changed if the colors 1 and 2 are arbitrarily chosen. On the 
arc (PXl, Q2) there are exactly m — xi — #2 three-colorable crossings. 

If m = 0(mod 2), we choose x\ = 0(mod 2), and X2 = l(mod 2), which is 
always possible. Namely, because of (b) there will be at least one odd x\, and 
all Xi odd, together with m even would be equivalent to (a"). \i m = Kjnod 1"), 
we may choose either x\ = x% = 0(mod 2) or xi = x% = l(jnod 2), as u ^ 3 . 
In any case m — x\ — x% will be odd. Now we omit [PXl, Q2), ®n& we draw 
a new arc outside the m-gon. We then have two drawings of G(x±/n) with 
CR3 and GR3 — m + xi + X2 three-colorable crossings, where both numbers 
are of different residue classes modulo 2. 

5. Parity of 523 

Theorem 4. If n ^ 3, and xi ^ 2 /Or at least one of the values Xi, then the 
numbers S23(xyn) of not four-colorable crossings in all nonisomorphic drawings 
D(G(x\/n)) are of the same parity, iff all Xi are odd and n is even (1 ^ i ^ n). 
Let I times x% = 3(mod 4) hold, then 

0(mod 2), if n = 0(mod 4), I = 0, 3(mod 4), 

/<m 9 9 ^ \ = I orifn= 2(mod 4), I = 0, l(mod 4), 
{ } »^xvn) ~ \ 1 ( m o d 2), ifn= 0(mod 4), I = 1, 2(mod 4), 

or ifn = 2(mod 4), l = 2, 3(mod 4). 
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Proof . (=>) The nodes P i , P2, .. . , PXi, Q1, Q2, •••, Q%x are consecutive in 
a drawing with maximum numbers of crossings (Section 2). Then the arc 
(Px2, Q2) has exactly m —- x1 — X2 three-colorable and # 2 — 1 two-colorable 
crossings, tha t is together m — x1 — 1. If m — x1 = 0(mod 2), then by 
drawing (PXa, Q2) inside or outside the m-gon we have two drawings of G(x1/n) 
with modulo 2 different numbers £23 of crossings. We now are able to choose 
color 1 with x1 = m(mod 2) in all cases besides m even and all x% odd, which 
means, however, that n is even. 

(<=) This part of the proof follows immediately from Theorems 3 and 4 
together with 

(32) S23(x1/n) = S2(x1/n) + S3(x1/n). 

If only one Xi ^ 2, then S2(x1/n) = 0, trivially. Equations (9) and (17) yield 

(31). 

6. Parity of 54 

We now will be engaged in four-colorable crossings. 

Lemma 4. Any drawing of the complete graph G(\, 1, 1, 1, 1) = K5 has 1, 3, 
or 5 crossings. 

Proof . Using the same procedure as described in Section 3 we get five 
nonisomorphic drawings of the Kuratowski graph K5. There are 1, 2, and 2 
drawings with 1, 3, and 5 crossings, respectively, shown in Fig. 3. 

Lemma 5. For G(2, 2, 2, 2) the numbers £4(2, 2, 2, 2) of four-colorable crossings 
are always even. 

Proof . Let P1 and P2 be vertices of the same color in G(2, 2, 2, 2). We add 
a new edge (Pi , P2), and obtain a graph G'. There are 8 different subgraphs 
of the type K$ in G', having the vertices P1, P2, and one vertex of each of 
the remaining three colors. The corresponding numbers of crossings of D^(K^) 
as part of D(G') may be denoted by £4<*>(2, 2, 2, 2), i = 1, 2,..., 8. There are 
no two-colorable crossings of D(G(2, 2, 2, 2)) in any Z)(^(K5). Every four-
-colorable crossing of D(G(2, 2, 2, 2)) occurs in exactly one D^(K^). Those 
crossings for which both P1 and P2 are determining nodes are counted in two 
different drawings DM(K$). Let S' be the number of such crossings in D(G'), 
then 

8 
(33) £4(2, 2, 2, 2) + 2S' = 2 #4<*>(2, 2, 2, 2). 

As by Lemma 4 the values £4<*> are odd, it follows from (33), that £4(2, 2, 2, 2) 
is even. 
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Fig. 3. All 1, 2, and 5 nonisomorphic drawings D(G(1, 1, 1)), D(G(1, 1, 1, 1)), and 
D(G(1, 1, 1, 1, 1)). 

Theorem 5. If n ^ 4, the parity of S^(x1/n) is the same for any drawing of 
G(xi/n), iff (a) all values x% are odd and n is odd, or (b) all values x% are even 
(1 ^ i ^ n). There holds in case (a) 

(34) 

and in case (b) 

(35) 

S4:(Xl/n) = 
Í0(mod 2), ifn = 1, 3(mod 8), 
\ l (mod 2), ifn= 5, 7(mod 8), 

SЦx1/n) = 0(mod 2). 

Proof . (<=(a)) We may assume n ^ 5. As parts of .-9(Cr(#i/w)) there are 
drawings D(Ks) of all subgraphs K5 of Cr(xi/W). Let ai , a3, and as be the numbers 
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of such drawings D(K*>), in which there occur 1, 3, and 5 crossings, respectively. 
With Lemma 4 we conclude 

(36) 2 XiXjXrxsxt = ai + 0C3 + a5. 
ltzi<j<r<s t^n 

Every four-colorable crossing of D(G(xi/n)) is counted in m — Xi — xj — x> — #5 

different subgraphs K5. That is 

(37) 2 (m ~~" xi — x3 — xr — Xs)S±(Xi, Xj, Xr, Xs) = 
l^i<j<r<s^n 

= ai + 3a3 + 5a5. 

We use 

(38) S4(xi/n) = 2 S±(Xi,Xj, xr, xs) 
l < i < j < r s<n 

to get from (36) and (37) 

(39) S±(xi/n)+ 2 {m — Xi — Xj — xr — xs — l)S±(xt, Xj,xr, xs) — 
l^i<j r<s^n 

= V XiXjXrxsxt + 2a3 + 4a5. 
l^i<j<r<^s<t^n 

If now Xi is odd for all i, and n is odd, then m is odd, too, and the coefficients 
of S±(xi, Xj, xr, xs) in (39) are even, so that 

(40) S±(xi/n) = 2 XiXjXrxsxt = I J (mod 2). 
l^i<j<r<s<t^n \® / 

From (40), independent of a special drawing, we infer (34) at once. 

(<=(b)) We consider subgraphs G(2, 2, 2, 2) of G(xi/n) with colors i, j , r, s. 
Their numbers of four-colorable crossings in D(G(xi/n)) are always even 
(Lemma 5). Every four-colorable crossing is counted in (xi — 1)(XJ — l)(xr — 
— \)(xs — 1) subgraphs O(2, 2, 2, 2), that is 

(41) (xt — 1)(XJ — l)(o:r — l)(xs — l)S±(xi, Xj, xr, xs) = 0(mod2). 

As all Xi are even in case (b), we are allowed to divide (44) by the coefficient 
of £4. Together with (38) we then get (35). 

(=>) We take into account a special drawing D'(G(xi/n)) with #4'(.n n) 
four-colorable crossings. The nodes are distributed on a circular line, in such 
a way that there are three consecutive nodes P, Q, R of different colors, which 
still have to be chosen suitably. There are xi, X2, #3 nodes with colors like 
P, Q, R, respectively. The arcs of D\G(xi/n)) are to be drawn inside the circle. 
On the arc (P, R) we find m — x\ — X2 — #3 four-colorable crossings. 
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If m = 0 or 1 (mod 2), we may choose #i = 1 or 0 (mod 2), as otherwise 
(b) or (a) would hold, respectively. Because of n ^ 4, there remain at least 
three colors, tha t is X2 and X3 may be chosen either both even or both odd. 
In any case m — x1 — x% — X3 becomes odd. Thus, in drawing (P, R) outside 
the circle instead of inside, we get a drawing with 54'(a;i/w) — m -f- x1 -f- X2 + 
-f- X3 four-colorable crossings. But this number differs from 54'(#i/n) by an 
odd number. 

7. Parity of 524 

Theorem 6. For n ^ 3, and G(x1/n) =)= G(x, 1, 1) the parity of the numbers 
S2±(x1/n) of not three-colorable crossings is the same, iff all values x\ as well as 
n are odd (1 ^ i ^ n). In detail, with I values Xi = 3(mod 4) the following con
gruences are valid. 

{0(mod 2), if n= 1, 3(mod 8), I = 0, l(mod 4), 
or if n = 5, 7(mod 8), I = 2, 3(mod 4), 

l(mod 2), ifn= 1, 3(mod 8), I = 2, 3(mod 4), 
orifn= 5, 7(mod 8), I = 0, l(mod 4). 

Proof . (=>) A drawing, corresponding to D'(G(x1/n)) of Section 6, where 
Pi, P2, ..-, Pxx, Q, Ri, R2, ..-, R%3 are consecutive nodes on the circular line, 
has on (Pxx, R2) exactly m — x1 — X2 — X3 four-colorable and x1 — 1 two-
-colorable, that is together m — #2 — ^3 — 1 not three-colorable crossings. 
If this number is odd, then (PXx, R2) may be drawn outside or inside the circle 
to get two drawings with an even and an odd number 524. 

If m = 0(mod 2), we may choose x% and X3 either both even or both odd 
(n ^ 3). In case of m = l(mod 2) it is possible to choose xi odd and X3 even, 
as all xt even would contradict m odd, and all x\ odd would yield n odd, which 
is just the condition of the Theorem. 

(<=) This and (42) follow directly from 

(43) S24(x1/n) = S2(x1/n) + S±(x1(n), 

as well as from Theorems 2 and 5 in case n ^ 4 and two values x% ^ 2. If 
n — 3, then 54 = 0 in (43), and we apply Theorem 2. For G(x, 1, 1, .. . , 1) 
there holds 52 = 0 in (43), and then Theorem 5 finishes the proof (n ^ 4). 

8. Parity of 534 

Theorem 7. If n ^ 3, and at least one value x% ^ 2, then for the number 
S3^(x1/n) of not two-colorable crossings the parity is the same, iff all xi are even 
(1 ^ i ^ n). In this case there is always 

(44) SM(xlln) = 0(mod2). 
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Proof . (=>) In the drawing of Section 7 there are now on the arc (PTi, J?i) 
exactly m — x1 — X2 — xz four-colorable and x1 — 1 -f- x% — 1 three-colorable 
crossings, which are together m — X2 not two-colorable crossings. If m — X2 
is odd, the proof follows as before. 

In case of m = 0(mod 2), we choose X2 odd, for otherwise all x% would be 
even. If m = l(mod 2), then either at least one x% is even, say x2, or all xt 

are odd. In the latter case also n is odd. Then #4 always is of the same parity 
(Theorem 5), and S3 takes both residue classes modulo 2 (Theorem 3), so tha t 
with 

(45) S34(a?i/») = S3(x1/n) + S±(x1/n) 

the numbers #34 may be odd as well as even. 

(<=) Theorems 3 and 5 complete the proof for n ^ 4. If n = 3, then #4 = 0 
is trivial, and in (45) Theorem 3 is to be used. Theorems 3 and 5 together 
with (45) also yield (44). 

9. Parity of S 

Finally we combine the results of Sections 3, 4, and 6 to get statements 
for the parity of 

(46) S(x1/n) = S23±(x1/n) = S2(x1/n) + S3(x1/n) + S±(x1/n). 

Theorem 8. If n ^ 3, and at least one value Xi ^ 2, then the parity of the 
numbers S(x1/n) of the crossings for all nonisomorphic drawings D(G(x1/n)) 
is never the same. 

Proof . We take into account a drawing as in Section 7. On (PXl, P2) there 
are m — x1 — X2 — #3 four-colorable, x1 — I + xz — 2- f -m — x1—- #3 — 1 
three-colorable, and x1 — 1 two-colorable crossings, which are together 2m — 
— X2 — xz — 5 crossings. This number is odd, if X2 ^= xz(mod 2), and in these 
cases the proof is accomplished. 

If Xi = 0(mod 2) for all i, then (46) and Theorems 3 and 5 yield S = 
= #2(mod 2). But Theorem 2 shows that S2 is not of only one parity. 

If Xi = l(mod 2) for all i, we distinguish two cases. First let n be even. 
52 is of the same parity (Theorem 2, and S2 = 0, if only one Xi ^ 2). Further 
53 takes only one residue class modulo 2 (Theorem 3). Thus it follows from 
(46) and Theorem 5 that S and £4 are of odd as well as even values. Secondly, 
let n be odd. Then again S2 is of the same parity. Also #4 is of only one parity 
(Theorem 5, and #4 = 0 for n = 3). As S3 takes both residue classes modulo 2 
(Theorem 3), by (46) this is right also for S. 
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Theorem 9. Besides the trivial case S(x, 1) = 0, the parity of the numbers 
S(xi/n) of the crossings for all nonisomorphic drawings D(G(xi/n)) is the same 
only for 

S(xi, x2) = S2(xi, x2), if xi == x2 == l(mod 2), 

and for 

S(l, 1, ..., 1) = SMI, 1, ..., 1), if n = l(mod 2), 

that is, for complete bipartite and for complete graphs. 

Proof . Theorem 8 gives the proof for n ^ 3 and at least one x% ^ 2. If 
n = 2, then we have either G(x, 1) (trivial) or G(xi, x2) with xi, x<± ^ 2, so 
that Theorem 2 may be used. If there is always x% = 1, then we have the 
complete graph Kn. For n = 3 there holds S = #4 = 0, and for n ^ 4 we 
apply Theorem 5. 
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