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ON MAPPING GRAPHS AND PERMUTATION GRAPHS

WILLIBALD DORFLER

We consider finite simple graphs and the terminology of Harary [4] and
Behzad—Chartrand [1] is used. Permutation graphs have been studied in
several contexts, compare [2, 3]. For completeness we recall the definiton. Let
X =(V, E) be a graph with vertex-set V={v,, ..., v,} and edge-set E and p a
permutation of V. Then the permutation graph (X, p) is defined in the following
way: :

VX, p)={vi, ..., Un, Wi. ..., Wa } = VUV’
with V' ={w,, .., w,}, V'nV=0 and
E(X, p)=EX)u{[w:, w] |[v;, v;] € E(X)} U
u{[v:, wj]| v;=pv,} =EUE'UE,
with E' ={[wi, w,] |[vi, v;]€ E} and E, = {[v;, w;]| pv:=v;} .

In general we shall keep this notation with the exception that an arbitrary edge of
E, will be denoted as [x, px], p being considered thereby as a mapping from V
onto V'. Further, if x € V, then by x’ we denote the corresponding element of V',
i.e. if x=v,, then x' =w,.

This means we take a second disjoint copy X’ of X and join every vertex of X'
with its image under p. We are interested in the automorphisms of (X, p) and
especially in the question to which extent the automorphism group G(X, p) is
determined by the automorphism group G(X).

Definition 1. An automorphism ¢ of (X, p) is called a natural automorphism of
(X, p) if V=V or oV =V! and therefore oV'=V' or ¢V'=V. If pV =V,
@V'=V', then @ is called a positive natural automorphism and otherwise
a negative natural automorphism.

Remark. Clearly every permutation graph has positive natural automorphisms
because the identity is one. But there are examples where no negative natural
automorphisms exist. ‘

We note some simple properties of natural automorphisms.

1) The natural automorphisms of (X, p) constitute a subgroup of the group
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of automorphisms G(X, p) which we will denote by G.(X, p). The positive
natural automorphisms again constitute a subgroup G (X, p) of G.(X, p) and
G.(X,p) = G,(X, p) is possible.
2) The product of two negative natural automorphisms (if they exist) is
a positive natural automorphism. The product of a positive and a negative natural
automorphism is a negative natural automorphism. The product of two positive
natural automorphisms is again a positive natural automorphism.
3) From 2) it follows that G (X, p) is a subgroup of index 2 in G,(X, p) and
therefore a normal subgroup of G,(X, p) or G (X, p) = G.(X, p).
4) A positive natural automorphism @ of (X, p) induces two automorphisms @,
and @, of X by ¢, =@ |V and @.=@|V'. For these two automorphisms there

holds
@:=p~'@.p .

Proof. Let [x, px]€E,, then [@x, @px] € E, and therefore gpx = pex because
of the definition of E, . Since x € V, @x € V, px € V' this equation is equivalent to
@.px =p@,x and this holds for all x e V, which proves the assertion.

5) If @,, @, are two automorphisms of X and ¢, =p~'¢,p,, then a positive
natural automorphism of (X, p) can be defined in the following way

ex=@x for xeV
px=@,x for xeV'.

Proof. We only have to show that any edge of E, is again mapped onto such an
edge. Let [x, px]€E, and consider [@x, gpx]. Since x eV, pxe V', we have
[@x, gpx] = [@:x, @:px] = [p~'@.px, @.px] the last equality following from the
assumption. But this implies that [@x, gpx]€E, .

We can sumarize 4) and 5) by

Theorem 1. If @, is an automorphism of X, then there exists a positive natural
automorphism ¢ of (X, p) with ¢ | V = @, iff pg,p~" is an automorphism of X. If ¢
exists, then it is uniquely determined by @, and all positive natural automorphisms
are generated in this way.

We can therefore identify the positive natural automorphisms with the ordered

pairs (@1, pp:p ") with @, € G(X), pe.ip '€ G(X), =@ |V, pp:p~' =@ | V' and
these pairs with the product taken componentwise, i.e.

(0, p:ip™") (W1, pip~ ) = (@1, p@Yip~")

form a group isomorphic with G, (X, p), which is isomorphic with a subgroup of
G(X).

Corollary. The group G (X, p) of positive natural automorphisms considered
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as a permutation group on V is isomorphic with the group G(X)np~'G(x)p.

We mention that p e G(X) implies that the group of positive natural automorp-
hisms is isomorphic with G(X). Since with few exceptions G(X) is not a normal
subgroup of the symmetric group on V in general the group G (X, p) will be
isomorphic with a proper subgroup of G(X).

Proof of the Corollary. Let ¢,e G(X)np 'G(X)p, then ¢,e G(X) and
@1 =p '@:p with @, € G(X) such that pg,p™" = @, e G(X) and therefore to the
pair (¢,, pip ") there corresponds a positive natural automorphism in the above
described way. .

We continue with similar considerations about negative natural automorphisms.

6) A negative natural automorphism ¢ induces two isomorphisms @i : X — X'
with @i=@|V:V->V' and @5:h'>X with @;=¢|V': V'SV, If @i(v)=
= w;, then let @,(v;) =v; and if @5(w;) =v; then let @.(v;) =v,. Let [x, px] € E, and
therefore [@x, gpx]€E,. Now [g@x, gpx] = [(¢.x)', @ipx] and because of
@ixe V', p;px € V we must have

PQ:px = @ix,i.e. p@.p = ;.

7) Let conversely ¢,, @, be two automorphisms of X with @, =p@.,p. Then
a negative natural automorphism of (X, p) can be defined by

ox=(@x)’ for xeV
ox' = @x for x'eV’'.

Proof. We only have to consider edges in E,. Let [x, px] € E, ; then [@x, @px]
= [(@:x)', @px] = [@.px, p(@,px)] € E,, which shows @ to be an automorphism.
From 6) and 7) we get

Theorem 2. If ¢, is an automorphism of X, then there exists a negative natural
automorphism ¢ of (X, p) with ¢x=(@.x)’ for all xeV iff p~'¢:p~" is an
automorphism of X too. If @ exists, then it is uniquely determined by @, and all
negative natural automorphisms are generated in this way.

Corollary 1. There exists a negative natural automorphism of (X, p)
iff G(X)npG(X)p#0.

Corollary 2. If p is of order two, i.e. if p*>=id, then there always exist negative
natural automorphisms.

Proof. If p?>=id, then G(X)npG(X)p contains at least p>=id and a negative
natural automorphism @, is defined by @.x =x', @ox' =x (compare 7) with
@1 =@i=id).

Corollary 3. If for the permutation p of V and the group of automorphisms
G(X) of the graph X there holds pG = Gp and p*> =id, then G is isomorphic with
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a normal subgroup of index two in the group G,(X, p) of natural automorphisms
of (X, p).

Proof. From Theorem 1 and its Corollary we have that G is isomorphic with
the group of positive natural automorphisms of (X, p), an isomorphism being the
mapping ¢ — (@, pepp) = where the first component of this pair is the restriction
of @ to V and the second component the restriction of ¢ to V'. From p*>=id we
have that there exist negative natural automorphisms. This together implies the
assertion.

Remark. In general under the assumptions of Corollary 3 G,(X, p) will not be
isomorphic to the direct product of G(X) and Z, (the cyclic group of order two).
For this we need an additional assumption.

Corollary 4. Suppose the conditions of Corollary 3 are met and additionally let p
belong to the commutator of G(X) in the symmetric group on V. Then G,(X, p) is
isomorphic with the direct product of G(X) and Z,.

Proof. From the assumptions it easily follows that {id, @,}, with @, the negative
natural automorphism ¢, as given in Corollary 2, is a normal subgroup of
G.(X, p), too and any positive natural automorphism commutes with @,. This
implies the assertion.

We now turn to the question under what circumstances a permutation graph
(X, p) can have only natural automorphisms.

Definition 2. Let X =(V, E) be a graph and V = A UB be the partition of the
vertex set corresponding to a cut-set F < E of X. The cut-set F is called a simple
cut-set if each vertex of A and each vertex of B is incident with at most one edge
of F.

Theorem 3. If X=(V, E) is connected and does not possess a simple cut-set,
then for every permutation p of V the permutation graph (X, p) has only natural
automorphisms. If X is not connected or if X has a simple cut-set, then for
a suitable permutation p the permutation graph (X, p) has also nonnatural
automorphisms.

Proof. Let X be connected without simple cut-sets and suppose that
@ € G(X, p) is a nonnatural automorphism. Then VN V# 0 and also VNV’ #0
and V=¢ '(¢VNnV) U ¢ ' (¢Vn V') = V,uV, with VinV,=0. Now from the
definition of a permutation graph it is clear that the edges of E, connecting vertices
of VNV with vertices of VNV’ are a simple cut-set in the graph induced by ¢V
and therefore V,, V, determine a simple cut-set of X, a contradiction.

Now suppose that by V=V,uV,, VinV,=0 a simple cut-set F of X is
determined and that X is connected. Let the edges in F be [x,, y,], ..., [x,, ;] with
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xieV,yeVyfori=1,2,.. ., s. Define the permutation p on V in the following
way:

PXi =Yi, pyi = Xi, i=1,..,s
and
px=x if xeV—{x1, ..., X, V1. oe0s Vs } -

Then in (X, p) a nonnatural automorphism ¢ can be defined (for notation
compare above)

px =x' if xeV,,

ox =x if xeV,,

ox'=x if x'eVi,

ex'=x" if x'eV;.
That means that ¢ interchanges pointwise the two copies of V, and keeps V,, V;
pointwise fixed. It is an easy task to show that ¢ is an automorphism. If X is not
connected, then it suffices to take for p the identity because then in (X, p) one can
combine a positive natural automorphism of one component with a negative

natural automorphism of another component to obtain a nonnatural automorphism
of (X, p).

Remark 1. In general the automorphism group G(X, p) because of the last
theorem will contain G, (X, p) as a proper subgroup. We give an example for this
where G, (X, p)={id}, but G(X, p) # {id}. (see Fig 1.)

Fig. 1

Remark 2. In connection with the last theorem we should mention that two
permutation graphs (X, p1) and (X, p.) with nonisomorphic graphs X, X, can
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be isomorphic if X, and X; possess simple cut-sets. An example is given in the next
figure 2.

Fig. 2

This example contradicts also the possible conjecture that from (X, p\)=
(X, p.) and X, # X, there follows that X, X, themselves are permutation graphs.
The only fact one can deduce from this situation seems to be that X, and X, must
contain every graph without simple cut-set as a subgraph with the same multiplici-
ty. If X, or X; does not possess simple cut-sets, then clearly (X, p,) = (X, p2)
implies X, =X,. ’

We now consider the problem of when two permutation graphs (X, p,) and
(X, p.) are isomorphic. The general problem here seems to be rather difficult and
therefore we restrict ourselves to natural isomorphisms which correspond to the
natural automorphisms of (X, p).

Definition 3. Let (X, p.), (X, p,) be two permutation graphs belonging to the
graph X =(V, E). An isomorphism ¢ @: (X, p.)— (X, p,) is called a natural
isomorphism if V=V or pV=V",

From the definition it is clear that a natural isomorphism @: (X, p1)— (X, p,)
induces two automorphisms @, and @, of X. If V=V, V' = V", then we have
px=@x, x' = (px)'; if V=V', @V'=V, then we have @x =(¢,x)’ and
ex'=@,x for all xe V.
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Theorem 4. If X is connected and does not possess a simple cut-set, then every
isomorphism between two permutation graphs (X, p,) and (X, p,) is natural.
Proof. One proceeds as in the proof of Theorem 3.

Theorem 5. For every permutation p of V there exists a natural isomorphism ¢
from (X, p) onto (X, p~') with pV=V".

Proof. Define ¢ by gx=x', ¢x'=x for all xe V. Then we only have to
consider the edges in E,. Let therefore [x, (px)']€E,; then [@x, p(px)']=
=[x', px]=[px, (p"'(px))'] € E,-, which shows ¢ to be an isomorphism.

Theorem 6. If there exists a natural isomorphism @ from (X, p,) onto (X, p,)
with ¢V =V, then for the two automorphisms @,, ¢, induced by @ there holds
p.=@,p.@:"". If conversely there exist two automorphisms @,, @, with p,=
= @,p:@,”', then a natural isomorphism @ from (X, p,) onto (X, p,) withV=V
is defined by ox =@\x, ox' =(@,x)' for all xe V.

Proof. Let ¢ be given as in the Theorem and [x, (p.x)']€E,. Then [¢x,
@(p:ix)'] = [@ix, (popix)'] belongs to E, such that (p,@,x)’ = (,p.x)’ for all
xeV,ie. p,¢, = @,p:. Let conversely @ be defined as in the Theorem. We only
have to consider edges in E,. Let [x, (p.x)']€E,. Then [¢x, ¢(p.x)'] = [@uwx,
(¢:p1x)'] € E,, because p,@,x = @.,p.x by assumption.

By similar arguments or by the use of Theorem 5 one proves:

Theorem 7. If there exists a natural isomorphism ¢ from (X, p,) onto (X, p,)
with @V =V', then for the two automorphisms ¢,, @, induced by @ there holds
p: = @p. '@, If conversely there exist two automorphisms @, @, with
P> = @p." '@, then a natural isomorphism ¢ from (X, p,) onto (X, p,) with
@V =V' is defined by ox =(@.x)’, px' = @,x for all xe V.

Corollary 1. There exists a natural isomorphism from (X, p,) onto (X, p,) with
@V = V iff the intersection of the two cosets p,G(X) and G(X)p, is not empty.
Similarly a ¢ with V =V"' exists iff p,G(X) n G(X)p,”'#0 (or equivalently
piG(X) n G(X)p.'#0).

Corollary 2. Let X = (V, E) be connected without simple cut-sets. Then
(X, p1) = (X, p,) iff p, and p, or p, and p,”' belong to the same double coset
G(X)pG(X) of G(X) in the symmetric group on V.

Proof. From Theorem 4 we have that every isomorphism from (X, p,) onto
(X, p2) is a natural isomorphism and because of Theorem 5 we can restrict
ourselves to natural isomorphisms ¢ with ¢V = V. But then the corollary follows
immediately from Theorems 6 and 7.

Corollary 3. Let X=(V,E) be an arbitrary graph. Then the number of
isomorphism classes of permutation graphs (X, p) is at most equa] to the number
of double cosets of G(X) in the symmetric group on V.
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If we call a double coset G(X)pG(X) an inverse double coset if
p~'e G(X)pG(X), then we can make a precise assertion about the number of
isomorphism classes of permutation graphs (X, p).

Corollary 4. Let X =(V, E) be a connected graph without simple cut-sets. Then

the number of isomorphism classes of permutation graphs is equal to EIN +M,

where N = number of noninverse double cosets and M = number of inverse double
cosets of G(X) in the symmetric group on V.

In general this is not true because there may be nonnatural isomorphisms
between permutation graphs belonging to different double cosets.

Example. The following two permutation graphs (Fig. 3) are isomorphic and
a nonnatural isomorphism is given by mapping vertices with the same label onto
one another. There does not exist a natural isomorphism.

1 a a 8
2 b 2 b
3 c 3 c
L d A d
5 e 5 e
6 f 6 f
7 g 7 g
8 h h 1
Fig. 3

Up to this point all resuits except the last two corollaries remain true also in the
case of infinite graphs. In the next theorem we use for the first time the finiteness of
the considered graphs.

Theorem 8. Let X=(V, E) be an arbitrary (finite) graph. Then (X,id)=
=(X, p) iff p is an automorphism of X.

Proof. Suppose first that p e G(X). Then the mapping ¢: (X, id)— (X, p)
defined by
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px=x, ®x'=(px)’ forall xeX

is an isomorphism. Clearly we only have to consider edges in E, i.e. the edges
[x, x']. There holds @[x, x'] = [x, (px)']€E,, which proves the assertion. Let
conversely p ¢ G(X). We count the number of quadrangles in (X, id) and in
(X, p). If N is the number of quadrangles in X, then in (X, id) we have 2N + |E|
quadrangles. The quadrangles of (X, p) are the quadrangles in X and X', resp.,
and quadrangles with vertices xi, (px,)’, x,, where [x,, x,]€ E and [px,, px,] € E.
Therefore the number of quadrangles in (X, p) is at most equal to 2N + |E| with
equality iff to every edge in E there corresponds a quadrangle as above. Since
p € G(X), there exists an edge [xi, x,] €] € E such that [px,, px,] ¢ E and evidently
there cannot correspond to this edge a quadrangle of (X, p). This implies that
(X, id) is not isomorphic with (X, p).

Remark. If p e G(X), then (X, id)=(X, p) with an isomorphism which on V
induces the identity. This holds also under a more general assumption.

Theorem 9. If p,, p, belong to the same right coset of G(X) in the symmetric
group on V, then (X, p\) = (X, p,) with a natural isomorphism @ such that
@V =YV and @ induces the identity on V.

Proof. It follows that p,p, '€ G(X). We define the mapping @:(X, p;)—
(X, p2) by

@ex=x and @x'=(p,p,"'x)' forall xeV.

To show then that @ is an isomorphism we only have to consider the edges in E, .
Let [x, (pix)']€E,. Then [@x, p(pix)'] = [x, (PP 'Pix)'] = [x, (p:x)']€E,,
~ which proves the assertion. : ‘
Similarly one proves

Theorem 9'. If p, and p, belong to the same left coset of G(X) in the symmetric
group on V, then (X, p,) = (X, p.) with a natural isomorphism @ such that
@V'=V'" and @ induces the identity on V',

Definition 4. Let X =(V, E) be a graph, X' =(V’, E') a disjoint isomorphic
copy of x and f: V— V an arbitrary mapping. The mapping graph (X, f) is defined
as the union of X and X' with the additional edges [x, (fx)'] for all xe V.

The concepts of natural automorphism and natural isomorphism are defined as
for permutation graphs. If f is not a permutation, then of course only those natural
isomorphisms @ and automorphisms ¢ exist for which ¢V =V. We restrict
ourselves in the following to proper mapping graphs (X, f), where f is not
a permutation. Similarly as Theorems 1 and 6 one can prove

Theorem 10. Let (X, f) be a mapping graph of X. If @€ G(X), then there
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exists a natural automorphism ¢ of (X, f) with ¢ | V = @, iff there exists ¢, € G(X)
with @,f =f@,. In this case @,=q@|V'.

Theorem 11. If there exists a natural isomorphism ¢ from (X, f,) onto (X, f.),
then for the two automorphisms ¢,, @, induced by @ there holds @.f,=f,,.

If conversely there exist two automorphisms @,, @, € G(X) with @.f, = f,¢,, then
by @x =@.x, ox' =(@.x)’ a natural isomorphism @: (X, f,)— (X, f,) is defined.

Remark. The automorphism ¢, € G(X) in Theorem 10 fulfils @,(fV)=fV, i.e.
@, belongs to the stabilizer of fV in G(X). As an example consider the case that f is
a constant mapping with fx =x, for all x € V(X) and that X is connected. Then
@.f =f@, holds for all ¢, € G(X) and @, belonging to the stabilizer of x, in G(X).
Therefore the group of natural automorphisms G, (X, f) in this case is isomorphic
with the direct product of G(X) and the stabilizer of x, in G(X).

By the kernel of f: V— V one means the equivalence relation on V defined by
x,~x, iff fx,=fx,. We say that a permutation @ on V fixes the kernel of f if
@A =A for every class of the kernel. Then there holds that the group of
automorphisms @, of X which fix the kernel of f is isomorphic with a subgroup of
G (X, f). This follows from the fact that fg, = f =f oid for every @, fixing the kernel
of f.

The next theorem describes a class of mapping graphs for which the identity is
the only natural automorphism.

Fig. 4

Theorem 12. Let X be a graph with an intransitive automorphism group G(X)
such that some nontrivial orbit of G(X) contains a vertex x, which is not fixed by
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any @ € G(X), ¢#id. Then there exist f such that (X, f) has no nontrivial natural
automorphisms.

Proof. If G(X)={id}, then the assertion is trivial. Otherwise let A be an orbit
of G(X) with |A|=2, B+ A another orbit and x,€ A be a vertex with @x,# x, for
every @#id, @ € G(X). Then define f by fx =x for x€ A, x¥x,, fxo=y€B,
fy =x, and elsewhere arbitrarily. Now suppose there exist @, @,€ G(X) with
@.f =f@,. This implies @.fx, = fxo. If @, #id, then fp,x,€ A but @,fx,e B and
therefore @,=id, @,f =f. But now @,fy = @.xoFxo = fy if @,#id and we
conclude that @, =id, too. ,

By a partial generalization of Theorem 3 one can easily show that there exist
mappings f: V— V which are not permutations and for which (X, f) has nonnatu-
ral automorphisms if X is not connected or has a simple cut-set. But the converse is
not true as it is shown by the following example. The graph X has no simple cut-set

but nevertheless the mapping graph (X, f) as given in the figure 4 has nonnatural
automorphisms.

Remark. A part of this paper will appear in a shortened version without full
proofs in the Proceedings of International Coll. Problemes Combinatoires et
Théorie des Graphes (Paris, July 9—13, 1976).
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O F'PA®AX OTOBPAXEHUHN U F'PA®AX MEPECTAHOBOK
Bunubana Joapdnep
Peslome

IMycts nanbl rpad X u nepecraHoBka p ero MHoxectsa BepuiuH. I'pad nepecranoBku (X, p)
COCTOMT M3 [IBYX HENMEPECEKAIOLMXCS IK3eMMIspoB rpacga X u Bcex peGep COEAHHAIOIMX BEPIUINHY X
NEepBOro 3K3eMIIsApa ¢ BEPLIMHOM p (x) BTOporo 3k3emmispa. Ecnin p — kakoe-uuGyns oToGpaxeHue,
10 (X, p) — rpad otoGpaxkenus. Joka3biBaloTcsi TeopeMbl 06 aBromopdusmax rpada (X, p) u
0COOEHHO MCCIENYETCS IPYNNa ECTECTBEHHBIX aBTOMOPGHU3MOB ONpPENENEHHBIX TAKHM CBOHCTBOM, YTO
RaHHbIE NBa 3k3eMmaspa rpada X o6pa3yoT cucreMy GIOKOB 3TOW rpynmbl.
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