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A REMARK ON THE COMPARISON OF MACKEY 
AND SEGAL MODELS 

SYLVIA PULMANNOVA 

In the paper the necessary conditions for imbedding of a Segal system into 
a Mackey system are discussed. 

1. Mackey and Segal systems 

There are several papers dealing with the comparison of two important axiomatic 
models of the quantum theory — the Segal system and the Mackey system 
[1—7]. In some of them problems have arisen which so far have not been solved. 

In the present note, an exact formulation of the imbedding of a Segal system into 
a Mackey system is given and some necessary conditions for this imbedding are 
discussed. 

First we shall shortly describe the original Mackey and Segal systems. 
Let (££, ^ ) be a partially ordered set (abbreviated to poset) with a one-to-one 

map a \-*a' of ££ onto ££. (££, ̂ , ') is said to be a o-orthocomplemented poset (see 
[8]), provided that 

(a) a" = a for ae££. 
(b) a^b implies b'^a'. 
(c) If ai, a2, ... is a sequence of the members of ££, where at ̂ a) for i=£/, then 

the least upper bound axua2u... exists in ££. 
d) aua' = bub' for alia, b eJ£. We denote ava' by i. A a-orthocomplemen-

ted poset is said to be orthomodular if 
(e) a^b implies b =au(b'ua)'. 
Let <£? be a a-orthocomplemented poset. A map m: J£—>[0, 1] is said to be 

a state on 2£ if m( l )= 1 and m(axva2v...) = m(ax) + m(a2) + ... where ai^a) 
for /=£/. 

If for some a, b e !£ we have a^b', then we say that a is orthogonal to b and we 
write a±b. 

A set of states M on ££ is said to be full if m(a)^m(b) for all meM implies 
a ^ b. A a-orthocomplemented poset with a full set of states is orthomodular [8]. 

The elements a, b eS£ are compatible (written a«->b) if there exist mutually 
orthogonal elements ax,bx,ceS£ such that a =axuc, b =bxuc. 
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An observable JC on 5£ is a map from the Borel sets 0i(R) of the real line R into 
j£, which satisfies 

(i) x(R)=l, 
(ii) x(E)±x(F) if EnF = 0, 

(iii) x ( Ú £ l ) = Ů j f № ) . i- Е(пЦ=Ф for /ч-/. 

The observables JC, y are said to be compatible if jc(F)<-*y(F) for all E, 
Fem(R). 

If JC is an observable and u a real valued Borel function on R, we define the 
observable W(JC) by W(JC) ( F ) = J C ( W _ 1 ( F ) ) for all Ee$8(R). 

A set 0 of observables on SB is said to be full if (i) x eO implies / ( J C ) G 0 for all 
real valued Borel functions / and (ii) if a e SE, then there are an JC e (? and Ee8&(R) 
such that a =x(E). 

The M a c k e y s y s t e m (described in {9], axioms I—VI) can be considered as 
a full set of observables 0 on a a-orthocomplemented poset ££ with a convex full 
set of states M [9, 10]. 

The spectrum a(jc) of an observable JC in the Mackey system is the smallest 
closed set Ee2ft(R) such that JC(F) = 1. An observable JC is bounded if a(jc) is 

bounded. The expectation of JC in the state m is m(x) = J Xm(x(dX)), if the 

integral exists. 
The norm of a bounded observable x is defined by ||JC|| = sup {\m(x)\ : meM}. 
We say that the observable z is the sum of the bounded observables JC and y if 

m(z) = m(x) + m(y) for all m eM. The sum of two bounded observables in the 
Mackey system need not exist and need not be unique. 

We say that JC is a proposition observable if a( jc)c{0, 1}. The following 
statements are equivalent [10]. 

(i) JC is a proposition observable. 
(ii) JC is a characteristic function of an observable y, i.e. x=XE(y), Ee28(R). 

(iii) JC2 = JC. 

We say that JC is an idempotent if JC2 = JC. If y is a proposition observable and 
y({\}) = a, we denote y by jca. 

Let St be the set of all propostion observables in 0. Then St will be 
a a-orthocomplemented poset if we set (i) JC ^ y if m(jc) = m(y) for all meM and 
(ii) jc' = ( l - i ) ( j c ) , where l ( t ) = l and /(t) = t, teR. If a e&9 then because O is 
full, we have a=x(E) for some xeO and Ee38(R). Then XE(x) ({1}) = 
= x(XE

i{l}) = x(E) = a. We see that the map a>-*xa from 3? to SB is one-to-one 
and a^b if and only if xa^xb, owing to m(xa) = m(a) for all aeS£. It can 
be easily seen that (JC„)' = *„.. Indeed, (jcfl)'({l}) = (1 - i ) (jcfl) ({1}) = 
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= xa((l-i)~
l{l}) = xa({0}) = a'. Thus we get that the cr-orthocomplemented 

poset St is isomorphic with J£. 
The Segal model for quantum mechanics is described in [11] and [12]. A set $f 

is called a system of observables (or a system) if 3£ satisfies the following 
postulates. 

1) d£ is a linear space over the real numbers R. 
2) There exists in #f an identity element I and for every u e 2£ and integer n _^0 

an element un e $f, which satisfies the following. If / , g and h are real polynomials, 
and if f(g(a)) = h(a) for all a el?, then f(g(u)) = h(u), where 

f(u) = (3QI+il3ku
k if / ( a ) = £ f t a * . 

fc=l fe=0 

3) There is defined for each observable u a real number ||w|| ̂ 0 such that the 
pair (Sf, || . ||) is a real Banach space. 

4) | | u 2 - t , 2 H m a x ( | | u | P , N | 2 ) and ||u2|| = ||«||2. 
5) u2 is a continuous function of w. 
A state on Sf is a real valued function m o n f such that m(u2)^0 for all ue^ 

and m(I) = 1. 
A collection of states ^ on 26 is fu/7 if m(w) = m(t>) for all meM implies u = v, 

where u,v e$£. Segal [ l l ] has shown that any system of observables has a full set 
of states and that ||w||=sup {|m(w)|: meM} for all iieS£. We can define the 
partial ordering on % if we set u ^ v if m(v — u)^0 for all m eM. 

For any two observables w, v e$£ Segal has defined the formal product 

Uov =- [(u -\-v)2 — (u — v)2]. A system is commutative if the forjnal product is 

associative, distributive (relative to addition) and homogeneous (relative to scalar 
multiplication). 

A collection of observables are said to commute if the subsystem generated by 
the collection is commutative. 

Segal [11] has proved that a commutative system is isomorphic alebraically and 
metrically with the system C(r) of all real valued continuous functions on 
a compact Hausdorff space _T. The operations in C(T) are defined in the usual way 
and the norm is a supremum norm. If m is a state on $£, then there is a regular 

probability measure n on r such that m(f)= fd\i for all f eC(T). 

An observable ueSf is an idempotent if u2 = u. Let 9 be the set of all 
idempotents in 3f. Clearly, 0 and I are idempotents. For a,b eSP we define a ̂ b if 
m(a)^m(b) for all m eM, where M is the full set of states on Sf, and a' =I — a. 
Then (^, ^ , ') is a partially ordered set which satisfies the properties (a), (b) and 
(d) from the definition of the a-orthocomplemented poset [1]. The elements 
a, b e£P are orthogonal if and only if a+b^I. 
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2. The imbedding of a Segal system into a Maskey system 

Let Sf be a Segal system. M the full set of states on it and let 0* denote the set of 
all idempotents in S£. 

Definition. We shall say that 3£ is imbedded into a Mackey system if there exist 
a full set of observables G on a o-orthocomplemented poset S£ with the full set of 
states Jf which is isomorphic with Mas a convex set and a one-to-one map T from 3f 
into G such that: 

(i) m'(rx) = m(x) for all x eSZandallm eM, where m>-*m' is the isomorphism 
of M onto Jf, 

(ii) r(xn) = (Tx)n for all xeSe and all integers n ̂ 0 , 
(hi) if m(x) = m'(y) for all m eM, where xe%, y eG, then y = TX. 
It is clear that r preserves the norms. By (ii), from T[3£]CIG it follows that 

T[$P]aS£, where S£ is the set of all proposition observables in G. By (i), T[3>] is 
isomorphic with SP. The property (iii) ensures the uniqueness of the sums u + v in G 
if u =TX and v = r y for some x, y eS£. In addition, we have that m'(r(x +y ) ) 
= m(x+y) = m(x) + m(y) = m'(rx) + m'(ry) = m'(rx + ry), so that TX + ry 
= r ( x + y ) . 

Now let % be any o-orthocomplemented poset and Sf its full set of states. Then 
each member a e % gives rise to the function a: Sf—>[0, 1] defined by a(m) = m(a) 
for all m e Sf. Let Sf' be the set of all such functions, i.e. the dual of Sf. By [8], Sf' is 
the cr-orthocomplemented poset with respect to the natural ordering of functions 
(d^b iff d(x)^b'(x) for all x eSf), with the complementation a' = 1 -a, where 1 
denotes the function 1(JC) = 1 for all xeSf, and (3T, ^ , ') is isomorphic with 

(?, *s, ')• 
Let 0> be the set of all idempotents in a Segal system $f. Let S °̂ denote the set of 

alls function a(m) = m(a) for all meM, where aeSP. 

Theorem 1. The necessary condition for imbedding the Segal system % with the 
full set of states M into a Mackey system is the existence of a set S£x of functions 
from the set M into [0, 1] satisfying the following conditions: 

(i) The zero function belongs to S£x. 
(ii) /e-Sf, implies \-feS£x. 

(iii) For any sequence fu f2, ... of members of S£x satisfying f+f^l for i ̂  / we 
have fi+f2 + ...eS£l. 

(iv) 9>°czS£x. 

Proof. It is clear that 0>o satisfies the conditions (i) and (ii). From the 
D e f i n i t i o n it follows that there is a set Jf isomorphic with M, which is a full set 
of states on a a-orthoposet S£. Let Jf' be the dual of Jf. To each deJf' let fa be 
the function on M defined by fa(m)-d(m'), where mv-*m' is the isomorphism 
of M onto Jf. Let S£x be the set of all such functions. Since by [8], T h e o r e m 1, 
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jff satisfies (i)—(iii), so does S£x. To show (iv), let ceSP°. Then c(m) = 
= m(c) = m'(rc). As rc e& and £ is isomorphic with S£, there is a c' e i? such 
that n(rc) = n(c') for all neJf. Thus we ge m'(xc) = m'(c') = c'(m') = 
=- /v(m), i.e. c = fceS£x. 

The following theorem is the consequence of Theorem 1. 

Theorem 2. The necessary condition for imbedding the Segal system c£ into 
a Mackey system is as follows: 

(a) If aua2, ... is a sequence of elements of <3P such that a, +a^I for i =£/ and if 

there is an a e?£ such that m(a) = ^ m(a{) for all meM, then a eSP. 
i = 1 

Proof. Let S£x cz[0, 1]* be the set satisfying the conditions (i)—(iv). Let 
au a2, ... be a sequence of elements of SP satisfying ai+a^I for i = j and let 

m(tf) = X m ( a ' ) f° r a " meM, where ae%. Then by (iv) from Theorem 1 we 

have aua2, ...eS£x and by (iii) at+a2 + ...eS£x. If we set a(m) = m(a) for all 
meM, then a — a, +a2 + ...eS£x. As i?i is isomorphic with the set SB of all 
propostion observables, wehavem(a) = <z(m) = m'(b) = m'(xb), for some b eJ£, 
i.e. by (iii) from the Definition, xb — xa, so that by (ii) from the Definition, a is 
an idempotent. 

It can be shown that if (a) is fulfiled, then a is the supremum of au a2, ... in 0\ 
i.e. a = axua2u.... Indeed, at^a for all / = 1, 2, ... and if g eS> such that a{^g, 

i = l , 2 , . . . then a(+I-g^I, i = l ,2 , .... Since m(a+I — g) = ^ m ( a ( ) + 

+ m(I-g) for all meM, we have by (a) that a + I — ge$P, but then a +I-g^I, 
i.e. a ^_f. For the finite sequence A-, A2, ..., an of orthogonal elements of SP we get 
that axua2u...uan = fl1+fl2.. + ^ e ^ . 

Theorem 3. Condition (a) from Theorem 2 is equivalent to the following two 
conditions: 

(p) If a,beSP such that a+b^I, then a + b=aube&. 

(y) J/8i, 82, ...e'SPsuch thatsx^s2^... and lim m(sn) = m(s) for each meM, 

where se%, then s eSP. 
Proof. Let a) be fulfilled. Then (/3) is obvious. Let st^s2_i... be a sequence of 

elements of ?P such that lim m(sn) = m(s) for each meM, where s e Sf. Let us set 

tfi =8i, «5 =8„ -sn-i for n =2, 3, .... From 8n_,^8n it follows that $_, + I - . s n s^I 
and by (a) 8n_, + I-sne$P. Then also J-(s n_i + I-sn) = sn-8n_,e^> and 

Zjm(at) = lim Y m ^ ) = lim m(8n) = m(8) for all meM. Since m(5 ,
n)^l for 

i_l «->«» | = | rt-*oo 
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each m, there is also m(s) = l i m m ( s n ) ^ l for each m, i.e. s^I. Then 
n—»°c 

ak + ax ^ 8 =^J and by a), s eZP. 
Now let (/3) and (y) be fulfilled. Let ax, a2, ... be a sequence of mutually 

orthogonal elements from $P and let m(a) = 2jm(ai) for all meM, where a e f . 

Then8n = ax + a2 + ... + an eZP. Indeed, by /3) we have ax+a2e
<3> and ax+a2 = 

= axua2. Now we proceed by induction. Let ax+a2 + ... + an-x 

= axua2u...Kjan-x e^P. Then at ^1 -an for i = 1, 2, ..., n — 1 imply b =a ! + a2 

+ ... + an-x ^ I-an, so that b + £*„ =^I and again by ((3), b +an = buan eSP. 

Since 8, =^82^ and lim m(sn) = m(a) for each m eM, we have by (y) that a eSP. 
n —»oo 

Lemma. Let 3? be a Segal system and SP its set of idempotents. Them a, b eSP, 
a+b ^1 imply anb =0. 

Proof. Let 0 = g e$P be such that g^n, g ^b. a +b ^1 implies b ^1 -a, so 
that g^a and g^I-a. Let meM be such that m(g) = 1. (From the properties of 
the Segal system it follows that such an m exists). Then m(g)=l implies m(a) = 1 
and m(I — a)= 1, which is impossible. Thus g =0. 

Some authors [5, 13] have considered another form of the formal product 

instead of the Segal form u © v = ~T[(U + V)2 — (u — v)2]. The other form is 

u ov =-[(u + v)2 — u2— v2]. In the distributive Segal system both forms are 

equivalent. In the following we shall consider Segal system with the latter form 
of the formal product. In such systems if a,be£P such that a+b^I, then 

a+b eSP is identical with a o b =-[(a+b)2 — a2 — b2] = 0 and this is equivalent 

to a o b =ac\b. 

Theorem 4. In the Segal system with the formal product defined by a 0 b = 

= -[(a+b)2-a2-b2] the condition ((3) in T h e o r e m 3 is equivalent to the 

following condition. 
6) If a, b, c, are pairwise orthogonal elements in $P, then (a +b) Qc = a oC + 

+ b oc = 0. 
Proof. Let a,ceSP be such that a +c^I. As 0 is orthogonal to all elements 

in $P, we have (a + 0) o c = a o c = 0, from which it follows that (a + c)2 = a + c. 
Now let a+b^I and let deSP be such that a^d, b^d. Then a, b, I-d 
are mutually orthogonal. Consequently (a + b) 0 (I — d) = 0, from which 
a + b + I - d e 3P. But then a + b + I - d ^ I , i.e. a + b ^ d. Thus we get 
a\jb = a + b, i.e. (6) --> (s). 
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Now let a, b, c be mutually orthogonal elements from 0 \ By ((3) a+b, a+c, 
b +c and a+b +c are idempotents, from which (a + b) 0c = a 0c + b oc = 0. 

D e l y i a n n i s [7] has shown that condition /?) from T h e o r e m 3 is fulfilled in all 
distributive Segal systems. He has given also an example of a non-distributive 
system which can be imbedded into a Mackey system. From this it follows that 
distributivity is not necessary for the imbedding. In his counterexample (example 2 
in [7]) the only sets of pairwise orthogonal idempotents are (0, a, I —a), where 
a e SP. Such sets commute so that the systems generated by them are distributive 
and the condition (3) is fulfilled. From this we see that distributivity is satisfactory 
for the validity of ((5), but there are non-distributive systems in which (/3) is also 
fulfilled. On the other hand, an example of a non-distributive system (a S h e r m a n 
counterexample [12]) is given in [1], in which ((3) is clearly not fulfilled. 

Finally we show a property of the distributive systems which gives a partial 
answer to the question mentioned in [5]. 

Theorem 5. Let $£ be a distributive Segal system. Let a, b e 9*. Then a 0 b = 
= anb if and only if a<r*b. In this case, aub = (a + b) — (a0b). 

Proof. Let a o b =anb. Let us set a = (a—a 0b) + a ob, b=(b—a0b) + 
+ a o b. As (3) is valid in a distributive system, from a cb^a we have a —a 0b eSP 
and, analogously, b -a 0b e$P. As a^I and b^I, a 0b is orthogonal to 
(a -a o b) and to (b -a o b), so that a = (a—a0b)ua0b,b=(b-a0b)u 
Ufloft. We have to show that (a-a o b) + (b -a o b)^I. But (a-a0b) + 
+ (b -a o b) = a+b - 2(a 0b) = (a—b)2. From the properties of Segal system 
it follows that | | f l

2 - f c 2 | | ^ m a x ( | M | 2 , | |b | |2). Then \\(a -b)2\\ = \\a -b\\2 = 
= | | f l 2 - b 2 | | 2 ^ l , so that (a-b)2^I. Now let a±+b. Then there exists au bu 

ce$P, mutually orthogonal and such that a=axuc = ax + c and b = bxuc = 
= bx + c. It can be easily seen that ((3) implies the orthomodularity property. 
Indeed, let x,y eSP be such that x^y, then x is orthogonal to I-y and x+I-
-y = xu(I-y)eSP. From x + (I-[x + (I-y)]) ^ I It follows that y = 
= xu(I-[xu(I-y)]) = xu(xuy')'. Then by [14] c = anb. On the other hand, 
from the distributivity and T h e o r e m 4 i t follows that aob =(ax + c)o(bx + c) = c. 

Now we have to show that aub =a + b —a ob. The condition ((3) and the 
distributivity imply that from x^y, where x, y e*3P, it follows that x o (I — y) = 
= x —xQy =0, i.e. Xoy=x. Consequently, ao(b—aob) = a ob —a o b =0, 
i.e. a+(b-a ob)eSP. Clearly, a^a + (b-a ob) and b ^b + (a -a o b). Now 
let ge$P be such that a^g, b^g. Then a ob =anb^g, so that [(a+b) — 
- aob)]o(I-g) = (a+b)o(I-g) - (aob)o(I-g) = 0, which implies 
(a+b-aob) + (I-g)e&, i.e. a +b -a o b ^g. 
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ЗАМЕЧАНИЕ О СРАВНЕНИИ МОДЕЛЕЙ СИГАЛА И МАККИ 

Сильвия Пулманнова 

Резюме 

В данной статье исследуются две системы аксиом для квантовой механики: система Сигала 
и система Макки. В работе показазаны необходимые условия для включения системы Сигала 
и систему Макки. 
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