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OSCILLATION CRITERIA FOR FOURTH-ORDER
LINEAR DIFFERENTIAL EQUATIONS

JAN REGENDA

The present paper is a study of the oscillation of the differencial equation
L) yP+P@O)y"+Q(1)y =0,

where P(¢), Q(¢) are continuous functions on the interval I =[a, ®), — o0 <a <.
We shal assume throughout that

(A) P(t)=0, Q(1)=0
and Q(¢) not identically zero in any subinterval of I .

The terminology introduced in [10] remains valid.

Oscillation criteria for equation (L) will be obtained by an application of the
theory developed in [10] and by the oscillation of linear differential equation of the
third order.

An equation of this type had been considered earlier by V. Pudei [8]. This
author used for this equation a theory of conjugate points and obtained some
oscillation and nonoscillation theorems of a somewhat different character from
those described in this paper.

We remark that the proofs of the theorems in [8] and also in [7] are more
complicated than those used in this article.

1.

Lemma 1.1. Let f(t) e C*[c, ») and f(t)>0, f'(¢)>0, f"(t)<0 in [c, ©), c Za.

Then ]
f@O—=@=o)f'®)>0

for t €[c, «).

Proof. Let (¢)=f(t)—(t —c)f'(¢) for t=c. Since @(c)=f(c)>0and ¢'(¢) =
—(t—=c)f"(t)>0 in (c, ), then @(¢)>0 for t €[c, »).

Remark 1.1. Let there be a function w(¢) € C*[c, ) and let w(t) >0, w’(t)>0,
w"(t)>0 and w'"'(t)<0 in [c, ©), c=a.



Set f(t)=w’'(t) for t €[c, ). It follows from Lemma 1.1 that
€)) w'@)—(—c)o"(®)>0
for t €[c, »). Integration of (1) from c to ¢ yields

t—c¢

) : w(t)> >

w'(?)

for t €[c, ). From the above inequalities (1), (1') we obtain

E=9 ooy

w(t)> 5

for te[c, ).
Now we will state the relevant theorems without proof.

Lemma 1.2. [2]. Let f(t) be a real valued function defined in [t,, *) for some
real number t,=0. Suppose that f(t)>0 and that f'(t) and f"(t) exist for t=t,.

Suppose also that if f'(t)=0 eventually, then lim f(t)=A <. Then

lim inf [¢°"(£) = at*~'f"(£)] =0
for any a =2. ‘
Theorem 1.1 [10]. Suppose that (A) holds. Then (L) is nonoscillatory on I if
and only if there exists a number t, € I and a solution y(t) of (L) such that either

y(©)>0, y'(t)>0, y"(r)<O0,
or .
y()>0, y'(t)>0, y"(£)>0, y'’'(£)<0

for all t =t,.
The preceding results will now be used to prove the following assertion.

Theorem 1.2. Suppose that (A) holds and let

j Q) dt = — o, To,= max {a,0}, 0=a<l.
Then (L) is nonoscillatory if and only if there exists a solution y(t) of (L) and
a number t eI such that y(t)>0, y'(t)>0 and y"(t)<O for all t =t,.

Proof. The sufficient condition follows from Theorem 1.1. In order to prove
the necessary condition, we will show that (L), by the above assumptions, has no
solution y(¢) with the properties y(¢)>0, y'(t)>0, y"(t)>0, y’''(¢)<O0 in the
interval [t,, ©), #,>max {a,0}. The assertion then again follows from
Theorem 1.1. ‘
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Supposé on the contrary that such a solution y(¢) exists. Applying Lemma 1.1
and Remark 1.1 to the solution y(t), we obtain

y __ 2
y(©) =)y
for t>t, and hence for téZt0
Y@ _8
2 —rL—
@) 0)

2+a

Mutltiplication of (L) by ty

, 0=a <1 and integration from 2¢, to ¢ yields

e

2+ay”’(t)__ l+aw ! y'(S)y (S) 2+a _
y(2) @+ Y(t)+2ro yiG) ds

—e+o)f y’(;z)();';(s) tads+(2+a) (1+a) Y() s ds +K=

t

3)

= —f s2*°Q(s) ds,
2t9

where K is a finite constant. It follows from (2) and the fact that 0=a <1 that the

integral

" Y'6) o
s ds
2t (S)
is finite. Therefore the left-hand side of (3) consists of bounded or negative terms
while the right-hand side of (3) tends to o as t—o. This is a contradiction.
Theorem 1.2 is proved.

Theorem 1.3. Suppose that (A) holds and let —2t7>=P(t) for t>t,=
max {a, 0}. Then there does not exist a solution y(t) of (L) such that y(t)>0,

y'(£)>0, y"(t) <O for t>t,=t,.

Proof. Suppose on the contrary that there exists a solution y(¢) with the
properties y(¢)>0, y'(t)>0, y"(t) <O for ¢t =¢,. It follows from (L) on account of
the hypothesis — 2t >=P(¢) that

4) y“”—tz—zy”+ Q@)y=0, t=t,.

Since y''’'(t) <0 eventually is impossible (y'>0 and y”<0), pick ¢; >1, such that
y'"'(t1) Z0. Now multiply (4) by #* and integrate by parts from ¢{ to ¢ to obtain

£y () — 2ty (€ Z ey (1) = 20l (1) — f 5*Q(s)y(s) ds.



The right-hand side of (5) is positive and increasing for ¢ =¢{. However, by
Lemma 1.2, with a =2, it follows that the lim inf of the left-hand side of (5) is zero.

This contradiction proves the theorem.
The following example shows that in general the condition —2¢7>= P(t) cannot

be replaced by — Dt *=P(¢), D>2.
Example. The equation

y(4)_t22yl,+o(t)y=0’ t>1’

where

_D-2 2(D+1) 12 24
t‘Int  *In*t ¢*In’t *In*e’

Q)=

has the solution y(¢)=¢(In¢)"' with y(¢)>0, y'(t)>0 and y"(¢) <0) eventually,
say for t,> 1. If D>2, then there is a £,> 1 such that Q(¢) <0 for t >t,. Hence for
D>2 and tZmax {¢,, t,}y()>0, y'(t)>0, y"(t)<0 and Q(¢)<O0.

Theorem 1.4. Suppose that (A) holds and let

\ f sP(s)ds> — o, ty>max {a, 0}.
Then there is not a solution y(t) of (L) with the properties y(t)>0, y'(t)>0 and
y'(t) <O for t=t,.
The proof is obtained similarly to that of Theorem 2.4 [2], and will be omitted.
Example. The equation

_ 1 "__ e’ =O
20+e)? rH2e YT

“)

t=0,

. 1 . .
has the solution y =5t2+e" with the properties y >0, y'>0, y">0, y'"’' <O for

t=t,=0.

Since
flsP(s)ds——l TS ds>—o
§ T 2) 1+

0 to

as t— o, the above differential equation cannot have a solution y with the
properties y >0, y’'>0, y"<<0 for t =¢,.

Theorem 1.5. Suppose that (A) holds and let f Q@) dt= —o, 1yel. If in

addition — o< —M=¢’P(t) for tZ1,, then the equation (L) is oscillatory.
Proof. Suppose on the contrary that (L) is nonoscillatory. Then, by



Theorem 1A.2 there exists a solution y(¢#) of (L) and a number t,e€l such that
y(t)>0,y'(t)>0, y"(t) <O for all t =¢, Multiply (L) by ¢* and integrate from ¢, to ¢
to obtain

@2y 6 @M |y ds+
(6) , '
+f $2Q(s)y(s) ds =0.

Note that the term (2 — M) f y"(s) ds is bounded as ¢t — o since y’(¢) has a finite

limit. Therefore (6) can be written

£y""(£) = 2ty"(t) =K _[ s*Q(s)y(s) ds,

where K is a finite constant. It follows from the assumptions of the Theorem and
" the fact that y(¢) is a positive and increasing function that the right-hand side of (7)
tends to o as t— . However, by Lemma 1.2, with a =2 it follows that

lim inf |£2y"""(£) —2ty"(¢)| = 0.
This contradiction proves the Theorem.

Theorem 1.6. Suppose that (A) holds and let f Q(t)dt= —oo, toel. If in

addition —oo < —m=P(t) for t =t,, then the equation (L) is oscillatory.

Proof. Suppose on the contrary that (L) is nonoscillatory. Then, by
Theorem 1.2 the exists a solution y(¢) of (L) and a number ¢, € I such that y(t) >0,
y'(t)>0 and y"(t)<O0 for t=¢t,. From (L) we get on account of the hypothesis
—m=P(t)

(y'_"—my')'+Q(t)y§0, tgto.

Integration of the last inequality from ¢, to ¢ yields

v -my'©ZK=[ Qe)y(s) s,

where K is a finite constant. Since y(¢) is a positive and increasing function and
j Q(s) ds = — =, the right-hand side of (8) tends to « as t— . It then follows

from (8) that y'’’(¢) tends to o as t— . Hence there exists a number ¢, =¢, such
that y”(¢)>0 for t=t,. This contradicts the fact that y"(¢)<O for t=¢,. The
Theorem is proved.



Theorem 1.7. Suppose that (A) holds and let

1. f ££7*Q(t) dt = — o, to>max {a, 0} forsome 0= <1

0

and

f tP(t) dt> — » or —tz—zéP(t), =1,

0

or

2. fthQ(t) dt=—wand - < —-M=t’P(t) for tZ1,, To€l,
or

3. [CQ(t)dt=—°°and —00<—m§P(t)fon‘§t‘(,, tel.

Then equation (L) is oscillatory and there exists a fundamental system of solutions
of (L) such that two solutions of this system are oscillatory, other solutions of this
system are nonoscillatory and one of them tends monotonically to « as t— % and
the other of them tends to zero.

Proof. It follows from Theorem 1.5 and 1.6 that (L) is oscillatory by the
assumptions 2 or 3 and on account of Theorems 1.2, 1.3, 1.4 and Theorem 6 [10] is
oscillatory also by the assumption 1.

Now we prove the last statement of Theorem 1.7. It follows from Theorem 2
[10] that there exists a solution z with the properties z>0, z' <0, z">0 and
z2'"" <0 for t Za. By Theorem 3 [10]

lim z(¢)=0.

s
Let zo, 21, 22, 25 denote solutions of (L) defined on I by the initial conditions

0, i#j

@ =Q; =
w@=o,={ ;]

for i, j=0, 1, 2, 3. Then (L) has oscillatory solutions

u(t)= b:)Zo(t) + bszs(2)
v(t) = caza(t) + c325(2),

whose construction has already been shown in the proof of Theorem 6 [10].

Note that z; has no zero to the right of a by Lemma 4 [10] and limzs(t) = .



The solutions z(¢), u(t), v(¢) and zs(¢) form the fundamental system of (L). In
fact, their Wronskian at the point a yields

z(a), be, 0, O
z'(a), 0, 0, O
z''(a), 0, ¢ O
z'""(a), bs, c3, 1

since z’(a)<0 and b,#0, otherwise it would be u(t)=bsz5(¢t), which would
contradict the fact that u(¢) is oscillatory and zs(¢) has not zeros to the right of a.
By the same argument c,# 0. The proof of Theorem 1.7 is complete.
Remark 1.2. By the assumptions (A), 1 and P(¢)=0, Theorem 1.7 is
generalization of Kondratev’s Theorem 2.5 [5].
Remark 1.3. In the special case equation

(L) y®+Q()y=0

is oscillatory if

= - boCzZ'(a) #0,

f Q@) dt= —o, 0=a <1, t,>max {a, 0}.

Remark 1.4. Suppose that (A) holds and P(¢)=0. If (L) is nonoscillatory,
then

9) rt“"o(t) dt> — o, t,>max {a, 0}

for any 0=a <1.
The nonoscillatory equation

@ _

T

y=0, >0

shows that the conclusion (9) does not hold for a =1. On the bases of Theorem
9 [10] this result is equivalent to the result of W. Leighton and Z. Nehari [7].
Negation of this implication has not been proved in [7].

2.

M. Gera [3] considered the linear differential equation of the third order
Klyl=y"" +p)y" +q(t)y’ +r()y =0,
'where p(t), q(t), r(t)e C().
Let
F(y,z2)=zy"+()z—2")y' +[qg(®)z +(z' —p()2)]y.

He proved the following theorem and corollaries.



Theorem 2.1. A necessary and sufficient condition for the equation K[y]=0 to
be disconjugate in [to, ©), toel is the existence of the functions wi(t),
w(t) € C°[to, ) with the properties

wi(t)>0, w,y(£)>0, K[w,]=0, K[w,]=0
for t €[to, ) such that the differential equations of the second order
F(wy, 2)=0, F(w,2z)=0
are disconjugate in (to, ).

Corollary 2.1. Let there be a function w(t)e C>(t,, ®) with the properties
w(t)>0, w'(t)>0 (<0), K[w]=0 (=0) in (to, ®), toe I and let r(t)=0 (=0) for
t €[to, ®). Then the differential equation K[y]=0 is disconjugate in [t,, ).

Corollary 2.2. Let there be a function w(t)e C’(t,, @) with the properties
w(t)>0, w"(t)=0, K[w]=0in (t, ©) andlet q(¢t)=0, r(t)=0 for t € [to, ©). Then
the differential equation K[y]=0 is disconjugate in [t,, ©).

Theorem 2.2 [10]. Suppose that (A) holds. Then (L) is nonoscillatory on I if
and only if there exists a number t, € I and a solution y(t) of (L) such that either

y(@)>, y'()>0, y"(t)<O0,
or
y(@®)>0, y'(t)>0, y"()>0, y'"'(t)<0

for all t=t,.
The preceding results will now be used in order to prove the following theorem.

Theorem 2.3. Suppose that (A) holds. Let u(t) be a positive and continuous

function in (T, ©), T=a, such that

(10) !LTE mf—ﬁiz

for arbitrary t,=a and let the differential equation of the third order
x'""+P(t)x'+0Ou()Q(t)x=0

for some O € (0, 1) be oscillatory. Then (L) also is oscillatory.
Remark. Examples of functions u(¢) for which the condition (10) is satisfied
are as follows:

v(t—a),ve(0,3]; k(t—a), k>0,e<l; In(t—a),t>T, T=Za+1.

Proof. Suppose on the contrary that (L) is nonoscillatory. Then, by
Theorem 2.2 there exists a number f,€I (£,=T) and a solution y of (L) such that

10



eithery>0,y'0,y’’>0and y'"' <0,0ry>0,y’>0and y'’ <0 for t =¢,. Applying
Lemma 1.1 and Remark 1.1 to the solution y, we obtain

t—t ,
7 7Y

y>
for t =t,. It then follows from (L) that

yO+P(>t)y" +%’ Q(t)y’20.

If }im inf ty—(-tt)o =2, for O € (0, 1), then there exists a number 7 > t,(7 > T) such that
20520 for t>1
u()
and hence
t—1,
5~ >0u()

for t>1. Setting y’ =z, we obtain
Z""+P()z'+Ou(t)Q()z=0

and z>0, z'>0, z''<0 or z>0, z'<0 on (t, ©). It follows from the above
inequalities and Corollaries 2.1 and 2.2 of Theorem 2.1 that the linear differential
equation

x""+P(t)x'+Ou()Q(t)x =0

is disconjugate on [z, ®). This contradicts the hypothesis of the theorem. Theorem
is established.

Theorem 2.3 is the main result of this paper. By combining Theorem 2.3 with the
known oscillation criteria for the third-order equation

(K") x""+q()x’ +r()x=0
we obtain oscillation criteria for (L).

Theorem 2.4 [6]. Suppose that q(t) e C'(I), q(t)=0, q'(¢) —r(¢)>0 in I and

[ BVE@©-re)-2-a@yai=c.

Then (K') is oscillatory.

Theorem 2.4'. Let 1u(t) be a positive and continuous function in (T, ), T=a

such that t—t
lim inf —==2
== u(t)

11



for arbitrary to=Za. Suppose that (A) holds and let P(t)e C'[T, »), P’'(t)—
Ou()Q(t)>0 in [T, ») and

| BV3@E 0 - @) -2-P@©)y? di=<

for some @ €(0, 1). Then (L) is oscillatory. _
Theorem 2.5 [11]. Suppose that the coefficients of (K') satisfy the assumptions
q)eC'I), q()=0, [2r(t)—q'(1)| =9,

4 .
where 0 =0 and 6 >——= (—0)*?, o and 6 are both constants, or the assumptions

3V3

q(eC'(), q()Z3 20 [2r(1)—q (t)l>

where o<1 and 6>i_ (1-0)*? o and & are both constants. Then (K') is

3V3

oscillatory..

Theorem 2.5'. Let u(t) be a positive and continuous function in (T, ), T=Za
such that

for arbitrary t,=a. Suppose that (A) holds and P(t)e C'[T, ). Let
P(t)=o, [20u(t)Q(t)—P'(t)|>6 forsome O € (0, 1),

where 0 =0 and 6 >7 —0)*?, 0 and 8 are both constants, or let

| >

P(t)z3 el [26u()Q(t)—P'(1)|= p
for some O €(0, 1), where

0=0andd>—2— (1-0)",

3V3

o and 6 are both constants. Then (L) is oscillatory.
Theorem 2.6. Let —%éq(t)éo or q(t)=0 and J’ tq(t) dt> — o and let
r(t)=0 for t=t,, to,>max {1, a}.

12



If

[ s at= =,

where f(t) is one of the functions

', 2(In )72, #(Int)"'(In (In £))* 72,
for some 0<a <1, then (K') is oscillatory.
The proof of Theorem 2.6 follows from Theorem 1.1 [9] and from Theorems 2.4,
2.5 and 2.8 [2].

Theorem 2.6'. Let u(t) be a positive and continous function in (T, ), T>
max {1, a} such that )

. . t - to
lim inf =2
== u(t)

for arbitrary t,=a. Suppose that (A) holds and let

—%éP(t) for t=T or L tP(t) dt> — o

and suppose that

[T rmowr@ar= -,
where f(t) is one of the function

t' (n ) 72, A(Int) '(In (In £))* 2, 0<a<l1.
Then (L) is oscillatory. :
Remark 2.1. The oscillation criterion which was proved in Theorem 1.7 is

special case of Theorem 2.6’ for u(t)=wvt, ve(v,3] and f(t)=t'"", 0<a<l1.
" Now we consider the equation

(K") y""" +r(t)y=0.

The following theorem is proved in [4].

Theorem 2.7. Suppose that r(t)e C(I) and let r(t) = (—%—s(r)) t1—3for

t=1,> max {a, 0}, where £(t)=0, J g(tt—)dt=°°.

Then equation (K") is oscillatory.
On account of Theorem 2.7 we obtain the following statement.
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Theorem 2.7’. Let u(t) be a positive and continuous function in (T, «),
T >max {a, 0}, such that

lim inf —22
too u(r)
for arbitrary to=a. If
2V3
n0O=(-22-e) 5

for t=T and some © €(0,1), where €(t)=0, f E(t—tldt=oo, then equation
T

y®+Q(t)y =0 is oscillatory.
We finally show how Theorem 2.2, Lemma 1.1 and Corollaries 2.1 and 2.2 of
Theorem 2.1 may be used in order to obtain sufficient criteria for the nonoscilla-

tion of the linear differential equation of the form

(X' X" +P()x’'+Q(t)x =0.
Theorem 2.8 [5]. If (A) holds and if
(10) P(t)e C(I), *P"(t)+ Q(¢)=0 for tel,

then (L) is nonoscz]]atoty

Theorem 2.8'. Suppose that (A) and (10) hold. Then (K''") is nonoscillatory

on I
Proof. It follows from Theorem 2.8 that (L) is nonoscillatory. Hence by

Theorem 2.2, there exists a number f,e€l and a solution y(¢) of (L) such that
y(@)>0,y'(t)>0, y"(#)<0or y(#)>0, y'(¢)>0, y"(¢)>0, y'"'(¢) <0 for all t=¢,.
Applying Lemma 1.1 and Remark 1.1 to the solution y(¢), we obtain

t _to '
> Y'(®)
for t =1,. It then follows from (L) that
yO+P(y'Z =R 0y, 12

If t=2+1t,=t,, then
yP+P()y"+Q(t)y'=0, t=t,.
Setting y’' =z, we obtain

'""+P@)z' +Q(t)z =0, t=1,

14



and z>0, z'<0 or >0, z'>0, z"<0 in [t, »). It follows from the above
inequalities and Corollaries 2.1 and 2.2 that equation

X" +P(x' +Q()x=0

is disconjugate on [¢;, ©) and hence nonoscillatory on [a, ©). The theorem is
proved.
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OCHUIIIALUNOHHBIE KPI/ITEPI/{H OJIA TUHEMHBIX
IUPPEPEHIIMAITBHBIX YPABHEHHWHM YETBEPTOI'O ITOPAIOKA
Au Perenpga
Pesome
B paGore npuBeneHbl kpurepun pist ocunsutsuun ypasHenus (L). HekoTopblie U3 aTuX KpuTepuit

ABNAIOTCA 0OOOLIEHHEM HEKOTOPBIX W3BECTHBIX PE3y/IbTaTOB.
Hanpumep, yTBepxaeHue o6o6maromee pesynstat B. A. Kongpereepa [3]:
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ITycts (A) BLITOJIHEHO M MYCTh

f“’z“ao(t) dt=-w, r,>max{a, 0}, 0Sa<l.

0

Ilycts, xpoMme TOTO
* 2
j P(1) dr> - »( 3= PQ). 121,
<0
Torna ypasHeHue (L) OCUMIILIMOHHOE U CYILECTBYET PyHNAMEHTANbHAS CHCTEMA PEIICHUI yPaBHEHHUS

(L), Takasi, YTO ABa M3 BXONSIIMX B HEe pElICHHI KOJEGNIOTCA a OCTalbHbIE ABA HE KONEGNIOTCS,
NpUyYeM OIHO U3 HU3 MOHOTOHHO CTPEMMTCS K HYJIIO, @ BTOPOE MOHOTOHHO CTPEMHTCH K + .
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