
Mathematica Slovaca

Robert Šulka
Remark on partially ordered sets, universal algebras and semigroups

Mathematica Slovaca, Vol. 29 (1979), No. 2, 131--139

Persistent URL: http://dml.cz/dmlcz/136206

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136206
http://project.dml.cz


Math. Slovaca 29,1979, No. 2,131—139 

REMARK ON PARTIALLY ORDERED SETS, 
UNIVERSAL ALGEBRAS AND SEMIGROUPS 

ROBERT SULKA 

In the paper left segments of a partially ordered set P and some subsystems of 
the system of all left segments of P are studied. 

Results are applied by studying the system of subalgebras of a B -algebra (see 
Def. 3.), especially by studying the system of subalgebras of unary algebras and 
B-semigroups and by studying systems of ideals of semigroups. 

Some results of papers [1, 2, 3, 7, 9 and 10] are generalized and completed. 
The possibility of solving the above problems is given by Theorem 15, since by 

this Theorem the partially ordered set of all subalgebras of a B -algebra is 
isomorphic to the partially ordered system of all left segments of the partially 
ordered set of all ^-equivalence classes (see the beginning of section 2) of this 
B -algebra. 

1. Partially ordered sets and their segments 

Definition 1. ([5]) Let (P, ^ ) be a partially ordered set. Let S be a subset of 
P having the following property: 

if § e S and n^^9 then neS. 

Then S is called the left segment of P. 
Right segments are defined dually. 
Let .33(P) be the boolean of P and Sf(P) the system of all left segments of P. 

Theorem 1. ([5]) Sf(P) is a complete sublattice of the boolean Sft(P). 

Lemma 1. Subsets H0(a) = {%eP\%^a} and N0(a) = { £ e P | £ > a } are left 
segments of P and they are nonempty subsets. 

Subsets H(a) = {§ eP\Z;<a} andN(a) = {§ eP\^a} are left segments of P. 
Subsets H0(a) = { £ e P | £ ^ a } = P\N(a) and N'0(a) = {%eP\%<a} 

= P\H(a) are right segments of P and they are nonempty subsets. 
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H'(a) = { § e P | § > a } = P\N0(a) andN'(a) = { § G P | ? ^ « } = P\H0(a) are 
right segments of P. 

We shall use the following notations: 

^ ( P ) = { H ( a ) | a E P , H ( a ) - r - 0 } 
N(P) = {N(a)\aeP,N(a)±0} 

$?*(P) = { H ( a ) | a e P } 
Jsf*(P) = {N(a)\aeP} 

x ^ 0 (P ) = { H 0 ( a ) | a e P } 
^ 0 ( P ) = { N 0 ( a ) | a 6 P } 
^ 0 ( P ) = { H 0 ( a ) | a e P } . 

Theorem 2. ([5]) The mapping ( p :P ->%(P) , cp(a) = H0(a) is a monotone 
isomorphism. 

Theorem 3. The relation K = n(¥(P)\{0} ± 0 holds iff inf (P) = a exists. Then 
n(^(P) \{0}) = {a} is true. 

Proof. Let K^0. Then there exists an aeP such that aeK. Moreover for 
every | e P we have H 0 ( § ) ^ K 3 a , hence a ^ g and therefore a = i n f ( P ) . 

If a = inf (P) exists, then a e S for every 5 e 5^(P)\{0}, therefore aeK and this 
means K±0. 

Theorem 4.IfK = n(5?(P)\{0}) *0, then K = nW0(P). 
Proof. By Theorem 3 we have K={a}, where a =inf (P). Hence H0(a) = {a} 

and therefore K = H0(a)^n^0(P). The converse inclusion is evident. 

Theorem 5. If K = n(Sf(P)\{0})*0, then K = nN0(P). 
Proof. We have again K={a}, where a = i n f ( P ) . Hence N0(a) = {a} and 

therefore K = N0(a)=>nJf0(P). 
The converse inclusion is evident. 

Theorem 6. The relation K = n(¥(P)\{0}) = 0 holds iff nWo(P) = 0. 
Proof. Clearly nWo(P) = 0 implies K = 0. 
If K = 0, then for every element £ e P there exists an^S e^f(P)\{0} such that 

§ & S. But every such S contains a set H0(a), where a e S and £ <£ H0(a). Hence for 
every § e P there exists an H0(a) such that § «£ H0(a). This implies § <_. n^f0(P) and 
therefore nWo(P) = 0. 

Theorem l.HK = n(5?(P)\{0}) 9- 0, rhe/7 K = n3(f(P). 
Proof. Since K={a}, where a = i n f ( P ) , for every § e P , ^ a we have 

*E>£H(l) and a E H ( £ ) = £ 0 . (It is clear that H(a) = 0.) Hence for every £-£a we 
have %£nW(P), aenZ6(P). Therefore nW(P) = {a}=K. 

Theorem H.IfK = n(S?(P)\{0}) =£ 0, then K = nN(P). 
Proof. Since K = {a}, where a = inf (P), for every § e P, §=£ a we have § <£ JV(£) 
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and aeN(£)=£0. (It is clear that N(a) = 0.) Hence for every §=£a we have 
££nJf(P), aenJf(P). Therefore nN(P) = {a} =K. 

Theorem 9. The relation K = n(<f(P)\{0}) = 0 holds iff nJf(P) = 0. 
Proof. Clearly n.N(P) = 0 implies K = 0. 
Let K = 0 hold. Then inf (P) does not exist. Let N(§) =£ 0, then § £ n./V(P) since 

<f ^ N(§). Hence nN(P) contains only elements § that satisfy the relation N(§) =. 0. 
But N(£) = 0 implies that there exists no ?7 G P such that ^^Z;. This means for all 
^eP the relation r j^§ is true. Hence N(f) = 0 implies that £ = inf(P). This is 
a contradiction. Therefore nN(P) = 0 must hold. 

JUP) * -W*(P) 

Theorem 10. We have that nJf0(P) = {a eP\a is minimal in P}. 
Proof. Let § be not a minimal element in P. Then there exists an r/ e P such that 

§ > 17. fience § e N0(rj) and § <£ n./V0(P). 
If a is a minimal element of P, then a e N0(a). If § > a, then a e N0(§). If § and 

a are incomparable, then a eN0(f) again. From this a enJi0(P) follows and the 
proof is finished. 

Diag. 3 Diag. 4 

Theorem 11. We have that n3€(P) = {aeP\ais minimal in P and if^eP is not 
minimal in P, then a <£} . 

Proof. Let £ be not a minimal element of P. Then £ «£H(§) ̂  0, therefore 
£<z_nS*f(P). 

If 77 is a minimal element of P and there exists a § 6 P such that § and ^ are 
incomparable and § is not minimal in P, then ^ £ H(§) ->-= 0, i.e. rj £ n3€(P). Hence 
nffl(P) can contain only minimal elements aeP such that for every § e P that is 
not minimal in P the relation a < § holds. 
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Conversely, let a eP be minimal in P and if £ e P is not minimal in P, then let 
a < £ . For all these elements £ we have a e H(%) =£ 0. All other elements § e P are 
minimal in P and therefore N(§) = 0 for all other elements %eP. This implies 
aen3if (P) . 

R e m a r k . \M\ denotes the cardinality of the set M. 

Theorem 12. The mapping f: 2€0(P)->N*(P), f(H0(a)) = N(a) is a monotone 
isomorphism. Hence \W0(P)\ = \N*(P)\. 

Proof. The mapping cp: P—>$f0(P), (p(a) = PI0(a) is a monotone isomorphism 
and mappings t//: P->^0(P), H>(a) = H'0(a) and Z : ^0(P)->.N*(P) , * (H 0 (a ) ) = 
7V(a) are monotone antiisomorphisms. This implies that /=x<>*po(p-1 is a monotone 
isomorphism. 

Definition 2. A monotone homomorphism fis called a contracting homomorph -
ism iff f(a)=f(P) implies either a=P or a and P are incomparable. 

Theorem 13. Mappings g: P->^0(P), g(a) = N0(a) andh: P->^*(P), h(a) = 
H(a) are surjective contracting homomorphism. 

Proof. Let a<p. From definitions we get N0(a)<=N0(P), N0(a) ±N0(p) and 
H(a)czH(p),H(a)±(P). 

The last two Theorems yield the diagram 1 where —> denotes a surjective 
contracting homomorphism and <--> denotes a monotone isomorphism. 

E x a m p l e 1. Let (P, ^ ) be the partially ordered set given by the diagram 2. 
Then H(P) = H(Y) = {6} and N0((3) = {a,p,y} ± N0(y) = {a, p, y, 6}. Hence 
the relation {(H(£), N0(t=)) e W*(P) x N0(P)\%eP} is not a mapping of W*(P) 
into M0(P). 

E x a m p l e 2. (diag. 3.) Here N0(a) = N0(p) = {a, p, y, 6} and H(a) = {y} * 
{y, 6} = H(/3). Hence the relation {(N0(§), H(%)) e Jf0(P) x ^ * ( P ) | § e P } is 
not a mapping of ^*0(P) into #*(P). 

E x a m p l e 3. (diag. 4.) Here a ^ / 3 , but N0(a) = N0(p) = {a, 0, y} and 
H ( a ) = H(j8) = {y}. Hence mappings g: P-+Jf0(P), g(a) = N0(a) and h: P-> 
%f*(P), h(a)=H(a) are not isomorphisms. 

Theorem 14. 0 ^ S is a maximal element of¥(P)\{P} iff 0 ^ 5 = P\{a} and a is 
a maximal element of P. 

Proof, a) 0=tS=P\{a} and a is maximal in P imply P^S = P\{a} = N(a}. 
Hence S e ^ ( P ) \ { P } and S is maximal in ^ ( P ) \ { P } . 

b) 0 -j-- 5 is maximal in 5^(P)\{P} implies S^P. Hence there exists an a e P such 
that a <£S i.e. aeP\S. If a,(3eP\S and p^a, then p £H0(a)<Etf(P)\{P}, p £S 
hence fi£H0(a ) u 5 = T e ^ ( P ) \ { P } . This implies T=> 5, T± S, T±P, therefore 5 
is not a maximal element in 5^(P)\{P} and we have a contradiction that implies 
P^a. Dually we get a^p, therefore a=P and S=P\{a}. 

If § > a for some %eS, then aeS = P\{a}. From this it follows that a is 
a maximal element in P. 
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2. B-algebras and their subalgebras 

Let (A, F) be a universal algebra and F the system of all operations on A. 
Let $P(A) denote the set of all subalgebras of A (including the empty set). 
Let [a] be the principal subalgebra, generated by a. 
The relation J = {(x, y) e A x A \[x] = [y]} is an equivalence relation on A. Let 

[a]J denote the ^-equivalence class containing a. 
Let A/J = {[a]J\aeA}. 
Now we can introduce the following relation on A/J: [x]J^[y]J iff [x]<= [y]. 

Then (A/J, ^ ) is a partially ordered set. (See [1, 7].) 

n(X,lA/3)) 

njXIA/ЛJ. A/0 -4 • nfx*(A/з); 

n(#*(A/;J)) 

Diag. 5 

Definition 3. A universal algebra (A,F) is called B-algebra iff the union of an 
arbitrary system of its subalgebras is a subalgebra of A. 

R e m a r k . This condition is equivalent to the following condition: the union of 
an arbitrary system of its principal subalgebras is a subalgebra of A. 

Theorem 15. Let (A,F) be a B-algebra. Then the mapping n: ^(AIJ)-* 
—>&(A), n(S) = uS is a monotone isomorphism. 

Proof, a) Let S e&>(AIJ) and a e u S . Hence [a]J e S and if [x]J^[a]J, then 
[x]J eS. This means that [ a ] c u S . We have u S = u{[a] |a e u S } and therefore 
u S is a subalgebra of the B-algebra A. 

b) Let Ce@(A) and let S = {[a]^|a eC}. Then C = u S because if a e C, then 
[a]J cz C. The set C being a subalgebra implies that if [x]J e S and [x]J ^ [y]J, 
then [ y ] ^ c [ x ] c C , hence yeC and therefore [y]JeS. This means that Se 
e &>(A I J) and n (S) = u S = C. 

c) This mapping is clearly injective and monotone. 
R e m a r k . n(H0([a]J)) = n ({[x]J\[x]J ^ [a]J) = u{[x]J\[x]J ^ [a]J} = 

[a]. Hence n(^t0(AIJ)) is the system of all principal subalgebras of A. 

Definition 4. If the subalgebra n(H([a]J)) ± 0, we shall call it the H-subalgebra 
of A. 

If the subalgebra n(N([a]J)) + 0, we shall call it the N-subalgebra of A. 
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The subalgebra n(N0([a]J>)) wftf be called the N0-subaIgebra. 
R e m a r k . n(Vt(AI$)) is the set of all H-subalgebras of A , n(N(A/$)) is the set 

of all N-subalgebras of A and n(JV0(A /$>)) is the set of all N0-subalgebras of A . 

Definition 5. If K = n(0>(A)\{0}) ± 0, it is called the kernel of A. 
From Theorems 4, 5, 7, 8, 15 and 14 we get. 

Theorem 16. Lef (A , F ) be a B-algebra and K be the kernel of A. Then the 
following statements are true: 
a) K is the intersection of all principal subalgebras of A. 
b) K is the intersection of all H-subalgebras of A. 
c) K is the intersection of all N-subalgebras of A. 
d) K is the intersection of all N0-subalgebras of A. 

Moreover we have the diagram 5. 

Definition 6. Ce$P(A) is called a maximal subalgebra of A iff 0 + C+A and 
there is no De&(A) such that CczDczP, C+D, D^P. 

Theorem 17. [1] Ler (A , F ) be a B-algebra. Cis a maximal subalgebra of A iff 
0=£C = A\[a]J> and [a]J> is a maximal element of A/3. 

R e m a r k l . I t i s known that a) of Theorem 16 is true for every universal algebra 
A (even if it is not B-algebra). For d) of Theorem 16 see also [1, 2, 3], 

R e m a r k 2 . All this is true for unary algebras studied by I. Abrhan [1, 2, 3] and 
for B-semigroups studied by J. Bosak [4], because they are B-algebras. 

Theorem 18. Let Mbea nonempty set and let (77, ^ ) be a partially ordered set 
such that n is a partition of M. Then there exists a B-algebra (M, F ) such that 
(n,^) = (M/<t,^). 

Proof . For every positive integer n, for every T,U en satisfying T^U and for 
every au a2, ..., aneT and b e U we define an rz-ary operation / on M as follows: 
f(au a2, ...,an) = b and/ (x l 9 x 2 , ..., xn) = xx if (xu x2, ..., xn)=t(au a2, . . . , a n ) . L e t F 
be the set of all these operations then (M, F) is a universal algebra. Every 
principal subalgebra generated by an element aeTen contains the set T, it 
contains also every set L/eiT satisfying U^T but it contains no other elements. 
This implies that the ^-equivalence classes are exactly all sets Ten and the 
relations ^ in Ml J1 and in 77 coincide. Moreover (M, F) is clearly a B-algebra. 

R e m a r k . If Fl is the set of all unary operations of F , then (M, Fj) is a unary 
algebra, satisfying (77, ^ ) = (MlJ, ^ ) . 

R e m a r k . From Theorem 18 and from Examples 1, 2 and 3 it follows that the 
surjective contracting homomorphisms in the diagram need not be isomorphisms 
and the relations {(7/([§]J?), N0([%]$)) e (W*(A/#)) x n(X0(AI$))\[£]J> e 
A/4} and {(N0([£P), H([%]f)) e n(Jf0(AW)) x n(3€*(A/$))\[%]$ e A/3} 
need not be mappings. 
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3. Semigroups and their ideals 

Let S be a semigroup. 
Let 3£(S)(i?(S))[<3/(S)] denote the system of all right (left) [two-sided] ideals of S 

(including the empty set). 
Let R(a) (L(a)) [J(a)] be the principal right (left) [two-sided] ideal generated 

by a. 
The relations (Green's relations [6,8]) 9t = {(x,y) e SxS\R(x) = R(y)}, 

S£={(x,y) e S x S | L ( x ) = L(y)} and &={(x,y) e SxS |J (x ) = J(y)} are 
equivalence relations on S. Let Ra(La)[Ja] denote the £%(i?)[<2/]-equivalence class 
containing a. Let SI01 = {Ra\a eS}, S/<£ = {La\aeS} and S/<& = {Ja\aeS}. 

nr(*0,S/*)j 

I 
nr (M0 (S/ty < S A < • nr (M* (S/&), 

1 
nr(X*{S/$)) 

Diag. 6 

Now we can introduce the following relations on SI 91, SI5£ and S/ty: 

Rx^Ry iff R(x)c:R(y), 
Lx^Ly iff L(x)czL(y), 
Jx^Jy iff J(x)cJ(y). 

Then (SI91, ^ ), <S/«S?, ^ ) and <S/<2/, ^ ) are partially ordered sets (see [6, 8]). 

Theorem 15'. Let S be a semigroup. Then the mappings 

nr: Sf(SI9t)^>9L(S), nr(S) = uS, 
nr. Sf(S/&)-+Se(S), nt(S) = uS and 
n^ 5^(S/^)->^(S) , nj(S) = uS 

are monotone isomorphisms. 
The proof is similar to the proof of Theorem 15. It is based on the fact that the 

union of an arbitrary system of right (left) [two-sided] ideals is a right (left) 
[two-side] ideal. 

Remark. nr(H0(Ra)) = R(a), nt(H0(La)) = L(a) and nj(H0(Ja)) = J(a). 
Hence nr(W0(S/3l)) (^(X^S/Se))) [ /! ,(%(S/«0)] i s t h e s y s t e m o f a11 principal right 
(left) [two-sided] ideals of S. 
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Definition 7. If the right (left) [two-sided] ideal nr(H(Ra)) * 0, (nt(H(La)) -,-= 0) 
[ni(H(Ja))±0], we shall call it the Hr(Ht) [H^-ideal of S. 

If the right (left) [two-sided] ideal nr(N(Ra)) * 0 (nt(N(La)) * 0) [nf(N(Ja)) ± 0], 
we shall call it the Nr(Nt) [N^-ideal of S. 

The right (left) [twosided] ideal nr(N0(Ra)) (nt(N0(La))) [nj(N0(Ja))] will be 
called the N0r(Nol) [N0j]-ideal of S. 

R e m a r k . nr (W(S/m)) (nt(^(S/^))) k(^(S/<2/))] is the set of all the Hr(Ht) 
[Ji,]-ideals of S, nr(N(S/&)) (n^S/g))) M^(S/<2/))] is the set of all the Nr (N<) 
[N,]-ideals of S and nr (N0(S/$l)) (^(^(S/<£))) [rc;(^0(S/<2/))] is the set of all the 
N0r(Nol) [7V0/]-ideals of S. 

Definition 8. If Kr = n (^ (S) \{0} * 0 (Kt = n(^(S\{0}) =£ 0) 
[K, = n(®(S)\{0})^0], it is called the right (left) [two-sided] kernel of S. 

Definition 9. A right (left) [two-sided] ideal R(L)[J], 0±R±S (0±L*S) 
[0 i= J± S] of a semigroup S is called a maximal right (left) [two-sided] ideal of S iff 
there is no right (left) [two-sided] ideal R'(L') [J'] of S such that R<=R'<=S, 
R^R'^S (LczL'czS, L-^L'^S) [JczJ'czS, J^J'^S]. 

From Theorems 4, 5, 7, 8, 15' and 14 we get results for right (left) [two-sided] 
ideals of a semigroup S. We shall formulate these results only for right ideals. 

Theorem 16'. Let S be a semigroup and Kr be the right kernel of S. Then the 
following statements are true: 
a) Kr is the intersection of all the principal right ideals of S. 
b) Kr is the intersection of all the Hr-ideals of S. 
c) Kr is the intersection of all the Nr-ideals of S. 
d) Kr is the intersection of all the N0r-ideals of S. 

Moreover we have the diagram 6. 

Theorem 17'. ([1, 10]) Lef S be a semigroup. C is a maximal right ideal of S iff 
0^C = S\Ra and Ra is a maximal element of SI01. 

R e m a r k . All these results are also true for grupoids. For another way how to 
obtain the results for semigroups and grupoids from results for B-algebras see 
[1,3]. 

If (A, F) is a B-algebra, then there exists a unary algebra (A, F*) such that 
(A/J>(F), ^ ) = (A/J>(F*), ^ ) . This is an unpublished result of I. Abrhan and 
Theorem 18 is its generalization. 

For Theorem 18 see also [5] Theorem II.5.6. and Exercise 5(a) following this 
Theorem. 
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ЗАМЕЧАНИЕ О ЧАСТИЧНО УПОРЯДОЧЕННЫХ МНОЖЕСТВАХ, 
УНИВЕРСАЛЬНЫХ АЛГЕБРАХ И ПОЛУГРУППАХ 

Роберт Шулка 

Резюме 

Применяя частично упорядоченные множества мы доказываем, что непустое пересечение 
подалгебр некоторого класса универсальных алгебр содержащего класс унарных алгебр можно 
получить также в виде пересечения некоторых сообственных подсистем подалгебр этих универ­
сальных алгебр. 
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