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- REMARK ON PARTIALLY ORDERED SETS,
UNIVERSAL ALGEBRAS AND SEMIGROUPS

ROBERT SULKA

In the paper left segments of a partially ordered set P and some subsystems of
the system of all left segments of P are studied.

Results are applied by studying the system of subalgebras of a B-algebra (see
Def. 3.), especially by studying the system of subalgebras of unary algebras and
B-semigroups and by studying systems of ideals of semigroups.

Some results of papers [1, 2, 3, 7, 9 and 10] are generalized and completed.

The possibility of solving the above problems is given by Theorem 15, since by
this Theorem the partially ordered set of all subalgebras of a B-algebra is
isomorphic to the partially ordered system of all left segments of the partially
ordered set of all $-equivalence classes (see the beginning of section 2) of this
B-algebra.

1. Partia]ly ordered sets and their segments

Definition 1. ([5]) Let (P, <) be a partially ordered set. Let S be a subset of
P having the following property:

if E€S and n<§g, then neSs.

Then S is called the left segment of P.
Right segments are defined dually.
Let B(P) be the boolean of P and ¥(P) the system of all left segments of P.

Theorem 1. ([5]) ¥(P) is a complete sublattice of the boolean RB(P).

Lemma 1. Subsets Hy(a) = {EeP|E<a)} and Ny(a) = {Ee€P|E*a)} are left
segments of P and they are nonempty subsets.

Subsets H(a) ={E e P|E<a} and N(a) = {E e P|E# a} are left segments of P.

Subsets Hy(a) = {Ee€eP|E=a} = P\N(a) and Nya) = {EeP|E<a}
= P\H(a) are right segments of P and they are nonempty subsets.
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H'(a) = {EeP|E>a) = P\N,(a) and N'(a) = {EeP|E¥a} = P\Ho(a) are
right segments of P.
" We shall use the following notations:

#(P)={H(a)|laeP, H(a) # 0}
N(P)={N(a)|aeP, N(a)+9)
#*(P)={H(a)|aeP}
N*(P)={N(a)|aeP}
\ #o(P)={Hy(a)|a € P}
No(P) = {No(a)|a € P}
- #y(P)={Hya)|aeP}.

Theorem 2. ([5]) The mapping @: P— %(P), @(a)=Ho.(a) is a monotone
isomorphism.

Theorem 3. The relation K = n(£(P)\{@} # @ holds iff inf(P)=a exists. Then
N(F(P)\{0}) = {a} is true.

Proof. Let K#. Then there exists an a € P such that a € K. Moreover for
every £ e P we have H(E§)2K3a, hence a<E& and therefore a =inf(P).

If a =inf (P) exists, then a € S for every S € #(P)\{#}, therefore a € K and this
means K+ 0.

Theorem 4. If K =n(F(P)\{0}) #0, then K =n,(P).
Proof. By Theorem 3 we have K = {a}, where a =inf (P). Hence Ho(a) = {a}
and therefore K = Hy(a)2 N#o(P). The converse inclusion is evident.

Theorem 5. If K =n(F(P)\{0})#0, then K =NN(P).

Proof. We have again K ={a}, where a=inf(P). Hence Ny(a)={a} and
therefore K = No(a) 2 NNo(P).

The converse inclusion is evident.

Theorem 6. The relation K =n(¥(P)\{0}) =0 holds iff nJ,(P)=9.

Proof. Clearly n#,(P)=0 implies K =§.

If K =@, then for every element & € P there exists an S € ¥(P)\{@} such that
£ ¢S. But every such S contains a set Hy(a), where a € S and & ¢ Hy(a). Hence for
every & € P there exists an Hy(a) such that & € Hy(a). This implies & ¢ n5¢,(P) and
therefore NJo(P)=9.

Theorem 7. If K=n(F(P)\{0}) #0, then K = nF(P).

Proof. Since K={a}, where a=inf(P), for every Ee€P, E#+a we have
E¢H(E) and a e H(E) #0. (It is clear that H(a)=0.) Hence for every E+a we
have &€ ¢ N (P), a € nF(P). Therefore NnH(P)={a} =K.

Theorem 8. If K =N (F(P)\{@}) #0, then K =nN(P).

Proof. Since K = {a}, where a =inf (P), for every £ € P, E+ o we have & ¢ N(E)
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and aeN(§)#@. (It is clear that N(a)=#@.) Hence for every £E#a we have
EénN(P), a enN(P). Therefore nN(P)={a}=K.

Theorem 9. The relation K = n(¥(P)\{@}) =0 holds iff "N(P)=0.

Proof. Clearly nN(P)=¢ implies K =0.

Let K =0 hold. Then inf (P) does not exist. Let N(&) # @, then & ¢ NN (P) since
£ ¢ N(&). Hence NnN'(P) contains only elements £ that satisfy the relation N(§) = 0.
But N(&) =40 implies that there exists no n € P such that n#&. This means for all
n € P the relation n=§& is true. Hence N(§)=0 implies that § =inf(P). This is
a contradiction. Therefore NA(P)=@ must hold.

3, (P)

I

N, (P) &——— P «—— N¥(P)

|~

x*(P)

Diag. 1

Theorem 10. We have that "No(P)={a € P|a is minimal in P}.

Proof. Let £ be not a minimal element in P. Then there exists an n € P such that
E>n. Hence £ e Ny(n) and & & nNo(P). v

If a is a minimal element of P, then a € No(a). If £> a, then a € Ny(§). If & and
a are incomparable, then a € No(§) again. From this a en/N(P) follows and the
proof is finished.

o
K/} o B o 5}
8 4 \/\5 \/
() 7 7
Diag. 2 ' Diag. 3 Diag. 4

Theorem 11. We have that n%(P) = {a € P|a is minimal in P and if & € P is not
minimal in P, then a <§}.

Proof. Let & be not a minimal element of P. Then & ¢ H(§)+# @, therefore
EEnd(P).

If n is a minimal element of P and there exists a § € P such that & and n are
incomparable and & is not minimal in P, then n é H(§) #0, i.e. n ¢ "nF(P). Hence
NJE(P) can contain only minimal elements a € P such that for every & € P that is
not minimal in P the relation a <& holds.
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Conversely, let a € P be minimal in P and if § € P is not minimal in P, then let
o <E. For all these elements £ we have o € H(§) #@. All other elements € € P are
minimal in P and therefore N(§)=0 for all other elements & € P. This implies
a enF(P).

Remark. |M| denotes the cardinality of the set M.

Theorem 12. The mapping f: #,(P)—N*(P), f(Ho())=N(a) is a monotone
isomorphism. Hence |%,(P)|=|N*(P)|.

Proof. The mapping ¢: P— #,(P), (o) = Hy(a) is a monotone isomorphism
and mappings y: P— 3(P), y(a)=Hy(a) and x: #o(P)—>N*(P), x(Ho(a)) =
N(«) are monotone antiisomorphisms. This implies that f = yoo~! is a monotone
isomorphism.

Definition 2. A monotone homomorphism f is called a contracting homomorph -
ism iff f(a)=f(B) implies either a =0 or o and 3 are incomparable.

Theorem 13. Mappings g: P—No(P), g(a)=Ny(a) and h: P— 3*(P), h(a)=
H(a) are surjective contracting homomorphism.

Proof. Let a <f. From definitions we get No(a) = No(8), No(a) # No(B) and
H(a) = H(B), H(a)# (B).

The last two Theorems yield the diagram 1 where — denotes a surjective
contracting homomorphism and < denotes a monotone isomorphism.

Example 1. Let (P, <) be the partially ordered set given by the diagram 2.
Then H()=H(y)={6} and N(B) = {a, B, v} # No(y) = {a, B, v, 8}. Hence
the relation {(H(&), No(§)) € #*(P) X No(P)|§ € P} is not a mapping of *(P)
into Ny(P).

Example 2. (diag. 3.) Here No(a)=Ny(B) = {a, B, v, 6} and H(a)={y} #
{y, 8} = H(B). Hence the relation {(No(&), H(E)) € No(P) X ¥*(P)|E€P} is
not a mapping of N,(P) into x*(P).

Example 3. (diag. 4.) Here a#f, but No(a)=No(B) = {a,B,y} and
H(a)=H(B)={y)}. Hence mappings g: P—No(P), g(a)=No(a) and h: P—
#*(P), h(a)=H(«a) are not isomorphisms.

Theorem 14. ( # S is a maximal element of #(P)\{P} iff # S =P\{a} and a is
a maximal element of P.

Proof. a) @+ S =P\{a} and a is maximal in P imply P#S =P\{a}=N(a}.
Hence S € #(P)\{P} and S is maximal in #(P)\{P}.

b) @+ S is maximal in #(P)\{P} implies S# P. Hence there exists an a € P such
that a é S i.e. a e P\S. If a, B € P\S and B+ «a, then 8 ¢ Hy(a) e F(P)\{P}, B ¢S
hence 3 € Hy(a)uS = T e F(P)\{P}. Thisimplies T>S, T+ S, T# P, therefore S
is not a maximal element in $(P)\{P} and we have a contradiction that implies
B <a. Dually we get a<f3, therefore a =f and S =P\{a}.

If £>a for some £€S, then aeS=P\{a}. From this it follows that a is
a maximal element in P.
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2. B-algebras and their subalgebras

Let (A, F) be a universal algebra and F the system of all operations on A.

Let ?(A) denote the set of all subalgebras of A (including the empty set).

Let [a] be the principal subalgebra, generated by a.

The relation # = {(x, y) € A X A[[x]=[y]} is an equivalence relation on A. Let
[a]¥# denote the F-equivalence class containing a.

Let A/$={[a]F|laecA}.

Now we can introduce the following relation on A/$: [x]# <[y]# iff [x]<[y]
Then (A/$, <) is a partially ordered set. (See [1, 7].)

n(%#:(A/J))
n(No(A/J) a——— A/ «——» n(N*(A/2)

g

n(3*a/3))

Diag. 5

Definition 3. A universal algebra (A, F) is called B-algebra iff the union of an
arbitrary system of its subalgebras is a subalgebra of A.

Remark. This condition is equivalent to the following condition: the union of
an arbitrary system of its principal subalgebras is a subalgebra of A.

Theorem 15. Let (A, F) be a B-algebra. Then the mapping n: $(A/¥$)—
—P(A), n(S)=uUS is a monotone isomorphism.

Proof. a) Let Se $(A/#) and a € US. Hence [a]¥ € S and if [x]# <[a]¥, then
[x]# €S. This means that [a] = US. We have US = U{[a]|a eUS} and therefore
US is a subalgebra of the B-algebra A.

b) Let Ce P(A) and let S = {[a]#|a € C}. Then C = uUS because if a € C, then
[a]¥ =C. The set C being a subalgebra implies that if [x]# € S and [x]¥ =[y]¥,
then [y]# <[x]<C, hence y e C and therefore [y]# €S. This means that Se
e¥(A/#) and n(S)=uS=C.

¢) This mapping is clearly injective and monotone.

Remark. n(Hy([a]#))=n ({[x]¥|[x]¥ < [a]¥) = {[x]¥|[x]F < [a]¥F}=
[a]. Hence n(%,(A/$)) is the system of all principal subalgebras of A.
Definition 4. If the subalgebra n(H([a}$)) # @, we shall call it the H-subalgebra
of A. ‘

If the subalgebra n(N([a]$#)) # 9, we shall call it the N-subalgebra of A.
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The subalgebra n(Ny([a].#)) Will be called the N,-subalgebra.
Remark. n(#(A /%)) is the set of all H-subalgebras of A, n(N(A/¥)) is the set
of all N-subalgebras of A and n(No(A/$)) s the set of all N,-subalgebras of A.

Definition 5. If K=n(P(A)\{0})#0, it is called the kernel of A.
From Theorems 4, 5, 7, 8, 15 and 14 we get.

Theorem 16. Let (A, F) be a B-algebra and K be the kernel of A. Then the
following statements are true:
a) K is the intersection of all principal subalgebras of A.
b) K is the intersection of all H-subalgebras of A.
¢) K is the intersection of all N-subalgebras of A.

d) K is the intersection of all Ny,-subalgebras of A.
Moreover we have the diagram 5.

Definition 6. C € ?(A) is called a maximal subalgebra of A iff 9+ C+ A and
there is no D e ?(A) such that CcD <P, C+D, D#P.

Theorem 17. [1] Let (A, F) be a B-algebra. C is a maximal subalgebra of A iff
B+ C=A\[al]¥ and [a]¥ is a maximal element of A/$.

Remark 1. It is known that a) of Theorem 16 is true for every universal algebra
A (even if it is not B-algebra). For d) of Theorem 16 see also (1, 2, 3].

Remark 2. All this is true for unary algebras studied by I. Abrhan 1, 2, 3] and
for B-semigroups studied by J. Bosdk [4], because they are B-algebras.

Theorem 18. Let M be a nonempty set and let (I1, <) be a partially ordered set
such that IT is a partition of M. Then there exists a B-algebra (M, F) such that
(I, <) = (M/¥, <).

Proof. For every positive integer n, for every T, U € I1 satisfying T= U and for
every a,, a., ..., a, € T and b € U we define an n-ary operation f on M as follows:
f(ay, as, ..., a,)=b and f(x,, Xa, ..., X)) =x, if (x4, X2, ..., X,) F(ay, A2, ..., a,). Let F
be the set of all these operations then (M, F) is a universal algebra. Every
principal subalgebra generated by an element a € T € IT contains the set T, it
contains also every set U e IT satisfying U=<T but it contains no other elements.
This implies that the $-equivalence classes are exactly all sets T eIl and the
relations < in M/.# and in IT coincide. Moreover (M, F) is clearly a B-algebra.

Remark. If F, is the set of all unary operations of F, then (M, F,) is a unary
algebra, satisfying (IT, <) = (M/$, <).

Remark. From Theorem 18 and from Examples 1, 2 and 3 it follows that the
surjective contracting homomorphisms in the diagram need not be isomorphisms
and the relations {(H([E]#), No([E]¥)) € (H*(A/F)) X n(V(A/F))|[E)F €

A/} and {(N([E)9), H([E)F)) € n(No(A/F)) X n(¥K*(A/F))|[E}F € A/F)}
need not be mappings.
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3. Semigroups and their ideals

Let S be a semigroup.

Let Z(S)(Z(S))[¥(S)] denote the system of all right (left) [two-sided] ideals of S
(including the empty set).

Let R(a) (L(a)) [J(a)] be the principal right (left) [two-sided] ideal generated
by a.

The relations (Green’s relations [6,8]) #={(x,y) € SXS|R(x)=R(y)}
F={(x,y) € SXS|L(x) = L(y)} and ¥={(x,y) € SXS|J(x) = J(y)} are
equivalence relations on S. Let R,(L,)[J.] denote the & (£)[¥]-equivalence class
containing a. Let S/® = {R,|aeS}, S/¥ = {L,|la€S} and S/¥ = {J,|a€S}.

nr(ac;(s/it))

T

ne(Wo(S/R) +—— /& «— n (N*(S/2)

|

e (%*(5/2))

" Diag. 6

Now we can introduce the following relations on S/, S/ and S/%¥:

R, <R, iff R(x)cR(y),
L.<L, iff L(x)cL(y),
J.<J, iff J(x)c=J(y).

Then (S/R, <), (8/%¢, <) and (S/%¥, <) are partially ordered sets (see [6, 8]).
Theorem 15'. Let S be a semigroup. Then the mappings

n,: L(S/R)—R(S), n,(S)=uS,
n: S/ LYy—>Z(S), n(S)=uS and
n;: S(S/¥Y)—>¥Y(8S), ni(S)=uS

are monotone isomorphisms.

The proof is similar to the proof of Theorem 15. It is based on the fact that the
union of an arbitrary system of right (left) [two-sided] ideals is a right (left)
[two-side] ideal.

Remark. n,(Hy(R,)) = R(a), m(HyL,)) = L(a) and n;(Ho(J.)) = J(a).
Hence n,(%,(S/R)) (n(F(S/£))) [n;(%#:(S/¥))] is the system of all principal right
(left) [two-sided] ideals of S.
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Definition 7. If the right (left) [two-sided] ideal n,(H(R,)) # 9, (n, (H(L,))#0)
[n,(H(J,)) # 0], we shall call it the H,(H,) [H;)-ideal of S.

If the right (left) [two-sided] ideal n,(N(R.)) # @ (n,(N(L,)) #9) [n,(N(J,)) # 9],
we shall call it the N,(N,) [N;]-ideal of S.

The right (left) [twosided] ideal n,(No(R.)) (m(No(L,))) [ (No(J.))] will be
called the N,,(No) [Noj]-ideal of S.

Remark. n, (#(S/R)) (m(F(S/¥£))) [n,(F(S/¥))] is the set of all the H,(H,)
[H;]-ideals of S, n,(N'(S/R)) (m(N(S/£))) [7;(N(S/¥))] is the set of all the N, (N;)
[N;]-ideals of S and n, (No(S/R)) (m(No(S/£))) [n(No(S/¥))] is the set of all the
No(No) [Ny;]-ideals of S.

Definition 8. If K, = n(R(S)\{B} #0 (K, =N (L(S\{0})#0)
[Ki = (¥ (S)\{B}) #0), it is called the right (left) [two-sided] kernel of S.

Definition 9. A right (left) [two-sided] ideal R(L)[J], O#R+S (@+L+S)
[0 # J+ 8] of a semigroup S is called a maximal right (left) [two-sided] ideal of S iff
there is no right (left) [two-sided] ideal R'(L") [J'] of S such that RcR'cS,
R#-R'#¥S(LcL'cS, L¥L'#S) [JcJ' <=8, J#J'#8].

From Theorems 4, 5, 7, 8, 15’ and 14 we get results for right (left) [two-sided]
ideals of a semigroup S. We shall formulate these results only for right ideals.

Theorem 16’. Let S be a semigroup and K, be the right kernel of S. Then the
following statements are true:
a) K, is the intersection of all the principal right ideals of S.
b) K, is the intersection of all the H,-ideals of S.
¢) K, is the intersection of all the N,-ideals of S.
d) K, is the intersection of all the N, -ideals of S.
Moreover we have the diagram 6.

Theorem 17'. ([1, 10]) Let S be a semigroup. C is a maximal right ideal of S iff
@+ C=S\R, and R, is a maximal element of S/R.

Remark. All these results are also true for grupoids. For another way how to
obtain the results for semigroups and grupoids from results for B-algebras see
[1, 3].

If (A, F) is a B-algebra, then there exists a unary algebra (A, F*) such that
(A/$(F), <) = (A/$(F*), <). This is an unpublished result of I. Abrhan and
Theorem 18 is its generalization.

For Theorem 18 see also [5] Theorem I1.5.6. and Exercise 5(a) following this
Theorem.
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3AMEYAHHE O YACTHMYHO YIIOPAOOYEHHBIX MHOXECTBAX,
YHUBEPCAJIbHBIX AJITEBPAX W ITIOJYTPYIIITAX

PoGept Ulynka
Pe3iome
ITpuMeHsist YaCTHYHO YNOPAJOYEHHBIE MHOXECTBA MbI JIOKa3bIBA€M, YTO HEMYCTOE MEpecedYeHUe
noganre6p HEKOTOPOro KJacca YHMBEPCANbHBIX alre6p CORepXalIero KJacc yHapHbIX anrebp MOXHO

NOJIyYHUThb TAKXE B BUJIE NEPECEYEHUS HEKOTOPbIX COOGCTBEHHBIX MOJCHCTEM NMOAANTEOp ITHX YHHUBEP-
calbHbIX anre6p.

139



		webmaster@dml.cz
	2012-07-31T22:04:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




