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SEMIOBSERVABLES ON QUANTUM LOGICS

SYLVIA PULMANNOVA

A generalization of the notion of observables on a logic is given and its
mathematical properties are described.

1. Introduction

Within the framework of the standard quantum theory ‘‘semiobservables” or
“quantum measurements’ can be described as (in general nonorthogonal) resolu-
tions of the identity in a Hilbert space. Semiobservables were originally introduced
by Davies and Lewis [2, 3] for the description of repeated measurements and
conditional expectations in quantum systems. They were also used by Ingarden
[13] to formulate the quantum information theory. In recent years there has been
an increasing interest in quantum-mechanical variations of the problem. of signal
detection in background noise [9, 10, 11]. The basic concepts of the general theory
of statistical decisions are stated by Holevo [10, 11]. Essentially new is the
investigation of semiobservables as an analog of strategies in the classical theory of
statistical decisions.

In the present paper, an analog of semiobservables in terms of the quantum logic
approach to quantum mechanics is introduced and its mathematical description is
given.

2. Basic concepts

In the quantum logic approach to quantum mechanics the basic concepts are the
set £ of all experimentally verifiable propositions of the physical system and the set
A of physical states. £ is usually supposed to be a partially ordered set with the
greatest and least elements 1 and 0, respectively, with the orthocomplementation
a—a*, ae¥, and with the orthomodularity property

as<b=>b=av(a*Ab),

where we denote by avb and a Ab the supremum and infimum of the elements a,
b e Z, respectively; and which is closed under the formations of the suprema va;

419



for any sequence {a;} i=1, 2, ..., of elements from £ such that a,<a;, i#j. The
elements a, b € £ are orthogonal (a Lb) if a<b™, and they are compatible (a & b)
if they can be written in the form a =a,vc, b =b,vc, where a,, b,, ¢ are mutually
orthogonal elements of £. A set £ with the properties just described is called
a logic.

A state on £ is a probability measure on %, i.e. a map m: £— [0, 1] such that
m(1)=1 and m(va;)=Zm(a;) for any sequence {a,} of mutually orthogonal
elements of #. A logic & is full if there is a set 4 of states such that m(a)<m(b)
for all me#M imply a<b, a, be¥L. A logic £ is quite full if the statement
“m(b)=1 whenever m(a)= 1" implies the statement “a <b”. It can be easily seen
that a quite full logic is full [6].

The set of states of a physical system is usually supposed to be closed under the
formations of countable convex combinations, i.e. if mie, i=1,2, ..., then
m=23tm; e M, where 0<t, <1, =, =1.

In the following we shall suppose that £ is a quite full logic and / is closed under
the formations of countable convex combinations. The pair (&, ) is called
a quantum logic.

Let &£ and % be two logics. The mapping A from £ into ¥ is called
a o-homomorphism if

(i) h(1)=1,
(i) pLq, p, q €% implies h(p)Lh(q),

(iii) h(vp:)= vh(p;) for any sequence {p:} of mutually orthogonal elements of
£.

With the help of the concept of o-homomorphism we introduce observables
corresponding to physical quantities. Suppose £ is a logic and (%, B) is
a measureble space with the o-algebra of subsets 2. An arbitrary o-homomorph-
ism x: Fr—x(F) of the o-algebra 4 into the logic £ is called a (%, % )-observable
on XZ. This definition can be interpreted as follows. We consider % as the space of
possible states of some measuring device, and 4 as the class of events relating to
this device, i.e. the results of measurements. The o-homomorphism x associates
with each event some assertion (element of £) about the physical system.

If x is a (%, %B)-observable and m is a state, then m(x(-)) defines a probability
measure on (%, #B). The expectation of an observable x in the state m is
m(x)= [tm[(x(dt)] if the integral exists.

If R is the real line and B(R) is the o-algebra of Borel sets, then
a (R, B(R))-observable is called a real observable. The unique observable I:
Ew—I(E) defined by I({1}) =1, where {1} is the one-point set consisting of unity,
is called the identity on £. .

If x is a real observable and f: # — Z is a Borel function, then we can define the
observable f(x) by setting f(x)(E)=x(f"'(E)). The spectrum o(x) of the real
observable x is the smallest closed set C such that x(C)=1. An observable x is
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called a simple observable if o(x)< {0, 1}, which is identical with x*=x. An
observable x is bounded if its spectrum g(x) is bounded. A real observable x on
a full logic is called the sum of the observables y, z if m(x)=m(y)+ m(z) for any
m e M. We shall suppose that for any two bounded real observables y, z there is
unique observable x such that x =y + z. From the existence and uniqueness of the
sums of observables it follows that m(x)=m(y) for all m e # implies x =y. If the
logic &£ is quite full and the sums exist, then £ is a lattice [6].
More details about the mentioned concepts can be found in [5, 6, 16, 17].

3. Semiobservables and their propertics

Let £ be a quite full logics with respect to the set of states /. Let X be the set of
all bounded real observables on #. We suppose that X is closed under the
formations of finite sums, so that X can be considered as a real linear space. We
define the norm on X by setting

llx|| =sup {|m(x)|: me.at}.
It was shown in [5] that
llx |l =sup {|¢]: £ o(x)}.

Definition 1. Let {x;} be a sequence of bounded real observables. We shall say
that an observable x is the sum of x;, i.e.

X =2x;
if
m(x)=Zm(x;) forall meM.
Clearly, if such an x exists, it is uniquely defined. Now we shall consider the
following generalization of the notion of an observable.

Definition 2. Let (%, B) be a measurable space with the o-algebra of subsets 9.

Let {xs: Be®B} be an X-valued function on B, such that
(i) 0sm(xg)<1 for all me M and all B A,

(ii) m(xy)=1 for all me M,

(iii) if {B:} is any countable partition of %, B: € B, then Zxp, = x4.

Then X = {xs: Be B} will be called a (U, B)-semiobservable on X£.

From (i) it follows that xz, B € 4, are ([0, 1], B[0, 1])-observables on ¥, where
B0, 1] is the o-algebra of all Borel subsets of [0, 1]. Indeed, by [5] the set
V(x)={m(x): meM}” is the smallest closed interval containing o(x). By (i),
V(xs)={m(xs): meM}™ <[0, 1], so that a(xz) =[O0, 1]. From (ii) it follows that
V(xa)={1}, so that o(xy)={1}, i.e. x5 =1.
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Definition 3. A (%, B)-semiobservable X on ¥ is said to be simple, if all xg,
B € B are simple observables.

Proposition 1. The set of all simple (%, B)-semiobservables on ¥ is in
one-to-one correspondence with the set of all (%, B)-observables on £.

Proof. Let y: B—y(B) be a (%, B)-observable on £. For any B € 4, let us
define a real simple observable yg by setting ys({1}) =y(B), i.e. ys = xs(y), where
xs is the characteristic function of the set Be . Then {ys: Be B} is a simple
(%, B)-semiobservable. Indeed, (i) and (ii) are clearly fulfilled. Let {B;} be
a partition of %, then

Sm(vm) = Smlys(1)]= SmlyB)l=m |Vy(B)|=

=m |y (UB)|=mly@)=1

for any m e #, which proves (iii) in Definition 2.

Now let {ys: B € B} be a simple (%, B)-semiobservable on £. Then by setting
y(B)=ys({1}) we get a (%, B)-observable on £. Indeed, y(%)=y.({1})=1,
BN C =0 implies 1=m(ysuc) = m(ys)+m(yc) = m(y(B))+m(y(C)), me M,
from which it follows that y(B)Ly(C). Now let {B;} be any sequence of disjoint

sets of 9. Then m[y (UB)] = mlyoa({(ID] = mus) = Smim)

= zm[y(B,-)] =m {\_/y(B,»)] for all m e, so that y (UB,) = \/y(B,).

Let .2 be the set of all (%, B)-semiobservables on £. The following
statement is straightforward.

Proposition 2. The set X . 4, Is convex.

Let Xe€&X .5 and me. Then Brm(xs), BeB defines a probability
measure on B. Let P(AB) be the set of all probability measures on 4. Then the
map v: m—>m(xg) is a convex homomorphism from the set .4 into the set (%),
i.e.

viam,+ (1—a)m,]=av(m,)+ (1 —a)v(m,), 0<a<l.

In the following we shall need some definitions. As before, x is the set of all
bounded real observables on £.

Definition 4. We shall say that the logic & has the property (A) if for any
sequence {x,} <X such that

(i) ”xﬂ“sK<oo’ n= ls 2* L]

(ii) lim m(x,) = @, @, € R for any m € M, there is an observable x € X such that
a,=m(x), meM.
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Definition 5. We shall say that the logic & has the property (B) if to any
measurable space (%, B) and any convex homomorphism v: M — P(RB) there is
a unique semiobservable X = {xs: Be€ B} such that v(m)(B)=m(xg) for any
meM and any Be R.

Definition 6. We shall say that the logic £ has the property (C) if to any affine
functional @: M — R such that sup |p(m)|<K, KeQR, there is an observable
meM
x € X such that p(m)=m(x), meM.

Proposition 3. If the logic & has the property (C), then it has also the properties
(A) and (B).

Proof. Let {x,} =X be such that ||x.||<K, n=1,2, ... and lim m(x,)=a,n,

0, €R, met. Then m—a,, is an affine mapping from the set 4 into #. From
lx.]|<K, k=1, 2, ... it follows that [m(x.)|<K,n=1, 2, ..., so that |a.| <K for
any m € /. Then by (C) there is an x € X such that a,, = m(x). Hence (C) > (A).
Now let v: M — P(AB) be a convex homomorphism. Then for any fixed B € 4,
fs(m)=v(m)(B) is an affine mapping from # into # such that sup |fz(m)|=<1.

meM

Then by (C) there is an observable xz € X such that fa(m)=m(xz), me M.
Clearly, m(xs) €0, 1] and m(x4) =1 for any m € 4. Let {B;} be a partition of %,
then Zm(xp,) = Zv(m)(B;) = v(m)(UB;) = v(m)(%) =1 for any m € #, so that
Zxs,=I. Hence {xs: B€e%B} is a semiobservable. Thus we have proved that
(C)=>(B).

Let £(3) be the logic of all closed subspaces of a complex separable Hilbert
space ¥ - £(9) is a quite full logic with respect to the set of all its states. By the
Gleason theorem [17] there is a one-to-one correspondence between the set of all
states of £ () and the set of all nonnegative trace-class operators with the trace 1.
For any state ¢ and any observable (i.e. Hermitean operator) x we have
o(x)=tr(ox), where g is the trace-class operator corresponding to the state g.

Proposition 4. The logic £(9€) has the property (C).

Proof. Let f be an affine real functional on the set of all states such that
[f(0)|<K for all ¢. Then f can be considered as the affine functional on the set of
all positive trace-class operators with tro = 1. It can be uniquely extended to the
linear functional f on the set of all trace-class operators such that

If(0)|<2Ktr|o|, |o|=Voo*.

By [15, Theorem 2, p. 47] there is a unique bounded operator x such that
f(0)=tr(ox). As f is real on Hermitean trace-class operators, we get that x = x*, so
that x is an observable.
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From Propositions 3 and 4 it follows that the logic £ () has also the properties
(A) and (B).

Let X, = {x € X: ||x]|<1}, where X is the set of all bounded real observables on
the logic £. Let xo€ X, mi, m,, ..., m, € M and ¢,, &,, ..., & be positive numbers.
Let us define the weak topology on X, by the neighbourhoods

Ulxg; my, ..., My 5 €4, ..., &)=
={xeX:: |mxo))—m(x)|<e,i=1,2, ..., k}.

This topology is Hausdorffian, because the set # separates points of X.

To any x € X, we define the function x: # —[—1, 1] by setting x(m)=m(x),
m e M. The mapping x — X is one-to-one. Let X, ={x: xe X;} c[—1, 1]*. Then
X, with the weak topology and X, with the relative product topology are
topologically isomorphic.

Let the logic £ have the property (A ). Then to each sequence {x,} = X, which is
Cauchy in the weak topology there is an x € X, such that m(x,)— m(x) for any
meM.

Let & «. ») be the set of all (%, B )-semiobservables on £. Clearly, Z 4.4, < X%,

Definition 7. Let {X"}, X" = {x5: B € B} be a sequence of semiobservables. We
shall say that {X"} converges to the semiobservable X, in symbols X" — X, if
xs—>xs weakly, i.e. if m(xs)—m(xg) for any me M and any B € RB.

Proposition 5. The set of all semiobservables X . », is sequentially closed in X7 .
Proof. Let {X"} % (x4, be such that X" > Y, where Y ={ys: Be B} c X7.
For any m € #f we define the probability measure u,, on B by setting

um(By=m(xs), Be®B, n=1,2,...
Then
m(xp)—>m(ys) implies un(B)—>m(ys), n— .
By [8, §40, p. 170], the map B+ m(ys) is a probability measure on 2. Let { B;} be
a countable partition of %. Then

1 =.um(%):um(UBl)ZZ“H(B')ZEm(yBx)’
where
Un(B)Y=m(ys), BeB, medM.

From this it follows that {ys: B€ B} € . »)-

Proposition 6. Let X, be sequentially compact, i.e. to each sequence {x.} <X,
there is a subsequence {x,, } ={x.} and an element x € X, such that x,, — x weakly.
Let B be countable. Then the set of all (%, B)-semiobservables X ., Is
sequentially compact.

Proof. By [14, 7D, p. 238], the set X7, as a product of a countable number of
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sequentially compact spaces is sequentially compact. By Proposition 5, Z (4. ») is
sequentially closed, from which it follows that it is sequentially compact.

We note that the set X, of the Hilbert space logic £(%) is sequentially compact.
Indeed, from [1, p. 105] and the fact that the limit of the sequence of Hermitean
operators in the weak operator topology is a Hermitean operator, it follows that to
any sequence {x.}cX, there is a subsequence {x. } and an x € X, such that
(xn@, ¥)— (x@, y) forany @, Y € ¥. Let 0 = Zw,P[@:] be a state on £ (). Then

70 (to = )] = | S0 (5 =X )| <

Si;wil((x,,k - x)@i, @) s‘;w,. -2,
because
(G = 2) @i, @) < Ml — x|l [P <2
Let s be such that

‘oo

3wl = 1)@ @)| <3 foranyn,.

Then .
|tro (x., — x)| S_le.-l((xnk -X)@, @)=

= Sl = 0)@ @I+ 3, [ = D), )| <

for n. > n, if we choose ﬁo such that
S W ((Xne — ) @1, @) <—§- for n.>no.
i=1

Definition 8. We shall say that a functional f on ¥ . %, is continuous if
f(X")—>f(X) provided X" —>X, n— x,

The following statement is a modification of the Weierstrass theorem. The proof
of it is standard and we omit it.

Proposition 8. A continuous functional on a sequentially compact set Z (4, , of
semiobservables achieves a maximum.

4. Extremal points of the set £ %,

Now we shall study the extremal points of the convex set Zw.=) of all
(%, B)-semiobservables. The methods of proofs are similar to those used in [12].
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-First we shall define a pseudoproduct on the set of all bounded observables X of
the logic ¥ by setting

1
Xoy=§[(X+y)2—x2—y2]-

Lemma 1. x &y implies xoy = xy.
Proof. x &y implies that there is a z € X and Borel functions u,, u, such that
x =ui(z), y=u,(z). But then xoy =ui(z)otz(z) = u(z)u:(z)=xy.

Lemma 2. An observable x is simple, i.e. x =x" if and only if xo(I —x)=0.
Proof. It follows from the equation xo(I —x)=x —x°.

Lemma 3. A semiobservable {xs: B € B} is simple if and only if x5 cxc =0 for
any B, C e B such that BNC =40.
Proof. Let {x5: B e %)} be simple. Then x5 =x5 for any B € B implies that

1
X oxc=§ [(XB +xc)2—xf;-x§]=%— [xBuC_xB _xc] =0,

provided BnC=40.

Now let BNnC =0 imply xsoxc=0. Then xgo(I —x8) = Xxpoxy_s =0, so that
xe=x3, BeRB.

We shall write x <y if m(x)<m(y) for all me 4. Then (X, <) is a partiaily
ordered linear space.

Proposition 9. If the pseudoproduct is distributive (relative to addition of
observables), then simple observables are extremal points in the set X7 ={x € X, :
m(x)=0 for any mel}.

Proof. Let x e X7, x =x" and let x=% (y +z) for some y, z € X7. Then

()= [ 1my (@)= [ dm (@) =m(y)

for any m e 4 implies that y’<y and similarly z*<z. Then
SISy (D) =x == (7 +2)
2 2 4 )

From this we get 2(y*+z°)<(y +z)?, i.e. y*+2°<2(yoz), from which it follows
that (y —z)*<0, i.e. y=2z.

From Proposition 9 it follows that the simple semiobservabies are extremal
points in &, &)

We recall that a g-algebra is discrete if it is generated by an at most countable set
of atoms.
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Proposition 10. Let the logic £ be a Boolean o-algebra and let (%, B) be
a measurable space with the discrete o-algebra . Then the simple semiobservables
are the only extremal points in the set X . #)-

Proof. Let {A;: i e D} be the set of atoms in B, where D is at most countable
indexed set, and let X be an extremal point in Z(«, ). If X is not simple, then there
are sets B, Ce %, BNC=0 such that xzoxc#0. As £ is a Boolean algebra,
xp <>Xxc and Xpoxc =Xxpxc. Let E€ R, then E=U{A;: A,cE}, and xg = D, Xa,.

A;,cE
As all x,, are pairwise compatible, they can be considered as functions of an
observable x. Let us set x,, = fi(x), ie D. Then

wre= 3£ 3 f@= S S fxfi)>0

{i: A;cB i: AjcB} {j: A;
implies that f;(x)f,(x)>0 for some i, j. Let fi(x) =x;, f;(x) =x;. Then (x; + x;)* >

E(x; —x;)?, so that (x; +x;) > |x; —x;|. Let us set z =% (x: +x; — |x:—x;|). Then

>0, z<x:;, z<x; [7]. We can define semiobservables Y = {y,: k € D} by setting
Ye=xiifk#j,iandy,=x;+2z,y,=x;—z,and Z = {z,: k € D} by setting z, = x, if

k#i,jandzi=x;—z,z;=x; +z. ThenX=% (Y + Z), which is impossible as X was

supposed to be an extremal point.

5. Integrals of functions with respect to a semiobservable

Let (%, B) be a measurable space and Z(«. %) be the set of all (%, %B)-semiob-
servables on Z. Let £ have the property (A). Let f: % — R be a simple function of
the form

sz ES(LXAi’ [{iE gB-
i=1
Let us set for any X € X (a. »)
i=1

f(x) = zal'xAi'
Clearly, f(X) is a bounded observable on £. For any m € # we get that
m(F ) =m (Saxa) = Sam(a)= [fym(x).
i=1 i=1
Now let f: % — R be a nonnegative Borel function, f <K < and let {f,} be an
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increasing sequence of nonnegative functions converging to f [8, § 20, Th. B]. Then
for every me M

m(f. (X)) = L £.(Om(xa) <K,

so that {m(f.(X))} is an increasing bounded sequence. By the property (A) then
there is a bounded observable, let us denote it by f(X), such that lim m(f.(X))

= m(f(X)) for every m e #. By [8, § 27, Th. B] 'l'l_xg m(f.(X)) = ’l'l_lIln [f.(Om(xa)

= [f(t)m(x,). From this it follows that the observable f(X) is well defined. For
any bounded Borel function f let us set

fX)=f"(X)=f(X).

It can be easily seen that f=0 implies f(X)=0, (f+¢g)(X) = f(X)+g(X) and
(af)(X) = af (X), a e R.

Proposition 11. If {f,} is a sequence of bounded Borel functions such that
|f.|<g, where g is a bounded Borel function and f,—f pointwise, then

lim m(f, (X)) = m(f(X)) for every me M.
Proof. It follows from [8, § 26, Th. D].

Proposition 12, Let X be a simple semiobservable andletg: U— R, f: R — R be
bounded Borel functions. Then (fog)(X) = f(9(X)).

Proof. If X is simple, then by Proposition 1 there is an observable y: 8 —»%
such that xz = x5(y), B € B. Then

m(g(X)= [ g(Om(a)= [ gOm(y(d)=m(ay))
for any m e M, so that
(fog)(X)=(f-9)(y)=f(g(y)) =f(g(X)).
We shall write f(X)= [f(t)xa.

6. Real semiobservables

Let % = R and let B = B(R) be the o-algebra of Borel subsets of &. If the logic
Z has the property (B), then the (R, B(R))-semiobservables can be alternatively
defined as follows.

Proposition 13. Let £ have the property (B). Let y, € X7, t € R be such that
(i) t.=t, implies m(y,—y,)=0 for all m e M,
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@ii) m(y.—o)=m(y,) for all me M, te R,
(i) lim m(y.)=0, lim m(y.)=1 for all meM. Then the set {y.: teR)}

uniquely defines a real semiobservable {xs: B € B} such that Xw n=y:, t€R.

Proof. Let us set f..(t)=m(y.), teM. For any me M, f.(t) is a bounded
monotone function continuous on the left and such that f,.(—«)=0. By [8, § 43,
Th. B] there exists a unique finite measure v,, on %B(R) such that f,.(¢)=
=V, ((—, t)). From f,.()=1 it follows that v,, is a probability measure. Let
m=am;+ (1 —a)m,. Then

Vm (— 0, t)= aml(}’t) +(1- a)ymy(y.)=
= anl((—Oo, t)) + (1 —a)v,,.z((—w, t)),
so that
Vm(B) = QVm,(B) + (1 — a)Vm,(B),

where B is any finite disjoint union of intervals and it can be easily seen that the set
H={BeB(R): Vm(B)= aVm(B)+ (1 — a)Vm(B)}

is a monotone system. Hence, m v, is a convex homomorphism from . into the
set P (%) of all probability measures on 93. By the property (B), there is a unique
semiobservable X such that v,,(B)=m(xz) for any me.# and B € 3.

Definition 9. Let = (a, b), —0<a<b <, B be the o-algebra of all Borel
subsets of 9. Let £ have the property (A). Then

e(X)= L Axax

will be called the mean value of the semiobservable X € Z . ).
Clearly, the same observable e(X) can be the mean value for several semiobserv-
ables X.

Definition- 10. For any m e #f we shall call m[e(X)] the mean value of the
semiobservable X in the state m and

om(X) = f(l —mle(X)])’'m(xa)= leM(xM) —mle(X))

will be called the dispersion of X in the state m.
From Proposition 12 it follows that if X is a simple semiobservable, then
e(X)2=flzx.u. )

Proposition 14. Let X be a simple semiobservable and Y be any semiobservable
on the Hilbert space logic £(). Let the mean values of X and Y coincide, i.e.

eleX)]=trlofixa]l=trlofAya]=0le(V)] =1,
for any state ¢ on £(%). Then for all o,
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(X)_nr [9< )(A--xg)zx&]sn [g< (A~xg)2ydl]=o;(Y).
: a,b a.b)

Proof. It is enough to prove it for ¢ = Py,;, @ € ¥. By the Naimark theorem [1,
IX, p.393] if Y={y,: te(a, b))} is a semiobservable on £(%), then there is
a Hilbert space %" such that # < %" and a simple semiobservable E; on #* such

that for any @ € #, y.p = P'E @, where P" is the projector on 9. Then for any
QeH,

2

|, ¥0oup )= 2(PEig.9)=[ 1(Eig.Pre)=

{a,b) {a.b) {a,b)

e A.Z E+ . = (j AE+ 2 S = J. A + P+J A +
j(a.b) ( = (p) < (a,b) M) - q)) {a,b) EdA(P (a,b) Elﬂq)

- <J(<ﬂ~b> AP+E;A¢, J;a,b> AP+E;A¢> = ((J;a,b) Aydl>2q)’ (P) .

From ([Ayu@, @)= (J Axa@, @) =4, for any @ € ¥ it follows that [Ays = [Axa.
Thus we get

2
2 I

o Y)‘:(J( Mlzymtp,w)—/fi?(([

/‘\'ydl)z(p’ (P> .-—)\—,é:
\ Jea.n)

=((|_ ixaVe, 9)-Ti=0i(X).
{a,b)

From Proposition 14 it follows that simple semiobservables are characterized out
of all the semiobservables giving the same mean values by the smallest possible
fluctuations. This fact is mentioned in [13], without the proof.

For more general logics we get the following statement (a generalization of the
Jensen inequality).

Proposition 15. Let g: (a, b)— R be a convex function. Let X e ¥ ({a, b), B)
be such that e(X) is compatible with

f(m o0 Ther j

{a,

>g(ﬁl)xa?g(e(x))-

Proof. The convex function g can be written as a supremum of a countable set
of linear functions f.(t)=a.t +b,, a,, b, e R, t € (a, b). From this it follows that

g(x)=sup f,(x) for any observable x on ¥. From e(X) <> g(X) we get that there is

an observable z and Borel functions u, v such that e(X)=u(z), and

00=]  g@ra=v(2)
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Then for any m e A,
f( L am(x)> j(  m(x) = am(e(X))+ b, =

—mlf(e(X))], ie. m@)EmE@@), n=1,2, ...

From this it follows that

z({t: v() = fu(u())<0})=0.

Indeed, let a=z({¢t: v(t)—f.(u(t))<0})#0, then by [6, Lemma 2,1] there is
mo€ M such that me(a)=1, but then mo(v(z) — f,(u(z)))<0, a contradiction.

Then v(¢)=f,(u(?)), n=1, 2, ... implies that v(¢) = sup f.(u(t)), so that

z({r:v(@®)=sup fu(u(@)H) =1,

i.e. m(v(z))=m (sup f.(u(z))). From this we get for any m e #,

m (f( ” g(/l)xda> =m(sup f,(e(X)))=m[g(e(X))].

Proposition 15 implies that a generalization of Proposition 14 is valid provided
e(Y)o f A ZYdA .
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CEMHUHABJIIOODAEMBIE HA KBAHTOBBIX JIOTUKAX
CobuiBua [TynmaHHOBa
Pesome
B pabore HccnepyeTcs NMOHATHE CEMHHAONIONAEMbIX, SIBISIOLIEECS 060_6memqem MOHSTHS HAO-
JrofgaeMbIx Ha Jioruke. ITokazaHbl HEKOTOpble CBOMCTBA MHOXECTBA BCEX CEMMHAOIIIOTAEMBIX : BBIITYK-

JIOCTh, CEKBEHUMANbHAS 3aMKHYTOCTb B CJIAGOM TOMONOIMH, MCCIENOBaHbI IKCTPEMATbHbIE TOYKH
W BBEJEHO MOHATHE WHTerpasa YHKUMIA M0 CEMHHAGNIOTaEMbIM.
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