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Math. Slovaca 30,1980, No. 4, 419—432 

SEMIOBSERVABLES ON QUANTUM LOGICS 

SYLVIA PULMANNOVA 

A generalization of the notion of observables on a logic is given and its 
mathematical properties are described. 

1. Introduction 

Within the framework of the standard quantum theory "semiobservables" or 
"quantum measurements" can be described as (in general nonorthogonal) resolu­
tions of the identity in a Hilbert space. Semiobservables were originally introduced 
by Da vies and Lewis [2, 3] for the description of repeated measurements and 
conditional expectations in quantum systems. They were also used by I n g a r d e n 
[13] to formulate the quantum information theory. In recent years there has been 
an increasing interest in quantum-mechanical variations of the problem of signal 
detection in background noise [9, 10, 11]. The basic concepts of the general theory 
of statistical decisions are stated by H o l e v o [10, 11]. Essentially new is the 
investigation of semiobservables as an analog of strategies in the classical theory of 
statistical decisions. 

In the present paper, an analog of semiobservables in terms of the quantum logic 
approach to quantum mechanics is introduced and its mathematical description is 
given. 

2. Basic concepts 

In the quantum logic approach to quantum mechanics the basic concepts are the 
set Z£ of all experimentally verifiable propositions of the physical system and the set 
M of physical states, i? is usually supposed to be a partially ordered set with the 
greatest and least elements 1 and 0, respectively, with the orthocomplementation 
a»-»a\ aei£, and with the orthomodularity property 

a^b ^>b =av(a±Ab), 

where we denote by a v b and a A b the supremum and infimum of the elements a, 
b t!£, respectively; and which is closed under the formations of the suprema va, 
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for any sequence {a,} i = 1,2,..., of elements from S£ such that at^af, i±j. The 
elements a, b e S£ are orthogonal (a±b)ifa^b~, and they are compatible (a<r+b) 
if they can be written in the form a = axvc,b =bxvc, where ax, bu c are mutually 
orthogonal elements of S£. A set S£ with the properties just described is called 
a logic. 

A state on S£ is a probability measure on S£, i.e. a map m: S£—> [0, 1] such that 
m ( l ) = l and m(va l ) = 2m(a l) for any sequence {a.} of mutually orthogonal 
elements of S£. A logic S£ is /u11 if there is a set J^ of states such that m(a)^m(b) 
for all meM imply a^ft, a, beS£. A logic i? is quite full if the statement 
"m(b)=l whenever m(a) = 1 " implies the statement "a ^ b " . It can be easily seen 
that a quite full logic is full [6]. 

The set of states of a physical system is usually supposed to be closed under the 
formations of countable convex combinations, i.e. if mteM, i=l,2, ..., then 
m = ~\tlmieM, where O ^ t . ^ 1 , 2tf = l . 

In the following we shall suppose that S£ is a quite full logic and M is closed under 
the formations of countable convex combinations. The pair (S£, M) is called 
a quantum logic. 

Let S£ and jf{ be two logics. The mapping h from S£ into $f is called 
a o-homomorphism if 

(i) A ( l ) = l , 
(ii) p ± q , p, q eS£ implies h(p)±h(q), 

(Hi) h(vpi)= vh(j?i) for any sequence {p,} of mutually orthogonal elements of 
S£. 

With the help of the concept of a-homomorphism we introduce observables 
corresponding to physical quantities. Suppose S£ is a logic and (°U, 8fo) is 
a measureble space with the a-algebra of subsets SB. An arbitrary a-homomorph­
ism x: Fy-^x(F) of the a-algebra 8ft into the logic S£ is called a (°U, %)-observable 
on S£. This definition can be interpreted as follows. We consider °U as the space of 
possible states of some measuring device, and 8ft as the class of events relating to 
this device, i.e. the results of measurements. The a-homomorphism x associates 
with each event some assertion (element of S£) about the physical system. 

If x is a (°U, £S)-observable and m is a state, then m(x()) defines a probability 
measure on (°U,0l). The expectation of an observable x in the state m is 
m(x) = $tm[(x(dt)] if the integral exists. 

If 01 is the real line and 01(01) is the a-algebra of Borel sets, then 
a (01, SJ(£%))-observable is called a real observable. The unique observable I: 
E*->I(E) defined by I({1})= 1, where {1} is the one-point set consisting of unity, 
is called the identity on S£. 

If x is a real observable and / : 01 —• 01 is a Borel function, then we can define the 
observable f(x) by setting f(x)(E) = x(f~i(E)). The spectrum o(x) of the real 
observable x is the smallest closed set C such that x(C)= 1. An observable x is 
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called a simple observable if o(x)cz{0, 1}, which is identical with x2 = x. An 
observable x is bounded if its spectrum o(x) is bounded. A real observable x on 
a full logic is called the sum of the observables y, z if m(x) = m(y) + m(z) for any 
meM. We shall suppose that for any two bounded real observables y, z there is 
unique observable x such that j c = y + z . From the existence and uniqueness of the 
sums of observables it follows that m(x) = m(y) for all m eM implies x =y. If the 
logic ££ is quite full and the sums exist, then 5£ is a lattice [6]. 

More details about the mentioned concepts can be found in [5, 6, 16, 17]. 

3. Semiobservables and their properties 

Let Z£ be a quite full logics with respect to the set of states M. Let X be the set of 
all bounded real observables on 5£. We suppose that X is closed under the 
formations of finite sums, so that X can be considered as a real linear space. We 
define the norm on X by setting 

||JC|| =sup {|ra(*)|: m eM}. 

It was shown in [5] that 

| M | = s u p { | f | : f e a ( x ) } . 

Definition 1. Let {x{} be a sequence of bounded real observables. We shall say 
that an observable x is the sum of x{, i.e. 

x = ~ZXi, 

if 
m(x) = ~lm(Xi) for all meM. 

Clearly, if such an x exists, it is uniquely defined. Now we shall consider the 
following generalization of the notion of an observable. 

Definition 2. Let (°ll, Sft) be a measurable space with the o-algebra of subsets £8. 
Let {xB: B e S } be an X-valued function on 8ft, such that 

(i) 0^m(xB)^l for all meM and all Be38, 
(ii) m(xcu) = 1 for all meM, 

(Hi) if {Bi} is any countable partition of °U, B(e®, then ~ZxBi = x#. 
Then X={xB: Be®} will be called a (W, 2&)-semiobservable on ££. 
From (i) it follows that xB, Be®, are ([0, 1], ®[0, l])-observables on 5£, where 

8ft[0, 1] is the a-algebra of all Borel subsets of [0, 1]. Indeed, by [5] the set 
V(x)= {m(x): meM}~ is the smallest closed interval containing o(x). By (i), 
V(xB)={m(xB): m eM}~cz[0, 1], so that o(xB)cz[0, 1]. From (ii) it follows that 
V(xv) = {l}, so that a(x#) = {l} , i.e. xqi = l. 

421 



Definition 3. A (6lt, $)-semiobservable X on 56 is said to be simple, if all xB, 
B effi are simple observables. 

Proposition 1. The set of all simple (°U, ffi)-semiobservabIes on 56 is in 
one-to-one correspondence with the set of all (°U, ffi)-observables on 56. 

Proof. Let y: B^y(B) be a (°U, 39)-observable on 56. For any Beffl, let us 
define a real simple observable yB by setting yB({l}) = y(B), i.e. yB =Xs(y), where 
XB is the characteristic function of the set B e S . Then {yB: Be£&} is a simple 
(°U, S3)-semiobservable. Indeed, (i) and (ii) are clearly fulfilled. Let {£,} be 
a partition of °U, then 

2m(yB,)=2Jm[yBX{l})] = 2m[y(Bt)} = m\\/y(Bi)] = 
i i i L i J 

= m 1 

for any meM,, which proves (Hi) in Definition 2. 
Now let {yB: B e .%} be a simple (°U, ̂ )-semiobservable on 56. Then by setting 

y(B) = yB({l}) we get a (°U, $)-observable on 56. Indeed, yW = y*({l})= 1, 
BnC = 0 implies l^m(yBKjC) = rn(yB) + m(yc) = m(y(B)) + m(y(C)), meM, 
from which it follows that y(B)±.y(C). Now let {Bt} be any sequence of disjoint 

sets of %. Then m y ( U B i ) ] = rn[y,JiBi({l})] = m(yUjBt) = ^m(yBi) 

= ^Jm[y(Bi)] = m \fy(Bt)\ for all meM, so that y (jJH.) = Vy(£ .)-

Let #?(<*, a) be the set of ail (^/, ^)-semiobservables on if. The following 
statement is straightforward. 

Proposition 2. The set Sf^.^) is convex. 
Let X e f ( * „ j ) and meM,. Then H»—>m(xB), B e l defines a probability 

measure on .^. Let 0>(<%) be the set of all probability measures on 31. Then the 
map v: m H->m(xB) is a convex homomorphism from the set M into the set ^(SJ) , 
i.e. 

v[ami + (l - a ) m 2 ] = av(mi) + (l -a)v(m2), O ^ a ^ l . 

In the following we shall need some definitions. As before, x is the set of all 
bounded real observables on 56. 

Definition 4. VVe shall say that the logic 56 has the property (A) if for any 
sequence {xn}czX such that 

(i) \\Xn\\**K«»,n = h2, ..., 
(ii) lim m(xn) = am, am e 01 for any m eM, there is an observable x e X such that 

n—+<*> 

am =m(x), meM. 
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Definition 5. We shall say that the logic <£ has the property (B) if to any 
measurable space (°U, £8) and any convex homomorphism v: M-*&($) there is 
a unique semiobservable X={xB: Be28} such that v(m)(B) = m(xB) for any 
meM and any B e S3. 

Definition 6. We shall say that the logic £ has the property (C) if to any affine 

functional cp: M-^9l such that sup \q)(m)\^K, Ke$l, there is an observable 

x eX such that cp(m) = m(x), meM. 

Proposition 3. If the logic J£ has the property (C), then it has also the properties 
(A) and (B). 

Proof. Let {xn}aX be such that ||jc„||^K, n = l , 2, ... and lim m(xn) = am, 

ame$l, meM. Then m>-*am is an affine mapping from the set M into 91. From 
\\xn\\^K,k = \,2, ... it follows that \m(xn)\^K,n = \,2, . . . ,sothat | a m | ^ K f o r 
any meM. Then by (C) there is an x eX such that am = m(x). Hence (C) => (A). 
Now let v: M—>&(£&) be a convex homomorphism. Then for any fixed B effi, 

fB(m) = v(m)(B) is an affine mapping from M into 01 such that sup | / B ( m ) | ^ l . 
m eM 

Then by (C) there is an observable xBeX such that fB(m) = m(xB), meM. 
Clearly, m(xB)e [0, 1] and m(x^) = 1 for any meM. Let {£?,} be a partition of °U, 
then2m(xB |) = 2v(m)(B,) = v(m)(uB() = v(m)(°U)= 1 for any m eM, so that 
yLxBi=l. Hence {xB: BeSft} is a semiobservable. Thus we have proved that 
(C)=>(B). 

Let !£(%£) be the logic of all closed subspaces of a complex separable Hilbert 
space ^f i f (^f) is a quite full logic with respect to the set of all its states. By the 
Gleason theorem [17] there is a one-to-one correspondence between the set of all 
states of !£(%£) and the set of all nonnegative trace-class operators with the trace 1. 
For any state g and any observable (i.e. Hermitean operator) x we have 
g(x) = tr(gx), where g is the trace-class operator corresponding to the state g. 

Proposition 4. The logic 5£(W) has the property (C). 
Proof. Let / be an affine real functional on the set of all states such that 

\f(g)\ ^K for all g. Then / can be considered as the affine functional on the set of 
all positive trace-class operators with trg = 1. It can be uniquely extended to the 
linear functional / on the set of all trace-class operators such that 

\f(o)\^2Ktr\o\, \o\ = Vo^. 

By [15, Theorem 2, p. 47] there is a unique bounded operator x such that 
f(o) = tr(ox). A s / is real on Hermitean trace-class operators, we get that x = x*, so 
that x is an observable. 
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From Propositions 3 and 4 it follows that the logic S£(W) has also the properties 
(A) and (B). 

Let X, = {x eX: \\x || ̂  1}, where X is the set of all bounded real observables on 
the logic S£. Letx ( )eX, , m., m2, ...,mkeM and ex, e2, ..., ek be positive numbers. 
Let us define the weak topology on X! by the neighbourhoods 

U(x0; ra,, ..., mk; ex, ..., ek) = 
= {xeXx: \ml(x0)-mi(x)\<£i, i = 1, 2, ..., k}. 

This topology is Hausdorffian, because the set M separates points of Xx. 
To any x eXx we define the function x: M^>[—1, 1] by setting x(m) = m(x), 

meM. The mapping x—>x is one-to-one. Let Xx = {x: x eXx} cz[— 1, l]M. Then 
X, with the weak topology and Xx with the relative product topology are 
topologically isomorphic. 

Let the logic S£ have the property (A). Then to each sequence {xn } c Xx which is 
Cauchy in the weak topology there is an x eXx such that m(xn)->m(x) for any 
ra e l . 

Let $?(?A .»> be the set of all (°U, @b )-semiobservables on SB. Clearly, #%. $» a Xf. 

Definition 7. Let {Xn}, X" = {xB: B effi} be a sequence of semiobservables. We 
shall say that {Xn} converges to the semiobservable X, in symbols Xn—»X, if 
xB-*xB weakly, i.e. if m(xn

B)—»ra(xB) for any meM and any B e $&. 

Proposition 5. The set of all semiobservables $?(^, «> is sequentially closed in Xf. 
Proof. Let {X n }cz^ > 3 B ) be such t h a t X n - > F , where Y={yB: £ e ^ } c = X f . 

For any meM we define the probability measure \in
m on 33 by setting 

[im(B) = m(xn
B), Bem, n = \, 2, .... 

Then 
m(xn

B)->m(yB) implies iim(B)-+m(yB), «—>oo. 

By [8, §40, p. 170], the map B>->ra(yB) is a probability measure on ffl. Let {£,} be 
a countable partition of °ll. Then 

\=um(^) = lim(uBi) = ̂ iim(Bi) = ^m(yBi), 
where 

iUm(£) = ra(yB), Be35 , rael. 

From this it follows that {yB: Be^}e^£^,.^ 

Proposition 6. Let Xx be sequentially compact, i.e. to each sequence {xn} c X , 
there is a subsequence {xnk} cz {xn} and an element x eXx such thatxnk-*x weakly. 
Let Sft be countable. Then the set of all (°tt, $l)-semiobservables %?(&,&) is 
sequentially compact. 

Proof. By [14, 7D, p. 238], the set Xf, as a product of a countable number of 
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sequentially compact spaces is sequentially compact. By Proposition 5, #%,») is 
sequentially closed, from which it follows that it is sequentially compact. 

We note that the set X, of the Hilbert space logic 3! (3d) is sequentially compact. 
Indeed, from [1, p. 105] and the fact that the limit of the sequence of Hermitean 
operators in the weak operator topology is a Hermitean operator, it follows that to 
any sequence {x„}cXi there is a subsequence {xnk} and an xeXt such that 
(xnk<p, \p)-*(x<p, ip) for any cp,\pe3€. Let g = ZWi.P[<p*] be a state on£(%€). Then 

\trg(xnk-x)\ = -̂  

i = \ 

because 

Let s be such that 

Then 

SWi((*п f c - * ) < # > фi) 
Ii = l 

oo 

'• 5 > , !((*» ~x)ą>i, <p,)|« 5>< • 2, 
i = l i - 1 

{((Xч-x^cpдЫK-xïï-Ы2^. 

= s + i --

ke(*» -•*)!<.>> !((*-* -*)w. w)l = 
i = l 

5 oo 

= 2W-l((^nfc-^)<P*,<Pi)|+ E l((^-^)<P.-, <#).<£ 
i = l i = j + l 

for nk > n0 if we choose n0 such that 

2w.I((*"*-*)<#, <#)l<^ ^ r nk>n0. 
i = l 

Definition 8. We shall say that a functional f on 3V,<») is continuous if 
f(Xn)-+f(X) provided Xn->X, n-+oo. 

The following statement is a modification of the Weierstrass theorem. The proof 
of it is standard and we omit it. 

Proposition 8. A continuous functional on a sequentially compact set $?(<#,<») of 
semiobservables achieves a maximum. 

4. Extremal points of the set $%,&) 

Now we shall study the extremal points of the convex set 2£(U,&) of all 
(°U, %)-semiobservables. The methods of proofs are similar to those used in [12]. 
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First we shall define a pseudoproduct on the set of all bounded observables X of 
the logic «S? by setting 

Xoy = \[{x+y)2-x2-y2]. 

Lemma I. Jt<-*y implies xQy =xy. 
Proof. x«-»y implies that there is a z eX and Borel functions uu u2 such that 

x = ut(z), y = u2(z). But then Xoy = ut(z)oU2(z) = ut(z)u2(z) = xy. 

Lemma 2. An observable x is simple, i.e. x=x2 if and only if xo(I — x) = 0. 
Proof. It follows from the equation Xo(I — x) = x — x2. 

Lemma 3. A semiobservable {xB: B effl} is simple if and only if xB oXc = 0 for 
any B, Ce® such that BnC = 0. 

Proof. Let {xB: B effl} be simple. Then xB =x2
B for any B e£ft implies that 

XB oXc = — l(xB + Xc) —XB — Xc\ = ~ \XBUC ~XB— XC\ = 0, 

provided BnC = 0. 
Now let BnC = 0 imply JCBOJCC = 0 . Then xBo(I — xB) = xBoXu-B =0, so that 

xB=x2
B, Bem. 

We shall write x^y if m(x)^m(y) for all m eM. Then (X, = )̂ is a partially 
ordered linear space. 

Proposition 9. If the pseudoproduct is distributive (relative to addition of 
observables), then simple observables are extremal points in the set X* = {x e XY: 
m(x)^0 for any m eM}. 

Proof. Let x eXt, x=x2 and let x=- (y + z) for some y, z eXl. Then 

m (y
2)= ( X2my(dX)*í \ Ámy(dX) = m(y) 

Jo Jo 

for any meM implies that y2^y and similarly z2^z. Then 

\(.y2 + z2)^\{y + z) = x=x2 = \(y + z)2. 

From this we get 2(y2 + z 2 ) ^ (y + z)2, i.e. y2 + z 2 ^ 2(y0z), from which it follows 
that ( y - z ) 2 ^ 0 , i.e. y = z. 

From Proposition 9 it follows that the simple semiobservables are extremal 
points in $?(^,a). 

We recall that a cr-algebra is discrete if it is generated by an at most countable set 
of atoms. 
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Proposition 10. Let the logic 56 be a Boolean o-algebra and let (°U, $) be 
a measurable space with the discrete o-algebra SB. Then the simple semiobservables 
are the only extremal points in the set 3?(<*,»). 

Proof. Let {A,: ieD} be the set of atoms in S3, where D is at most countable 
indexed set, and let X be an extremal point in 3?(*, my If X is not simple, then there 
are sets B, Ce(%, BnC = 0 such that xBOxc^=0. AS 56 is a Boolean algebra, 

xB*-*xc and JCB oJtc = JtBJtc. Let E effl, then E = u{A,: A{ <^E}, and JCE = ^ JCA.. 
Ai<=E 

As all xA| are pairwise compatible, they can be considered as functions of an 
observable JC. Let us set JCA. = / ( JC) , ieD. Then 

xBxc= S f(x) 2 f(x)= 2 S /«(*)/,(*)>0 
{ i : A , c B } { i : A , c C } { i . A . c B } {/: A/e=C} 

implies that /(jt)/(jt)>0 for some i, j . Let fi(x) = xt, fi(x) = xi. Then (JC. + Jt,)2 > 

£(jt, — Jty)2, so that (JC, +Xj) > \xi —Xj\. Let us set z =~z (xt +JC7 — |jt, —Jt;|). Then 

z>0, z^Xi, z^Xj [7]. We can define semiobservables Y = {yk: keD} by setting 
yk=xk ilk^j, i andy, =jt, +z,y/=Jt, - z , andZ= {zk: keD} by setting zk = xk if 

kJ=i,j and z,- = Jtf — z, z7- = Jty + z. Then X = - (Y + Z), which is impossible as X was 

supposed to be an extremal point. 

5. Integrals of functions with respect to a scmaobservabJe 

Let (°U, ffl) be a measurable space and 3?o*,«) be the set of all (%, ^)-semiob-
servables on 56. Let 56 have the property (A). Let / : °U—> 01 be a simple function of 
the form 

n 

/ = E « ^ A „ A,e@. 
i = l 

Let us set for any X e f ^ i , 

i = l 

Clearly, /(X) is a bounded observable on 56. For any meM we get that 

m (/(X)) = m ( 2 a ^ A | j = ]£a.m (*A, ) = J/(0™(** ). 

Now let / : ^—>^ be a nonnegative Borel function, / s$K < oo and let {/„} be an 
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increasing sequence of nonnegative functions converging to / [8, § 20, Th. B]. Then 
for every meJi 

m (/„(*))= í f„(t)m(xđ,)^K, 
J& 

so that {m(fn(X))} is an increasing bounded sequence. By the property (A) then 

there is a bounded observable, let us denote it by f(X), such that lim m(fn(X)) 

= m(f(X)) for every m €M. By [8, § 27, Th. B]\imm(fn(X)) = lim jfn(t)m(xdt) 

= $f(t)m(xdt). From this it follows that the observable f(X) is well defined. For 
any bounded Borel function / let us set 

f(x)=r(x)-f-(xy 
It can be easily seen that / ^ 0 implies / ( X ) ^ 0 , (f + g)(X) = f(X) + g(X) and 
(af)(X) = af(X), a e0l. 

Proposition 11. If {/„} is a sequence of bounded Borel functions such that 
\fn\^g, where g is a bounded Borel function and fn-^f pointwise, then 

lim m(fn(X)) = m(f(X)) for every meJi. 

Proof. It follows from [8, § 26, Th. D]. 

Proposition 12. Let X be a simple semiobservable and letg:°U->0l,f:0l-+0lbe 
bounded Borel functions. Then (fQg)(X) = f(g(X)). 

Proof. If X is simple, then by Proposition 1 there is an observable y: 01 —>!£ 
such that xB =#B(y) , B e 0i. Then 

m(g(X))= \ g(t)m(xdt)= \ g(t)m(y(dt)) = m(g(y)) 
J<1£ J<u 

for any meM, so that 
(fog)(X) = (fog)(y) = f(g(y)) = f(g(X)). 

We shall write f(X) = if(t)xdt. 

6. Real semiobservables 

Let °U = 01 and let 01 = 01(01) be the a-algebra of Borel subsets of 01. If the logic 
!£ has the property (B), then the (01, ^(£%))-semiobservables can be alternatively 
defined as follows. 

Proposition 13. Let J£ have the property (B). Let yt e X | , t €01 be such that 
(i) t2^tx implies m(yt2 — ytl)^0 for all m€M, 
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(ii) m(yt-0)-m(yt) for all meM, te$l, 
(Hi) lim m(y,) = 0, limm(yr)=l for all meM. Then the set {yt: te<3l) 

t—•—— r - » — 

uniquely defines a real semiobservable {xB: B eSft} such that jt(_-,0 = yr, te3l. 
Proof. Let us set fm(t) = m(yt), teM. For any meM, fm(t) is a bounded 

monotone function continuous on the left and such that /m(-oo) = 0. By [8, § 43, 
Th. B] there exists a unique finite measure vm on 38(01) such that fm(t) = 
= vm((—oo, t)). From fm(co)= 1 it follows that vm is a probability measure. Let 
m = ami + (1 — a)m2. Then 

vm(-oo, t) = amx(yt) + (1 - a)m2(yt) = 
= avmi((-oo, t)) + (1 - a)vm2((-oo, t)), 

so that 

vm(J5) = avmi(B) + (1 - a)vm2(£), 

where .B is any finite disjoint union of intervals and it can be easily seen that the set 

X={Be®(M):vm(B) = avmi(B) + (l-a)vm2(B)} 
is a monotone system. Hence, m«-» vm is a convex homomorphism from M into the 
set _P(33) of all probability measures on _#. By the property (B), there is a unique 
semiobservable X such that vm(B) = m(xB) for any meM and B G S . 

Definition 9. Let °U= (a,b), -™<a<b <*>, % be the a-algebra of all Borel 
subsets of °U. Let SB have the property (A). Then 

Ajcd 

wi/1 6e called the mean value of the semiobservable Xe $£&,&). 
Clearly, the same observable e(X) can be the mean value for several semiobserv-

ables X. 

Definition* 10. For any meM we shall call m[e(X)] the mean value of the 
semiobservable X in the state m and 

o2
m(X) = j(k - m[e(X)])2m(Xdk) = fk2m(XdX) - m[e(X)]2 

will be called the dispersion of X in the state m. 
From Proposition 12 it follows that if X is a simple semiobservable, then 

e(X)2 = SX2x«. 

Proposition 14. Let Xbea simple semiobservable and Y be any semiobservable 
on the Hilbert space logic 3!(3€). Let the mean values ofX and Y coincide, i.e. 

Q[e (X)] = tr[Q$Xx^ = tr[Q jAy^] = Q[e(Y)] = XQ 

for any state Q on S£(3£). Then for all Q, 
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ďQ(X} = tr \o\ (A - - 4 f^éi \tr Q\ a~Â(,fy,u.\^øi(Y). 
J(a.,b) ' І 

Proof. It is enough to prove It for g ~P[tp\, q> e 3€. By the Naimark theorem [1, 
IX, p. 393] if Y~-{yf: ieia.b)} k a semiobservable on ^ ( ^ % then there is 
a. Hllbert space 5g"* such that af ci f̂" and a simple semiobservable El on. Sif" such 
that, for any cp e ;t\ y,<p -.. F"£+«p, where P + is the projector on Sif. Then for any 
(p € {M, 

f A ^ ' y ^ , <p)--- | A 2(P ' 'Ei<p, (p) = k2(E&q>, P*<p)=-
J<«.>> ./..<,.</> J<«,/o 

= i A^E^íp, «) = (( | A.GÍ)>„ rp) = i j AEÍ<p & lip" í 
J<.«,I>> \\.f(e.í,> ' / !J<0,í,\ |! J( 

- í I A P * / ^ , í A.P+E:X(P) = (( í W ) V 
KJ(a,b} J<a>b) / '• x J(a,h) I 

ĂE ÚA(p\ 

Ч>] 

From (J Ay<ucp, $0 — ( fkx^P, *:p) = AW for any c|> € S? it follows that j" AVJA = j kx^,. 

Thus we get 

< ( 5K; - ( I A?y<u<p, <p) - A2 ^ ( ( j Ay^ ) 2 ^ - <? ) - A'2 ==-
V -J<« v6> / "' J < a . 6 > / 

= ( ( \ lx^ f(p, op) - A"I = a2(X). 

From Proposition 14 it follows that simple semiobservabies are (characterized out 
of all the semioteervahles giving the same mean values by the smallest possible 
fluctuations. HITS fact is mentioned in [13], without the proof,. 

For more general ioslcs wc get the following statement (a generalization of the 
Jenseri inecjunlit v).. 

Proposition 15. Let g: (a, b )~+9lbe a convex function. Let X € X ((a, b). //?) 
be such thai eCM) & mmjmtihle with 

I g (k )xok, Then j g (A )xilK 5? g (e (X)), 
J(a. b) ' ' J(aJy) ' 

Proof. The convex function g can be written as a supremurn of a countable set 
of linear functions f„(t)~ant F hn, an, bn e f l , t e.{a,b). From this it follows that 

g(x) ~~ sup fn(x) tor any observable x on X. From e(X)+-*g(X) we get that there is 

an observable ;-; BMG Bore'! functions u, v such that e(X)~~ u(z), and 

*/ I 
i.*ť řO 

(/ )x,л ••- v(z\. 
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Then for any meM, 

f g(X)m(xa)^\ fn(k)m(XdX) = anm(e(X)) + bn = 
J(a,b) J(a,b) 

= m[fn(e(X))], i.e. m(v(z))^m[fn(u(z))], n = l,2, .... 

From this it follows that 

z({t:v(t)-fn(u(t))<0}) = 0. 

Indeed, let a=z({t: v(t)-fn(u(t))<0})±0, then by [6, Lemma 2,1] there is 
m0eM such that m0(a)=\, but then m0(v(z) — fn(u(z)))<0, a contradiction. 

Then v(t)^fn(u(t)), n = 1, 2, ... implies that v(t) ^ sup fn(u(t)), so that 
n 4 

z({t:v(t)^supfn(u(t))})=l, 
n 

i.e. m(v(z))^m (sup fn(u(z))). From this we get for any ra GM, 
n 

m ( f g(X)x^m(sup fn(e(X))) = m[g(e(X))}. 
\J(a,b) 7 n 

Proposition 15 implies that a generalization of Proposition 14 is valid provided 

e(Y)++fx2
ydk. 
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СЕМИНАБЛЮДАЕМЫЕ НА КВАНТОВЫХ ЛОГИКАХ 

Сылвиа Пулманнова 

Резюме 

В работе исследуется понятие семинаблюдаемых, являющееся обобщением понятия наб­
людаемых на логике. Показаны некоторые свойства множества всех семинаблюдаемых: выпук­
лость, секвенциальная замкнутость в слабой топологии, исследованы экстремальные точки 
и введено понятие интеграла функций по семинаблюдаемым. 
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