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AN OPTIMAL CONTROL PROBLEM FOR
AN ELLIPTIC VARIATIONAL INEQUALITY

IGOR BOCK—JAN LOVISEK

We shal be dealing with an optimal control for an elliptic variational inequality
with controls involved both in the operator of the problem and in the right hand
side. A similar problem with controls only in the right hand side has been solved in
the book [2].

1. The Existence Theorem

Let U with a norm || - || be a reflexive Banach space of controls, U,, = U a set of
admissible controls. We assume U,, be convex, closed and bounded in U.

We assume further a reflexive Banach space V with a norm ” : " and a convex
closed subset K< V. V* means a dual space of V with a norm Il and a duality
pairing [,-] between V* and V.

Let {A(e)}, A(e): K— V* for every e € U.4, be a family of operators satisfying
the following assumptions:

) A(e) is for every e € U, strongly monotone i.e.
[A(e)u— A(e)v, u—v]>0 for every u, veK, u+v, e€ Uy

A(e) is for every e € U,, hemicontinuous i.e.
@) lim [A()(u+ (v —w)), w]=[A(c)u, w]

for every ee Uy, u, veK, weV

3) {A(e)} is uniformly bounded i.e.
|A(e)v||*<C, if |le|lu<C: and ||v]|<C:

{ A(e)} is uniformly coercive i.e. there exist such vo € K and a real function
(4) r:[0,©)>R, !irg r(t) = =, that

[A(e)v, v—wvo]=||v||r(]|v]]) for every ve K

A(-)v: Ua— V* is for every v € K strengthenly continuous i.e.

®) e.—e; (weakly) in U implies A(e,)v— A(eo)v (strongly) in V*.
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Let the operator B: U,,— V* be strengthenly continuous and f € V*. Under the
assumptions (1), (2), (3) the operator A(e): K— V* is pseudomonotone for every
e€ U, (def. in [3]) and then due to the theorem from [3] there exists a unique
solution u(e)€ K of a variational inequality

(6) [A(e)u(e), v—u(e)]=[f+ B(e), v —u(e)]

for every ve K

Our aim is to solve the following optimal control problem:
Problem P. To find a control e, e U.s which fulfilis:

(7)) [A(eo)u(eo), v — u(eo)]=[f + B(eo), v — u(eo)]
for every ve K

(8) || Culeo) = zll%= min [|Cu(e) - zl%
e€ Ui

where u(e) € K is a solution of (6), # is a Hilbert space, Ce L(V, %) is a linear
control operator, z,€ ¥ is a fixed element.

Theorem 1. There exists at least one solution e, € U,s of Problem P.
Proof. We have J(e)=||Cu(e) — z4||3%=0 for every e € U,.. Hence inf J(e)=
0. Let (e.)=-1 be the minimizing sequence for a functional J(-) i.e.

(9) lim J(e.) = inf J(e)

As the set UL, is convex and closed in the reflexive space U it is weakly closed in U.
Then there exist such a subsequence of (e,)z-1 (We denote it again by (e.)-:) and
the element e,€ U,, that

(10) e.—eo (weakly in U)
Denoting u, =u(e.)e K, n=1,2, ... we have

11) [A(e)un, v—u.]=[f+b(e.), v —u.]
for every veK, n=1,2, ...

Inserting vo€ K in (11) we arrive at
(12) [A(e.)us, Un — vo] <[f+ B(e.), u, — vo)

Using the uniform coerciveness of a system {A(€)} and the streghten continuity of
B we obtain

(13) flwllr(lulh < Cllwll + C:

As lim r(t) = we have
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14) |u|l<C, n=1,2,..
We can now extract such a subsequence of (u.)»-: denoted again by (u,)--; that
(15) wu.,—u (weakly in V)

Moreover u € K, because u,€ K, n=1, 2, ... and K is weakly closed in V.
As a family of operators {A(e)} is uniformly bounded (see (2)) we have
[lA(e.)u.||«+<C for n=1,2, ... Then there exists an element y € V* such that

(16) A(e.)u.—x (weakly in V*)
Monotonicity of A(e,) implies

(17) [A(en)un -A(en)v, u, — U]?O
for every vekK, n=1,2, ...

Inserting v = u in (11) we obtain using (10), (15) and the strenghtened continuity
of the operator B,

(18) lim sup [A(en)tn, un — u]<0
and combining with (16)
(19) lim sup [A(e.)un, ua]<[x, ]

Taking into account relations (15), (16), (17), (19) and the strenghtened continuity
of the operator A(-)v: U,,— V* we arrive at

(20) [x—A(e)v, u—v]=0 for every veK
Let v=u+t(w—u), te(0,1), we K. Then we have

21) [x—A(e)(u+t(w—u)), u—w]=0
for every we K, te(0,1)

Making use of hemicontinuity of A(e,) we obtain after #—0 and putting again
w=v

(22) [A(e))u, u—v]<[x, u—v] for every veK

Puting v=u in (17) we have [A(e.)un, u,—u]=[A(e.)u, u,—u). The stren-
ghtened continuity of A(-)u and the weak convergence u,—u imply immediatly

lim [A(en)u, u. = u] =0 and hence lim inf [A(e.)un, 4, — u]=0. Comparing with
(18) we have
(23) lirg [A(en)un) U, — u] =0

Relations (16), (22), (23) enable us to estimate
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(24) [A(e))u, u— v]<lim [A(e.)un, U —v]
for every ve K

We are coming now to the conclusion that the element u € K is a solution of
a variational inequality

(25) [A(eo)u, u—v]<[f+ B(e), u—v] for every veKkK,

having used (24), (11), (15) and the strenghtened continuity of B.
Hence we have proved

(26) u=u(e), u(e.)—u(e,) (weakly in V)
what implies
(27) Cu(e.)—Cu(eo) (weakly in x)

A functional g: x— R, g(w)=||w—z|}, we x is weakly lower semicontinuous
and therefore

(28) J(eo) =||cu(eo) — za||2<lim inf | Cu(e.) — z.||2—
=lim inf J(e,) =inf J(e,)

which completes the proof of (8) and of the Theorem.

Remark. It is an opened question to gain further information about the set
X < U, of solutions of Problem P. We have only verified that X+ @. The core of
the problem is that ve have been solving the control problem governed by the
variational inequality and hence the minimized functional J with respect to e € U.s
is not convex.

2. The Example

We shall investigate the optimal control problem for the thickness function of
a thin plate with an obstacle.

Let Q< R? be the middle plane of a plate. We assume that Q has the Lipschitz
boundary 32 =I'uI,ul;. We suppose that a part I'; of the boundary of the plate
is clamped, a part I is simply supported and a part I3 is free. An obstacle for the
deflection of the plate can be described by the function @: Q— R satisfying the
inequality @(x, y)<O0 on IuT%.

We denote

(29) V={ve112(9)v=0 on Flurz,%=0 on I"l},

where H?(L2) is a Sobolev space of all functions from L,(£2) which have the
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distributive derivatives up to the 2-nd order from L,(£2). The boundary conditions
are satisfied in the sense of traces ([4]).
Functions expressing deflections of the plate belong to the set

(30) K={veV,v(x,y)=¢@(x,y) ag.in Q}

The thickness functions e: £2— R play the role of controls. We assume the set U..
of admissible controls in the form

(31) U..={ee H(Q)|el}r<M, e(x, y)=m>0 on Q)

Due to the imbedding theorems in the Sobolev space H?*(£2), K is a convex closed

subset of V and U, a convex closed and bounded subset of the space U = H*(L).
The operators A(e): K— V*, ee U.4, of the problem are of the form

@ =gy [ [ 0 [ G+ S+

’u v , (B’u d%v
(32) +2(1—p)— 3x3y 8x8y+( R ) 3y? ] dx dy,

uek, veV, ee U, ne(0,1)
The operators A(e) satisfy the assumptions (1)—(5). If the outer force has the

form of linear bounded functional fe V*, then a deflection of the plate u(e) € K is
a solution of a variational inequality

(33) [A(e), v—u(e)]=[f, v—u(e)] for every veK

For simplicity we do not consider the operator B: U,,— V*. A cost functional can
be of the form

(34) J(e) =JJ(Tu(e) —z.,)z_ dx dy, ee U,

where I: V— L,(Q) is the identity operator, z, € L,(Q2), or
(35) J(e)= f (Tu(e) - z2)* ds, ee U,
5}

where T: V— L(I3) is the operator of traces, zs€ L,(I3). The optimality
conditions for the functionals (34) and (35) mean the minimizing of the distance
betwean the deflection of the plate u(e) and the priscribed function z; on €, or Is.
Due to the Theorem 1. there exists the optimal thickness function e,: £— R which
minimizes the functional J or J on the set of admissible functions U,a.

We are greatly indebted to Dr. Kacur for his valuable advice enabling us to
improve the assumptions of the Theorem 1.
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OIOHA 3AIAYA OINMTUMAJIBHOI'O YITPABJIEHUS
I SIUTUIITUYECKOIO BAPUMALIMOHHOI'O HEPABEHCTBA
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Pe3iome
B pa6ote paccMaTpuBaeTcs 3afaya ONTHMAIBLHOTO YNPaBJIEHMS IS JUTMITHYECKOrO BapHalLMOH-
HOro HepaBEHCTBA C YNPaBJIEHWIMH B ONepaTope M B NMpaBoii YacTH. JIoKa3pIBaeTcs CyIeCTBOBaHHe

ONTHMAJIBHOTO YTIPABJICHHA. IToxa3biBaeTcs npuMep ONTUMAJH3aLMH TOJIUIAHBI TOHKOW ILIaCTHHBI
C NpensATCTBHEM.
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