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NOTE ON SEMIGROUP VALUED
MEASURES

IVICA MARINOVA

In paper [2] the extension of measures defined on an algebra with values in
partially ordered semigroups to a generated o-algebra is done by transfinite
induction. This paper is concerned with the extension of semigroup valued
measures whose domain is a ring. We differ from [2] also by omitting transfinite

induction although some other assumption is added. However all examples in [2]
fulfil this added assumption.

Let & be a ring of subsets of a nonempty set X. Let 2 be a partially ordered

semigroup with a binary operation @), partial ordering = and let 6 € ? be such that
6=a for all ae P. We shall write

X Tx iff X, =xpe1, X., x€P (n=1,2,...) and x=sup x,

Yuly iff Yos1=ya, Yo, y€®P (n=1,2,...) and y=infy,
Z.—> 2 iff z,.,zeg’andthereareu..,‘v,.eg’ (n=1,2,..)
suchthat u, =z, =v, (n=1,2,...) and u,1z, v.|z

AA iff A,eR, AvcAna (n=1,2,..) and |J A=A

n=1

B,|B iff B,e®, B,.cB, (n=1,2,..) and () B,=B.
n=1
We shall denote by ?< the set of all functionals f: $— (0, ») satisfying the
following properties:
(a) f(6)=0
(b) a=b implies f(a)=f(b) for all a, be P
() f(a®b)=f(a)+f(b) for all a, be P

(d) a,— a implies lim f(a.)=f(a) for all a,,ae? (n=1,2,...)
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Troughout the paper we shall assume that the semigroup % has the following
properties :
(i) a®0O=a for all ae P
(ii) a®b=b®a for all a, be?P
(iii) a=b implies aDc=b@c for all a, b, ce P
(iv) @ is relatively o-complete (i.e. every increasing (decreasing) bounded
sequence in % has the supremum (the infimum) in ?)
(v) a,—a, b,— b implies a,®b,—a®bforalla,,b,,a,beP (n=1,2,..))
(vi) @ is separative (i.e. if a,beP, a#b, then there is fe P~ such that
f(a) #£(b))
(vil) f(x)=f(y) for all fe P< implies x=y
(this is the assumption mentioned at the beginning).
Let m: R— 2 be such a set function that:
(1) Ac=BuC implies m(A)=m(B)®m(C) for all A, B, Ce R
(i.e. m is monotone and subadditive)
(2) A.l0, A,eR (n=1,2,...) implies m(A,)]0
(i.e. m is continuous from above in @)
(3) AncA,i, AceR (n=1,2,...) implies m(A,.1—A,)—0
(i.e. m is exhausting)
(4) the range of m is bounded.
We shall call such a function m a submeasure.
Observe that when R is an algebra (4) holds. Notice further that a submeasure is
continuous (i.e. A,TA (B.|B) implies m(A,)m(A) (m(B.)|m(B)) for all
A.,B.,A,Be®R (n=1,2,...) and that m(0)=6.
The exhaustivity is a necessary condition of extension of a monotone, continuous
and subadditive function. We can see it in the following lemma.

Lemma 1. Let & be a o-ring. Let m: $— P be a monotone, continuous and
subadditive function. Then m is exhausting.

Proof. Let A,e ¥ (n=1,2,...), A,]A. Then Ae ¥, (A—A,)|0 and m(A —
A)]0-(An1—A)c(A—-A,) for n=1,2, ... and this implies m(A, .- A,)=
m(A —A,). Thus m(A,..—A,)| 0.

But the exhaustivity need not be fulfilled automatically on a ring as we can see in
the following example.

Example. Let X=1(0, ). Let R be a ring containing finite unions of intervals
(n,n+1), n=0,1,2, ..., complements of these unions and the empty set. Let

a+b
P=((0,1), D), where a@®b =1+ ab
with the usual ordering of real numbers is a semigroup satisfying the properties
(i)—(vii). Define a set function m: R— P as follows:

m(@)=0

for a, b € . One can easily find out that
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m({n,n+1))== for n=0,1,2,...

N

m(,U1 (i, i;+ 1)) =G~)la,, where i; is an integer and
- =
1 .
4 =3 for j=1,2,..,n

m(A)=1 for 8+ A+) (i, i +1).
j=1

It is not hard to see that such a function m is monotone, continuous and
subadditive. It is obvious that m is bounded. Now take a sequence {A,}r-1,

A,=(0,n) for n=1,2,.... Clearly A,cA,.:, but lim m(Ani—A,)=

. : 1 . . . .
lim m({n, n+1)) =3 Hence m is not exhausting on &. Thus a function m is an

example of a monotone, continuous and subadditive function which cannot be
extended to a generated o-ring.
The following lemma is a consequence of [1, page 217].

Lemma 2. Let R be a ring of subsets of a nonempty set X. Let u: #— (0, ») be
monotone, subadditive and continuous from above in the empty set function

satisfying a condition lim u(A,.1—A,)=0 for all A,eR, A.cA.ua

(n=1, 2, ...) such that lirg u(A,) <. Let $(R) be a o-ring generated by R. Then

there is a ring R = £ <« $(R) and a unique extension v: £— (0, ) of u such that
v is monotone, subadditive and continuous from above in the empty set on &.
Moreover £ is closed in the following sense: if A,TA (A.lA), A, e & (n=

1,2, ...) and {v(A.)}:-1 is bounded, then A € ¥ and lim v(A,)=v(A).

Remark 3. If the range of u in Lemma 2 is bounded, so is the range of v. Then
£ is a monotone class and hence $(R)c L.

Let m: R— P be a submeasure, f € ?=. Since the range of m is bounded, so is
the range of fom. Now from Lemma 2 and Remark 3 the following lemma is clear.

Lemma 4. Let m: R—P be a submeasure, fe P<. then a function fom:
R— (0, ©) has a unique extension (fom),: ¥(R)— (0, ©) which is monotone,
subadditive and continuous on ¥(R).

Theorem S. Let R be a ring of subsets of a nonempty set X. Let P be
a semigroup satisfying the conditions (i)—(vii). Let m: R— P be a submeasure.
Then there exists a unique submeasure m: $(R)— P so that m/R =m.
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~ Proof: Let 2={q: ?<—(0, ©)}. Let us assign 2 the partial ordering < in the
following way: q1<q; iff qi(f)=q.(f) for all fe P<, q:, qg.€ 2. We consider

a pointwise convergence on 2, i.e., q,.—iq iff lim q.(f)=q(f) for all fe P=,

4., q€2,n=1,2,.... Let 1: P— 2 be a mapping defined in the following way:
for all ae P, t(a)=q. where q.: P<— (0, =) is such a function that q.(f) = f(a)
for all fe <. Using the separativity of P one has that for a, be P, a# b there
exists f € P= such that q.(f) = f(a) # f(b) = q»(f). Hence 7 is an injective mapping.
For a, be P, a=b iff f(a)=f(b) for all fe P~ iff q.(f)=q.(f) for all fe P~ iff
d.<qs . Hence a = b iff 1(a)<t(b), a, be P. Let E € R. Then m(E) e . We put
4" =qme. Obviously ¢ € 7(P) and for all fe P=< q5(f) = qme)(f) = f(m(E)) =
(fom),(E),where (fom),is the unique extensionof fom to a generated o-ring from
Lemma 4. For E € ¥(R) we put q%(f) =(fom).(E) for all fe P=. Let us denote
m(E)=1"'(q®). We shall show that for all E € $(R), q is an element of T(P).
Let ¥={Ee¥(R): q® € t(P)}. Obviously ¥ > R. We shall show that ¥ is

a monotone class. Let A,TA, A,e¥, n=1,2,.... Then the lim (fom).(A,)=
(fom)«(A) for all feP<, that is the lim q*(f)=q*(f) for all fe P<, hence

q“-—!;q". Forn=1,2, ..., g% <q*+.1f it is false, a functional f € < would exist

such that g*~(f)>q*~+(f), i.e. (fom):(A.)>(fom)1(A,+1). This contradicts the
monotonicity of (fom),. Hence {t7'(q*")}~-1 is an increasing sequence in P.
Observe that it is bounded. By relative o-completeness of % there exists

asup {t7'(¢*)} =aeP. For all fe P< q,,(f)=f(a)=]i12 q*~(f), hence q""i Qo -
It follows that q* = g, € () and hence A € ¥. Further t7'(q*)=1"'(q.)=a=

sup {t7'(¢*")} and so rm(A)=sup m(A,)in 2. In the same way one can prove that

if B,|B,B,eX (n=1,2,...), then Be ¥ and rh(B)=ix'1lf m(B,). Hence $(R) <
% and m is a continuous set function on F(R). Obviously #1(E)=m(E) for all
Ee®R. m is monotone on ¥(R) because if A, BeF(R), AcB, then
(fom)i(A)=(fom)i(B) for all fe P<, that is iff g*(f)=q®(f) for all fe P~ iff
q* <q°® iff t'(q*)=1""(q®) iff m(A)=rm(B). Now we shall claim the subad-
ditivity of . Let us denote £, ={A € #(R): m(AuB)=m(A)®m(B) for all
Be R)}. Obviously & c %, . We shall show that £, is a monotone class. If A, € £,
n=12,..,A,JA(A,|A), then for all Be®R A,UBTAUB (A.,UB|
JAUB). By continuity of i1 on ¥(R) one has

(A UB)=sup ri(A,UB)Ssup (m(A.)@m(B))= m(A)@Dm(B)
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((AUB) =int 1(A,UB) Sinf (7(A,) @ m(B))=m(A) ® r(B)).

Hence P(R)=. Further let us  denote L={AeP(R):
m(AuB)=m(A)® m(B) for all Be $(R)}. Then R c %, . In the same way as for
& one can prove that %, is a monotone class. Then $(R) <= ¥, and hence the
subadditivity of m.

There remains to be proved the uniqueness of such an extension . Let m,: -
P(R)> P, my: P(R)— P be such submeasures that m,(E) = m,(E)=m(E) for
all Ee R. Let o be a class of all sets E € $(R) such that m,(E)=m,(E). It will
suffice to show that #(R) = «. But this is clear since by continuity of m,, m, o is
a monotone class. Hence the theorem is proved.

If a submeasure m: R—P is additive, ie. m(AuB)®m(AnB)=
m(A)@® m(B) for all A, Be R, we shall call it a measure.

Theorem 6. Let R be an arbitrary ring of subsets of X+0. Let P be
a semigroup satisfying the properties (i)—(vii). Let m: R— P be a measure. Then
there exists a unique measure m: $(R)— P extending m.

Proof. From the preceding we know that a submeasure m: $(R)— P exists
such that ri/R = m. It suffices to show that r is additive. Denote M, = { A € #(R),
m(AuB)® m(AnB) = m(A)® m(B) for each B € #}. We shall show that , is
a monotone class. Let A,TA, A,eM; (n=1,2,...). Then m(A)@m(B)=

(sup r(A.))@ri(B) =sup ((A.)Dr(B))=

sup (m(A.uB)®m(A.NB))=sup ri(A,uB)®sup m(A.NnB)=

=m(AUB)®m(ANB). Let A,|A, A ety (n=1,2,..). Then
m(A)®m(B) = (inf rm(A,))®m(B)=inf (m(A,)®rm(B))=
=i13f (ﬁt(A,.uB)@rh(A,.nB))=ir:f rh(A,.uB)G-)ir:f m(A.nB)=

=m(AuB)®rm(AnB). Hence M, is a monotoune class evidently containing R
and so we have P(R)cM,. Further denote JM;={AeP(R),
m(AuB)® m(AnB)=m(A)® m(B) for each Be ¥(R)}. Then R = M. In the
same way as for f; one can prove that A, is a monotone class. Then $(R) = M,
and the additivity of m is proved. -
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3AMETKA O MEPAX C 3HAYEHUSIMU B ITOJIYTPYIIIIAX
Ivica Marinova
Pesome

B craTtbe upeT peus O pa3uMpeHHM MED, ONpefeNeHHbIX Ha KOMblIE R MOIMHOXECTB HEIYCTOrO
MHOXecTBa X, C 3HAYEHUSIMH B HEKOTOPBIX YaCTUYHO YIOPSAOYEHHbIX MOJYrpyNnax Ha HauMeHblIee
O-KONeLo Hag R.

B Teopeme 5 noka3aHO, YTO MOHOTOHHas], IOJTya[UIMTUBHAS, HenpepbIBHast yHkuus m: R— P (P
0603HaYaeT MOJNYIpymly, YNOBJIETBOPSIOIIYI0O HEKOTOPHIM CBOKCTBaM), Mis KOTOpoi u3 A, eR,
AncA,a (n=1,2,..) cnenyer m(An+1— A,)—> 0, nMeeT ONHO3HAYHOE pa3lUMpPEHHE Ha HaUMEHb-
mee o-xonbuo Hag R. B pabore moka3aH M npuMep MOHOTOHHOM, TOJTyaJIUTHBHOM, HeMpephIBHOM
(byHKIMH, KOTOPYIO HEBO3MOXHO Pa3IMPHTE.
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