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ON NONOSCILLATORY SOLUTIONS OF A CLASS
OF NONLINEAR DIFFERENTIAL EQUATIONS

JAN MIKUNDA — JOZEF ROVDER

1. Introduction

The present paper will deal with the diferential equation
Ly£(=1)f(t,y, y's ..., y™)=0. (E)

where me {0, 1, ..., n—1} and L,y is the quasi-desrivative of y of order n.
Throughout the paper we suppose that the function f(¢, uo, uy, ..., Un) 1is
continuous on a region :

D:a<t<o, —o<y,<ow, i=0,1,...,m

and for every point (co, ¢y, ..., ) F (0, 0, ..., 0) the function f(t, co, ..., ¢») is not
equal to zero in any sub-interval of the interval [a, ®).

Further we suppose that in the quasi-derivates Ly, defined by Loy =ao(t)y,
Ly=a(t) (Li-1y)', i=1, 2, ..., n, the functions a;(t), i=0, 1, ..., n are positive
and continuous functions on [a, ©) and

=1
Lmd[=°° (1)

fori=1, ..., n—1.

A function u(t) is called a solution of (E) iff u(¢) has continuous quasi-derivat-
ives Lu(t), i=0, 1, ..., n, continuous derivatives of order m on the interval [a, )
and it satisfies (E).

A solution u(t) of (E) is called nonoscillatory iff there exists a number ¢ =a such
that u(t) #0 on [c, ©). The aim of this paper is'to extend the results of [1], [2] and
[3] for differential equations with quasi-derivatives. It is proved that every
nonoscillatory solution of (E) (if there exists one) belongs to one set defined
before. The existence of a nonoscillatory solution of (E) was studied in [4], [5].
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2. Preliminary results
If the sign +, resp. —, holds in (E), then the equation (E) will be signed by (E*),

resp. (E).
For k=0, 1, ..., n—1 let us define the function w*(¢) as follows:
w’(t)=1
ds 1 ds -1 ds
“t=J dsi 7 dss f “ for k=1,..,n—1
0" (0= 260 ). az(sz) a(se) OF k=bom
and o, (t):

wox=1 for k=1,...,n

w,»,,((t)=f ﬁ)' (1)._1‘;((5) ds for k=1, . n

and i=1,2, ..., k—1.

Let us define the following sets on nonoscillatory solutions of (E). Let S, be the
set of a nonoscillatory solution y(t) of (E) such that L,y(¢t) be bounded, let S,
k=1, 2, ..., n—1, be the set of nonoscillatory solutions y(t) of (E) with the
properties

lim&,‘:_,(Lt)l >0 and lim Oz(t)—O
—= 0*7(1) —= 0*(1)

and let S, be the set of nonoscillatory solutions y(t) of (E) such that

Lemma 1. [Svec [5]]. Let (1) be valid. Then

lim wi(t)=o as t—»>o for i=1,2,...,n—1

t—®

i w'(1)

—<=w as t—>» for O0<i<jsn-—1.

= wi(t)
Lemma 2. Suppose that y(t)=0 on [b; ®), L,y(t) exists on [b; ) and

Loy(1) _

lim =)

for an integer r, 1<r<n—1. Suppose that L,y(t)%0 on any subinterval of
[b; ).
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If L,y(t)<0 on [b; «), then

(=1)**'Lo-y(1)>0 on [b; )
for k=1,2, ..., n—r, and also for k=n—r+1 if n—r is even.
If L,y(t)=0 on [b; »), then

(=1)*La-sy(1)>0 on [b; )

for k=1,2, ..., n—r, and also for k=n—r+1 if n—r is odd.

Proof. Suppose L,y(t)<O0 on [b; ©). We need to prove L,_,y(t)>0 on
[b; ). If L._,y(a)<O0 for some a=b, then L,_,y(t) is negative and decreasing
on [a; ©). So there exist a negative constant K and a number >a such that
L.-.y(t)<K on [B; ®),

Integrating the last inequality (n — 1) times over (B, t) we get

Loy(t)<Ko" '()+ Kio"2(t) + ...+ K._1 0°(t) .

From the Lemma 1 it follows that lim Loy (t) = — %, which contradicts the assump-

tion y(t)=0. Therefore L,_,y(t)>0 on [b; ©). Now we are to prove that
L.oy()<0. If L,2y(a)=0 for some a=b; then L, ,y(t) is positive and
increasing on [a ; ) and so there exist a positive number M and a number f, such
that L,_,y(t)>M on [f,; ). From this inequality and from Lemma 1 we obtain

limM>M>0.

t—® (I)n_z(t)

On the other hand

. Loy(®) _. Loy(t) (1) _
!1.'2 a)"'z(t)_}-m w'(t) ~w,__2(t)—0

for r <n —2, which is a contradiction. Repeating the above arguments we complete
the proof.
Lemma 3. Let L.y(t) exist on [b; ©) and L,y(t)#0 on any subinterval of
[b; ®). Let Loy(t) be bounded on [b; «).
If L,y(t)<O0 on [b; ), then there exists a number ¢ =b such that
(=1)**'La-xy(t)>0 on [c; ©)
for k=1,2,..,n-1.
If L,y(t)=0 on [b; =), then
(=)*Lo-y(1)>0 on [c; )
fork=1,2, ..., n—1.
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Proof. Let L,y(t)<O0 on [b; ©) and a non-identically zero on any subinterval
of [b; ). Then there exists a number ¢ such that L,y(¢) is onesigned on [c; «) for
allk=0,1,...,n—1.Now we prove that L,y(t) - Liy(t)<Oon|[c; ) for k=1, ...
n —1. From the definition L,y(t) it follows that

Leoy(t) =L, ly(c)+f iy () ds )

Suppose that for some k=1 Ly(t)-Liy(t)<0 fails on [c;®), ie.
L.y (t) - Liy(t)>0 on [c; ©). Then L.y(t) is either positive and increasing or
negative and decreasing. From (2) we get that L,_,y(¢) is unbounded and has the
same sign as L,y(t). Repeating this procedure we get that Loy(t) is unbounded,
which is a contradiction. Therefore L,y(t) - Liy(t)<O0 on [c; ) for k=1,

n—1. From the last condition we have that L, ,y(t)>0, L, ,y(1)<O0, ... ie.
(=1)**'L.—xy(t)>0 for k=1, ..., n—1. If L,y(t)=0, then the proof is similar.

Lemma 4. Let y(t) be a solution of (E), then

Loy (= Loy ()+ 3 (-1 Ly (D0, a(0) -

- kil (=1)*'Lpvi-cy(c) - 0 u(c) £

£ (=1 (=D f 5 e s(6) S Y(5)s e ys)) ds
0
holds for t=c=a and 1<k<n (if k=1 we put 2=O>
i=1
Proof. Let y(t) be a solution of (E). Integrating

[L,._ky(t)]' = Tkln(T)- L, iry(t)

over [c, t] we get
! 1
= ———— Lo+ ds .
Loay(0)=Laoay(©)+ [ 5y Loesy(5) ds
Calculating the integral by parts we have

L,_xy(t)=La_xy(c)+[w1(s)La-rsr1y(s)]c— JI ;,4(s)

c

1

() L, xs2y(s)ds .
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Repeating this procedure i times we get

Lueay ()= Laesy(©)+ 2 1 a0 L,y )+

1k 1
D [ 00i) T Ly () ds
Finally for i =k —1 there holds

L..—k)’(t) = Ln—"y(c) + 2: (= 1)"*'[(0’" k(S)L,,_k+,-y(s)]‘c+
+(=1) f;% Ok1,(5)Lay(s) ds =
La-iy(c)+ ‘:2: =)o, k(S)L..\H,-y(s)];i

i(—l)"(—l)k“ﬁ a..is) @1, 8)f (s, y(s), ..., y(s)) ds .

3. Results.
Theorem 1. Let the function f(t, ue, s, -.., u,) have the following properties
(Hl) uof(ta Uoy Uyy vy u,,.)?O
(Hy) If a(t)e Cm[a; ®) and lim Loa() = K40, then

t—o

(s8n a0} | @ros. i) 1y 5, @(s), @(5), . @) ds =,

Then (i) So=@ for equation (E*), i.e. if Loy(t) is bounded, then y(t) is
oscillatory.

(ii) If y(t) is a solution of (E~) and y(t)€S,, then lim Loy(t)=0
Proof. (i). From Lemma 4 it follows that every solution of (E*) satisfies the
equation
n—1 n—1
Loy()=Lay(e) + 3 (=100 DLy (D)= 5 (~1)*'0.(0)
t 1 ,
Ly(©) =D [ @0m16) 13 £ Y61 Y (5N o y(s)) d
Suppose So# @, i.e. there exists a nonoscillatory solution y(t) such that Loy(t) is
bounded.
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Let y(1)<0, n be even. Then L.y(t)=—f(t, y(t), ..., y™(t)) =0 by hypothesis
(H,). By Lemma 3 there hold

"Zl(—l)’“L.y(t)<0 on [c, ©) for ¢>a (3)

and so

1

Loy(t)<L+ f W O (5, Y(5), or y(5)) ds

where L=Lyy(c)— nzl (=D"*'w; (c)Liy(c).

Since L,y(t) <0, then Loy(t) is decreasing and so there exists lim Loy(t)=K <0

Hence, by hypothesis (H,), the righthand side of (3) diverges to — o, which
contradicts the boundedness of Loy(t).

(ii) Let y(t) be a solution of (E7), y(t) €S, and lim L,y(t)=K#0. If y(t)<0,
then, by Lemmas 3 and 4, y(t) satisfies the inequality

Loy(t)=L— j % 0, A5, y(5)s - y(s)) ds |

Now we have a contradiction, because Loy(¢) is bounded while the right-hand side
diverges to o for t— o,

Let S=S,uS,u...uS, if nis even and let S=S,uS,u...uS, | if n is odd for
equation (E*).

For equation (E~) denote S — S,uS;u...uS, if nisodd and S = S,US;U...US,.-
if n is even.

Theorem 2. Suppose that the differential equation (E) satisfies the following
hypotheses :

(hl) uof(t, Uoy Ury ooy um)io
(h;) Let re{l, 2, ..., n}. If a(t)eC™[a, ), L, a(t)eC[a, ®) and
lim L,_,a(t) # 0, then

sgn {a(t)}fm%(s) O (s, @(s), ory @™(s)] ds = .

Then S, =0 in the equation (E*) if r is even and S, =9 in the equation (E ) if r is
odd.
Proof. Let us consider the equation (E*) and n is even. Suppose on the
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contrary, S,#+ @ for some re{2, 4, ..., n}. Let y(1)€S,, y(1)>0. Then by
I’'Hospital’s rule we obtain

lim LM—hm L,.,y(9>0, lim L—'(L)-llm Ly(t)=0.

== 0"7(1) w’ (1)
Since n—r is even then from Lemma 2 there yields
(=1)**'"Lasy()>0, for k=1,2,..,n—r,n—r+1, 4)

and sgn L,_,y(t)=sgn y(t)>0.
If we put k=n—r+1 into L,_«y(t) given by Lemma 4, we get

L._y(t)=L,_1y(c) +2'(—1)"“w,»,,._,+1(t) cLyajay(t) -

= S 1Y 0o Lri€) = [y Oncrnernls, ¥(6) o yYS)] s
©)

From (4) it follows that the sums in (5) are negative and so
' IY(t)<L f wn r,n— r+l(s)f[s )’(S) (m)(s)] ds ’ (6)

where L is a constant. Since !im L,_,y(t)>0, then, by (h.), the right-hand side of

(6) diverges to —o, while the left-hand side of (6) is positive, which is
a contradiction.
If r=n, then the contradiction follows immediately from the equality

Luiy(t)=Lo_1y(c)— f 'an}s) 15, (5, -y y(s)] ds ,

since L,-1y(¢)>0 and the right-hand side diverges to — . In a similar way we can
prove all the other cases.
If in (hz) we put r =1, then (h,) implies (H,), and so the following theorem holds.
Theorem 3. If (h,) and (h,) hold for every re{1, 2, ..., n}, then S=@.
Theorem 4. Suppose the following assumptions are valid:
(a;) There exists a continuous function p(t)Z0 on [a, ) such that

sgn {uo}f‘ft, Uoy -.ny Um) Z p(2) | tho].

(a2) f a_o(s—)la,,—(ﬁ Wa-1,2(s) ds =
(as) wk_l(t) ’ wn—k,n—ku(l‘)gwn—l,,.(t) for k=1,2,...,n
Then S=0.
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Proof. Let y(t)€S, and (a,) holds The
sgn {y()}ao(O)f[t, (1), ..o vy O = p(1) 1() [y(D)] = p() Loy (1)] ,

sen {0} 5 A6 Yo ¥ 0] K s 0 (0p(0).

sen {y(1)) %) O+ et (Of[6, V(s -y yOO(0] =

m{%(-t—) o () w, """“(t)p(r)—';l:(TIfzo(—t—) 0, 1 ()p(1) . (6")

Thus the assumptions (h,) and (h,) of Theorem 2 hold for each ke {1, 2, ., n},
therefore S=4¢.
From the definition of S; itis ev'der tthat S;nS, =@, i#j i,7 0,1,. ., nexcept

for SynS, which consists of solutions y(x) such that lim L,y(¢) #0. However, if

(H,), (H,) are satisfied, then by Theorem 1 every nonoscillatory solution of (E) has
L,y(t) unbounded or approaches zero, i.e. SynS, is empty too.

Let S'=S5,08;u...uS, | if nis even and S'=85,US; .. US, if n is odd for
equation (E*). For equation (E ) let §$'=S,uS,u...uS, | if n is odd and
S'=8,uS;u...uS, if n is even.

Theorem 5. Let (h,) and (h,) hold for every re{l, 2, .., 1}. Then every
nonoscillatory solution of (E) belongs to S'.

Proof. First of all we see that

Loy() ]
—e (1)’ k=01,

exists for every nonoscillatory solution y(t) of (E), because

. Loy(r) . , S
,hjl.n o (1) —1122 Liyy(t), which exists.

If a nonoscillatory solution y(¢) has Lyy(t) bounded, then it belongs to S . Let
now L,y(t) be unbounded. If

lim Loy(1)

[Sdad w"' (1) >U ’

then y(¢) belongs to S,. Otherwise, there exists a largest integer p <n such that

tim YOl 0 ang fim L2 _ g

—= WP7(t) —e 0P(t)
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Hence y(t) € S,. This shows that any nonoscillatory solution of (E) belongs to some
Sv, 0<k <n. Since S =0, then every nonosillatory solution of (E) belongs to S’.

Corollary. Let yg(y)>0, p(t)>0, ay=1, (a,), (as) be valid. Then every
bounded solution of the equation

L.y +p(H)g(y)=0 (7
is oscillatory if n is even and every bounded solution of (7) is either oscillatory or
nonoscillatory with the property lim y(t)=0 if n is odd.

If we put a;=1 for all i=0, 1, ..., n, then w,_, (t)=¢""" and then the paper
gegeralizes the results in [1, 2, 3]. Theorem 3 is the same as Theorem 8 in [5]. (We
can see from the proof of Theorem 3 that instead of (a,) and (a,) it is sufficient to
suppose that the right-hand side of (6') diverges for all r, which is the assumption
in Theorem 8 [5]).

Finally we note that (a,) holds for the equation (E) of the second, the third and
the fourth order

a4(al(a2(a1(a0)’),)l)‘)l +f(tv Y5 oo y(’"))zo_
Indeed for n =4, e.g. we get,

orsn=0s.= | o ([ o ([ i 48) ) as

Wp—k, n-k+1" wk—l =Wnp-1,n for k= 1, 4 ,

t 1 s 1 t 1
. k=1 — — [ — . P — —_—
wn—k,n—k+l @ J’m al(s) (J:” az(r) dr) ds J:” al(s) ds, k 2, 3 .

However
[ ([ iy ([ ey ) ae) s <
<[z ([ o ([ a1 ar) as=

“J.aw (Lame) e [ame:

therefore W, ni+1° O 'Zw,_,, , for k=2, 3 as well.
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O HEKOJIEBATEJIbHBIX PEUIEHUSAX OHOI'O KJIACCA JIMHEMHBIX
OUOPEPEHLIMAJIbHBIX YPABHEHUN

J. Mikunda, J. Rovder

Pe3iome

B craTtbe H3Yy4aeTCd aCHMNTOTHYECKOE MOBEACHHE OTHOIO KJacca HENMHENHBIX umb(bepeuuuanbnblx
ypaaﬂeuuﬁ n-ro nopsifika ¢ KBasu-nmpoM3BOAHBIMH.
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