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ON NONOSCILLATORY SOLUTIONS OF A CLASS 
OF NONLINEAR DIFFERENTIAL EQUATIONS 

JAN MIKUNDA — JOZEF ROVDER 

1. Introduction 

The present paper will deal with the diferential equation 

Lny±(-iyf(t,y,y
f,...,fm)) = o. (E) 

where me{0, 1, ..., n — 1} and L„y is the quasi-desrivative of y of order n. 
Throughout the paper we suppose that the function f(t, u0, uu ..., um) is 

continuous on a region 

D: a^r<°o, -oo<M i<oo, | = 0, 1, ..., m 

and for every point (c0, cu •, cm)j=(0, 0, ..., 0) the function f(t, c0, ..., cm) is not 
equal to zero in any sub-interval of the interval [a, o°). 

Further we suppose that in the quasi-derivates L,y, defined by L0y = a0(t)y, 
Liy = at(t) (Li-iy)', i = \, 2, ..., n, the functions a((t), i = 0, 1, ..., n are positive 
and continuous functions on [a, °°) and 

/ : i o d ' = 0 0 (1) 

for i = l, ..., n- 1. 
A function u(t) is called a solution of (E) iff u(t) has continuous quasi-derivat-

ives Liu(t), i = 0, 1,..., n, continuous derivatives of order m on the interval [a, o°) 
and it satisfies (E). 

A solution u(t) of (E) is called nonoscillatory iff there exists a number c ̂  a such 
that u(t) £ 0 on [c, °°). The aim of this paper is to extend the results of [1], [2] and 
[3] for differential equations with quasi-derivatives. It is proved that every 
nonoscillatory solution of (E) (if there exists one) belongs to one set defined 
before. The existence of a nonoscillatory solution of (E) was studied in [4], [5]. 
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2. Preliminary results 

If the sign +, resp. —, holds in (E), then the equation (E) will be signed by (E+), 
resp. (E"). 

For k = 0, 1, ..., n — 1 let us define the function cok(t) as follows: 

OJ°(0 = 1 

w ( 0 = / x , v ... —7—7 for k = l, . . . , n - 1 

Ja « l (S l ) Ja « 2 ( 5 2 ) Ja Afc(sfc) 

and a)itk(t): 

co0,fc= 1 for k = 1, ..., n 

rt ^ 

Wi,k(t)=\ 7-T (Dt-Uk(s) ds for k = l, ..., n 
Ja Qn+i-kyS) 

and / = 1, 2, ..., k — 1. 
Let us define the following sets on nonoscillatory solutions of (E). Let S0 be the 

set of a nonoscillatory solution y(t) of (E) such that Loy(0 be bounded, let Sfc, 
k = l, 2, ..., n — 1, be the set of nonoscillatory solutions y(t) of (E) with the 
properties 

Г \LoУ(t)\ ^ гл A v W ( 0 П 
l i m fc-i/A > Q a n d lim—fcTГГ = °> 
r-°° w* Y0 «-- ÛГU) 

' (0 «->- w k (0 

and let Sn be the set of nonoscillatory solutions y(t) of (E) such that 

lim1¥^>0. 
r— con_1(0 

Lemma 1. [Svec [5]]. Let (1) be valid. Then 

limco,(0 = 00 as t—>oo for i = 1, 2, ..., n - 1 

lim ., v = 00 as r-->oo for 0 ^ / < / ^ r i - l . 
r-~ co'(0 

Lemma 2, Suppose that y(0 = 0 on [b; 00), L„y(t) exists on [b; 00) and 

l i m ^ = 0 

for an integer r, l=£r=£n-l . Suppose that L„y(f)^0 on any subinterval of 
[b;oc). 
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If L»y(0^0 on [b;oo), then 

(-l)k+1Ln-ky(t)>0 on [b; ») 

for /c = 1, 2, ..., n — r, and a/so for k = n — r-\-l if n — r is even. 

If Lny(t)^0 on [b ; oo), then 

(-l)kLn-ky(t)>0 on [b ; oo) 

for k = 1, 2, ..., n - r, and aiso for fc = n - r + 1 if n — r is odd. 
Proof. Suppose L„y(0^0 on [b; oo). We need to prove Ln_iy(0>0 on 

[b; oo). If Ln_iy(a)^0 for some a^b, then Ln_iy(0 is negative and decreasing 
on [a; oo). So there exist a negative constant K and a number 0 > a such that 
Ln_iy(0<Kon[j3;oo), 

Integrating the last inequality (n — 1) times over (j3, 0 w e get 

L0y (0 < K©-1^) + K,co"-2(0 + ... + !-,._! a>0(0 . 

From the Lemma 1 it follows that lim Loy(0 = - °°, which contradicts the assump-
r-*oo 

tion y(0-^0. Therefore Ln_iy(0>0 on [b; oo). Now we are to prove that 
Ln_2y(0<0. If L„_2y(a)^0 for some a^b; then Ln_2y(0 is positive and 
increasing on [a ; oo) and so there exist a positive number M and a number j3i such 
that Ln-iy(t) > M on [flx; oo). From this inequality and from Lemma 1 we obtain 

l™^4^r>M>0. 
,_>_ Q)n-2(t) 

On the other hand 

r-_ C0" 2(0 -— COr(0 0)n 2(0 

for r ^ n — 2, which is a contradiction. Repeating the above arguments we complete 
the proof. 

Lemma 3. Let Lny(t) exist on [b; oo) and L„y(t)^0 on any subinterval of 
[b ; oo). Let L0y(t) be bounded on [b; oo). 

If L>.y(0^Q on [b; oo), then there exists a number c^b such that 

(-l)k+1Ln-ky(t)>0 on [c;oo) 

for fc = l, 2, .,., n-1. 
If Uy(0^0 on ib ' °°)> then 

(-l)kLn-ky(t)>0 on [c;oo) 

for fc = l, 2, ..., n-1. 
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Proof. Let Lny(t)^0 on [b ; oo) and a non-identically zero on any subinterval 
of [b ; oo). Then there exists a number c such that Lky(t) is onesigned on [c; oo) for 
all k = 0,1, ..., n — 1. Now we prove that Lky(t) • L f cy(l)<0on [c; oo) for k = 1,..., 
n — 1. From the definition Lky(t) it follows that 

Lk_1y(ř) = Lfc_iy(c) + J ---—r L*y(s) ds . (2) 

Suppose that for some k^l Lky(t) - L'ky(t)<0 fails on [c;oo), i.e. 
Lky(t)L'ky(t)>0 on [c; oo). Then Lfey(r) is either positive and increasing or 
negative and decreasing. From (2) we get that Lfc_iy(l) is unbounded and has the 
same sign as Lky(t). Repeating this procedure we get that L0y(t) is unbounded, 
which is a contradiction. Therefore Lky(t) - L'ky(t)<0 on [c; oo) for k = l, ..., 
n — 1. From the last condition we have that Ln_iy(t)>0, Ln 2y(t)<0, ... i.e. 
(-l)k+lLn-ky(t)>0 for k = l, ..., n - 1 . If Lny(f)^0, then the proof is similar. 

Lemma 4. Let y(t) be a solution of (E), then 

Ln-ky(t) = Ln.ky(c) + ]_! (- l)i+lLn+i-ky(t)o)it k(t) -
i = 1 

-_: I (-l) i + 1 L„ + 1 - t y(c)-a>,, t (c)± 
i = l 

± ( - l ) - ( - l Y + I J e ' - - ^ _»_,.*(«) • /(s, y(s),..., y(m,(5)) ds 

Zio/ds for r5= c2=a and l^k^n (if k = l we put ^ = 0) 

Proof. Let y(t) be a solution of (E). Integrating 

[L„-ky(t)]' = L„-k+1y(t) 
an-k+iyt) 

over [c, t] we get 

Ln-fcy(0 = Ln_fey(c) + £ ank+^s) Ln-k+ly(s)ds . 

Calculating the integral by parts we have 

Ln_fcy(0 = Ln_fcy(c) + [w1,k(s)Ln--k+iy(s)]^- J co1<k(s) • 

Ln-k+2y(s) ds . 
a„-k+2(s) 
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Repeating this procedure i times we get 

Ln-ky(t)=LH-ky(c)+±yiy*^lAs)LH_Us)].c+ 

+ ( _ 1 ) ,f wU, )I^oo^-*^.y(-)d5. 
Finally for i = k — 1 there holds 

L._„y(0 = L„_k>;(c) + g (-1)'*'[o., ,(S)L„_k+,y(_ )]; + 

fc-1 

L„_ty(c) + g(-l)'+1[a) ;,,(.)L„. (,+;.y(s)].± 

± (-l)"(-l)k+1 J ----- <-_-,._(-)/(., y(_), ..., y(-)(s)) ds . 

3. Results. 

Theorem 1. Let the function f(t, u0, uu ..., um) have the following properties 
(H,) U0f(t, Mo, M„ ..., Mm)5s0 

(H2) If a(t)eCm[a;co) and \imLoa(t) = K^0, then 
t—»00 

r°° 1 
{sgna(f)}J ®n-i.n(s)-^jp:f(s9 a(s), a'(s), ..., a(™>(s)) ds = 00. 

Then (i) So = 0 for equation (E+), i.e. if Loy(0 is bounded, then y(t) is 
oscillatory. 

(ii) If y(t) is a solution of (E~) and y(t)eS0, then lim Loy(r) = 0 
t-*oo 

Proof, (i). From Lemma 4 it follows that every solution of (E+) satisfies the 
equation 

L0y(t) = L0y (c) + "f ( - l)l+1©,. n(t)Uy(t) - "f ( - l)i+1co., „(c) 
i = l i = l 

i < y ( c ) - ( - i ) " ( - i ) - » £ co--,. n ( s ) ^ ) / ( s . y(s), y'(sX..., y(m)(s)) d* 

Suppose So^0, i.e. there exists a nonoscillatory solution y(t) such that L0y(f) is 
bounded. 
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Let y(t)<0, n be even. Then Lny(t) = -f(t, y(t), ..., y(m)(t))^0 by hypothesis 
(H,). By Lemma 3 there hold 

X ( - 1 ) ' + 1 M 0 < 0 on [c, oo) for Oa (3) 

and so 

Uy^^L + j ' ^ 0)„_,n(5)/(5, y(s), ..., y^(s)) ds , 

where L = L0y(c)-^(-l)'+,o)i „(c)Ly(c). 
i = l 

Since Liy(l)<0, then L0y(t) is decreasing and so there exists lim Loy(l) = K < 0 

Hence, by hypothesis (H2), the righthand side of (3) diverges to -oo, which 
contradicts the boundedness of L0y(t). 

(ii) Let y(t) be a solution of (E~), y(t)eS0 and lim Loy(t) = K£0. If y(0<0, 
l—»oo 

then, by Lemmas 3 and 4, y(t) satisfies the inequality 

L 0 y ( r ) ^ L - £ ^ - , con l,n(s)f(s,y(sl...,yim)(s))6s. 

Now we have a contradiction, because L0y(t) is bounded while the right-hand side 
diverges to oo for f—>oo. 

Let S = S0uS2u...uSn if n is even and let S = S0uS2u...uSn i if n is odd for 
equation (E+). 

For equation (E~) denote S-SiuSiU.. .uSn if n is odd and S = SiuS3u...uSn_ 
if n is even. 

Theorem 2. Suppose that the differential equation (E) satisfies the following 
hypotheses: 

(hi) u0f(t, u0, Ui, ..., um)__0 

(h2) Let re{l, 2, ..., n). If a(t)eCm[a, oo), Lr-Xa(t) £ C[a, oo) and 

lim Lr-ta(t) ^=0, then 
t-* « 

sgn{a(0}[ 4 r ( t ) , - r , r+l(s)f[s, a(s), ..., a(m)(s)] ds = » . 

Tnen Sr = 0 in the equation (E+) if r is even and Sr = 0 in the equation (E ) if r is 
odd. 

Proof. Let us consider the equation (E+) and n is even. Suppose on the 
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contrary, Sr=£0 for some re{2, 4, ..., n}. Let y(t)eSr, y(t)>0. Then by 
l'Hospital's rule we obtain 

l i m - - ^ - l i m _ , - , y ( 0 > 0 , H m - ^ _ l i m L r y ( 0 - - 0 . 
r - " 0)r \t) --»• JK/ r̂ oo 0)r(t) -— 

Since n - r is even then from Lemma 2 there yields 

(-l)k+1Ln-ky(t)>0, for k = l , 2 , . . . , n - r , r c - r + l , (4) 

and sgn Lr_,y(0 = sgn y(t)>0. 

If we put k = n - r + 1 into Ln-ky(t) given by Lemma 4, we get 

Lr_,y(0 = Lr_iy(c) + 2 (-l)'+,co,, --r+1(0 • Lr+i-,y (0 -

- ! £ ( - l ) , + X - - r + i ( c ) L , + / - , ( c ) - f ' - J - - o>n-r,„_r+,(5)/[5, y(s) ..., y<">s)] ds . 
7 = 1 Jc Un\S) 

(5) 

From (4) it follows that the sums in (5) are negative and so 

L r _ i y ( 0 < L - 1 - ^ c0„_r,n_r+i(s)/[5, y(s), ..., y(m)(s)] ds , (6) 

where L is a constant. Since lim Lr_iy(f)>0, then, by (h2), the right-hand side of 
l - » o o 

(6) diverges to -oo, while the left-hand side of (6) is positive, which is 
a contradiction. 

If r = n, then the contradiction follows immediately from the equality 

L-_iy(0 = L . l _ i y ( c ) - | ^ / [ s , y(s), ..., y<>"\s)] ds , 

since Ln_iy(0>0 and the right-hand side diverges to — oo. In a similar way we can 
prove all the other cases. 

If in (h2) we put r = 1, then (h2) implies (H2), and so the following theorem holds. 
Theorem 3. If (hi) and (h2) hold for every re{l, 2, ..., n}, then S = 0. 
Theorem 4. Suppose the following assumptions are valid: 
(ax) There exists a continuous function /?(f)i_0 on [a,00) such that 

sgn {u0}f(t, Mo, ..., um)^p(t)\u0\. 

WÍÄW^^^0 0 ' 
(a3) oik '(f)- (on-k,„-*+i(0_Kon-,,„(<) for k = l,2,...,n. 

ThenS = 0. 
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Proof. Let y(t)eSr and (a,) holds Th^ 

sgn {y(t)}a„(t)f[t, y(t), ..., y<"' (t)] = p(t) i0(t)\y(t)\ -p(t) \Llty(t)\ , 

sgn{y(t)}-\-f[t,y(t),...,y,m\t))- K-~4~Tr^>r 'C)p(t), a„(t) a^Kt)a\t) 

sgn {y(t)) ^ to,, r „-r+l(t)f[t, v(t), ..., y("\t)]^ 

Thus the assumptions (h,) and (h2) of Theorem 2 hold for each k e {1, 2, ., n} , 
therefore S = 0. 

From the definition of Sk it is ev'dei t that StnS, = 0 , i-/=j /, y 0, 1, . ., n except 

for S()nSi which consists of solutions y(x) such that lim L o y( t )^0 . However, if 

(H,), (H2) are satisfied, then by Theorem 1 every nonoscillatory solution of (E) has 
L0y(t) unbounded or approaches zero, i.e. S0nSl is empty too. 

Let S ' = SiuS 3 u. . .uS„ i if n is even and S ' = S , u S ^ .. u S , if n is odd for 
equation (E+) . For equation (E ) let S' =S 0 uS 2 u . . . uS„ i if n is odd and 
S ' = S0uS2u.. .uS, i if n is even. 

Theorem 5. Let (h,) jnd (h2) hold for every r e { l , 2, .. , ?}. Then every 
nonoscillatory solution of (E) belongs to S'. 

Proof. First of all we see that 

L0y(t) 
lim—iTT-, k-0, 1, ., n - 1 
r-~ (0k(t) 

exists for every nonoscillatory solution y(t) of (E), because 

lim Q{; ; -= lim Lfcy(r), which exists. 
,^0- cok(t) 

If a nonoscillatory solution y(t) has L0y(t) bounded, then it belongs to S . Let 
now Loy(0 be unbounded. If 

l im%4^>0, 
r— (On-{(t) 

then y(t) belongs to S„. Otherwise, there exists a largest integer p < n such that 

r l W ( 0 L n A v Loy(t) A lim ' B i 7 ^ > 0 and hm — * j \ = 0 • 
r— (Op'l(t) '— WP(t) 
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Hence y(t) e Sp. This shows that any nonoscillatory solution of (E) belongs to some 
Sic, 0 ^ k ^ n. Since S = 0, then every nonosillatory solution of (E) belongs to S'. 

Corollary. Let yg(y)>0, p(t)>0, a0=l, (a2), (a3) be valid. Then every 
bounded solution of the equation 

Lny + p(t)g(y) = 0 (7) 

is oscillatory if n is even and every bounded solution of (7) is either oscillatory or 

nonoscillatory with the property lim y(t) = 0 if n is odd. 
f->oo 

If we put a, = l for all i = 0, 1, ..., n, then (on-Un(t) = t"~l and then the paper 
gegeralizes the results in [1, 2, 3]. Theorem 3 is the same as Theorem 8 in [5]. (We 
can see from the proof of Theorem 3 that instead of (a2) and (a3) it is sufficient to 
suppose that the right-hand side of (6') diverges for all r, which is the assumption 
in Theorem 8 [5]). 

Finally we note that (a3) holds for the equation (E) of the second, the third and 
the fourth order 

a,(ai(a2(ax(aoy)')'yy + / ( f ,y , ..., y<">) = 0. 
Indeed for n = 4 , e.g. we get, 

(On-l,n=(03,4=\ ~""v ( ~ 7 " - ( —TTT d £ ) d T ) As 

k ~i(s) \Jr„ a2(r) \Jt{) a,(£) 7 / 

(on-Kn-k+l - (ok~l = (on-hn for k = l , 4 , 

tt)n-fc,n-k+i- (Ok~*=\ 7-7-Tl —T^rdTMds- —T-rds, k = 2 , 3 . 
Jr0 ai(s) \Jr„ a2(x) ) Jt0 ax(s) 

However 

í-h(í^)(í~md^)dT)ds^ 
^í-k(íú-(í^md^)dr)ds= 

")t0 ai(s) \Jt0 a2(T) 7 S JtQ ax(s) S ' 

therefore (on-k,n-k+i • (ok l^(on-ltn for k = 2, 3 as well. 
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В статье изучается асимптотическое поведение одного класса нелинейных дифференциальных 
уравнений и-го порядка с квази-производными. 
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